/* ** ARM IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2013 Mike Pall. See Copyright Notice in luajit.h */ /* -- Register allocator extensions --------------------------------------- */ /* Allocate a register with a hint. */ static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow) { Reg r = IR(ref)->r; if (ra_noreg(r)) { if (!ra_hashint(r) && !iscrossref(as, ref)) ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */ r = ra_allocref(as, ref, allow); } ra_noweak(as, r); return r; } /* Allocate a scratch register pair. */ static Reg ra_scratchpair(ASMState *as, RegSet allow) { RegSet pick1 = as->freeset & allow; RegSet pick2 = pick1 & (pick1 >> 1) & RSET_GPREVEN; Reg r; if (pick2) { r = rset_picktop(pick2); } else { RegSet pick = pick1 & (allow >> 1) & RSET_GPREVEN; if (pick) { r = rset_picktop(pick); ra_restore(as, regcost_ref(as->cost[r+1])); } else { pick = pick1 & (allow << 1) & RSET_GPRODD; if (pick) { r = ra_restore(as, regcost_ref(as->cost[rset_picktop(pick)-1])); } else { r = ra_evict(as, allow & (allow >> 1) & RSET_GPREVEN); ra_restore(as, regcost_ref(as->cost[r+1])); } } } lua_assert(rset_test(RSET_GPREVEN, r)); ra_modified(as, r); ra_modified(as, r+1); RA_DBGX((as, "scratchpair $r $r", r, r+1)); return r; } #if !LJ_SOFTFP /* Allocate two source registers for three-operand instructions. */ static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irl = IR(ir->op1), *irr = IR(ir->op2); Reg left = irl->r, right = irr->r; if (ra_hasreg(left)) { ra_noweak(as, left); if (ra_noreg(right)) right = ra_allocref(as, ir->op2, rset_exclude(allow, left)); else ra_noweak(as, right); } else if (ra_hasreg(right)) { ra_noweak(as, right); left = ra_allocref(as, ir->op1, rset_exclude(allow, right)); } else if (ra_hashint(right)) { right = ra_allocref(as, ir->op2, allow); left = ra_alloc1(as, ir->op1, rset_exclude(allow, right)); } else { left = ra_allocref(as, ir->op1, allow); right = ra_alloc1(as, ir->op2, rset_exclude(allow, left)); } return left | (right << 8); } #endif /* -- Guard handling ------------------------------------------------------ */ /* Generate an exit stub group at the bottom of the reserved MCode memory. */ static MCode *asm_exitstub_gen(ASMState *as, ExitNo group) { MCode *mxp = as->mcbot; int i; if (mxp + 4*4+4*EXITSTUBS_PER_GROUP >= as->mctop) asm_mclimit(as); /* str lr, [sp]; bl ->vm_exit_handler; .long DISPATCH_address, group. */ *mxp++ = ARMI_STR|ARMI_LS_P|ARMI_LS_U|ARMF_D(RID_LR)|ARMF_N(RID_SP); *mxp = ARMI_BL|((((MCode *)(void *)lj_vm_exit_handler-mxp)-2)&0x00ffffffu); mxp++; *mxp++ = (MCode)i32ptr(J2GG(as->J)->dispatch); /* DISPATCH address */ *mxp++ = group*EXITSTUBS_PER_GROUP; for (i = 0; i < EXITSTUBS_PER_GROUP; i++) *mxp++ = ARMI_B|((-6-i)&0x00ffffffu); lj_mcode_sync(as->mcbot, mxp); lj_mcode_commitbot(as->J, mxp); as->mcbot = mxp; as->mclim = as->mcbot + MCLIM_REDZONE; return mxp - EXITSTUBS_PER_GROUP; } /* Setup all needed exit stubs. */ static void asm_exitstub_setup(ASMState *as, ExitNo nexits) { ExitNo i; if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR) lj_trace_err(as->J, LJ_TRERR_SNAPOV); for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++) if (as->J->exitstubgroup[i] == NULL) as->J->exitstubgroup[i] = asm_exitstub_gen(as, i); } /* Emit conditional branch to exit for guard. */ static void asm_guardcc(ASMState *as, ARMCC cc) { MCode *target = exitstub_addr(as->J, as->snapno); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->loopinv = 1; *p = ARMI_BL | ((target-p-2) & 0x00ffffffu); emit_branch(as, ARMF_CC(ARMI_B, cc^1), p+1); return; } emit_branch(as, ARMF_CC(ARMI_BL, cc), target); } /* -- Operand fusion ------------------------------------------------------ */ /* Limit linear search to this distance. Avoids O(n^2) behavior. */ #define CONFLICT_SEARCH_LIM 31 /* Check if there's no conflicting instruction between curins and ref. */ static int noconflict(ASMState *as, IRRef ref, IROp conflict) { IRIns *ir = as->ir; IRRef i = as->curins; if (i > ref + CONFLICT_SEARCH_LIM) return 0; /* Give up, ref is too far away. */ while (--i > ref) if (ir[i].o == conflict) return 0; /* Conflict found. */ return 1; /* Ok, no conflict. */ } /* Fuse the array base of colocated arrays. */ static int32_t asm_fuseabase(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE && !neverfuse(as) && noconflict(as, ref, IR_NEWREF)) return (int32_t)sizeof(GCtab); return 0; } /* Fuse array/hash/upvalue reference into register+offset operand. */ static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow, int lim) { IRIns *ir = IR(ref); if (ra_noreg(ir->r)) { if (ir->o == IR_AREF) { if (mayfuse(as, ref)) { if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (ofs > -lim && ofs < lim) { *ofsp = ofs; return ra_alloc1(as, refa, allow); } } } } else if (ir->o == IR_HREFK) { if (mayfuse(as, ref)) { int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node)); if (ofs < lim) { *ofsp = ofs; return ra_alloc1(as, ir->op1, allow); } } } else if (ir->o == IR_UREFC) { if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); int32_t ofs = i32ptr(&gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.tv); *ofsp = (ofs & 255); /* Mask out less bits to allow LDRD. */ return ra_allock(as, (ofs & ~255), allow); } } } *ofsp = 0; return ra_alloc1(as, ref, allow); } /* Fuse m operand into arithmetic/logic instructions. */ static uint32_t asm_fuseopm(ASMState *as, ARMIns ai, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); if (ra_hasreg(ir->r)) { ra_noweak(as, ir->r); return ARMF_M(ir->r); } else if (irref_isk(ref)) { uint32_t k = emit_isk12(ai, ir->i); if (k) return k; } else if (mayfuse(as, ref)) { if (ir->o >= IR_BSHL && ir->o <= IR_BROR) { Reg m = ra_alloc1(as, ir->op1, allow); ARMShift sh = ir->o == IR_BSHL ? ARMSH_LSL : ir->o == IR_BSHR ? ARMSH_LSR : ir->o == IR_BSAR ? ARMSH_ASR : ARMSH_ROR; if (irref_isk(ir->op2)) { return m | ARMF_SH(sh, (IR(ir->op2)->i & 31)); } else { Reg s = ra_alloc1(as, ir->op2, rset_exclude(allow, m)); return m | ARMF_RSH(sh, s); } } else if (ir->o == IR_ADD && ir->op1 == ir->op2) { Reg m = ra_alloc1(as, ir->op1, allow); return m | ARMF_SH(ARMSH_LSL, 1); } } return ra_allocref(as, ref, allow); } /* Fuse shifts into loads/stores. Only bother with BSHL 2 => lsl #2. */ static IRRef asm_fuselsl2(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ra_noreg(ir->r) && mayfuse(as, ref) && ir->o == IR_BSHL && irref_isk(ir->op2) && IR(ir->op2)->i == 2) return ir->op1; return 0; /* No fusion. */ } /* Fuse XLOAD/XSTORE reference into load/store operand. */ static void asm_fusexref(ASMState *as, ARMIns ai, Reg rd, IRRef ref, RegSet allow, int32_t ofs) { IRIns *ir = IR(ref); Reg base; if (ra_noreg(ir->r) && canfuse(as, ir)) { int32_t lim = (!LJ_SOFTFP && (ai & 0x08000000)) ? 1024 : (ai & 0x04000000) ? 4096 : 256; if (ir->o == IR_ADD) { int32_t ofs2; if (irref_isk(ir->op2) && (ofs2 = ofs + IR(ir->op2)->i) > -lim && ofs2 < lim && (!(!LJ_SOFTFP && (ai & 0x08000000)) || !(ofs2 & 3))) { ofs = ofs2; ref = ir->op1; } else if (ofs == 0 && !(!LJ_SOFTFP && (ai & 0x08000000))) { IRRef lref = ir->op1, rref = ir->op2; Reg rn, rm; if ((ai & 0x04000000)) { IRRef sref = asm_fuselsl2(as, rref); if (sref) { rref = sref; ai |= ARMF_SH(ARMSH_LSL, 2); } else if ((sref = asm_fuselsl2(as, lref)) != 0) { lref = rref; rref = sref; ai |= ARMF_SH(ARMSH_LSL, 2); } } rn = ra_alloc1(as, lref, allow); rm = ra_alloc1(as, rref, rset_exclude(allow, rn)); if ((ai & 0x04000000)) ai |= ARMI_LS_R; emit_dnm(as, ai|ARMI_LS_P|ARMI_LS_U, rd, rn, rm); return; } } else if (ir->o == IR_STRREF && !(!LJ_SOFTFP && (ai & 0x08000000))) { lua_assert(ofs == 0); ofs = (int32_t)sizeof(GCstr); if (irref_isk(ir->op2)) { ofs += IR(ir->op2)->i; ref = ir->op1; } else if (irref_isk(ir->op1)) { ofs += IR(ir->op1)->i; ref = ir->op2; } else { /* NYI: Fuse ADD with constant. */ Reg rn = ra_alloc1(as, ir->op1, allow); uint32_t m = asm_fuseopm(as, 0, ir->op2, rset_exclude(allow, rn)); if ((ai & 0x04000000)) emit_lso(as, ai, rd, rd, ofs); else emit_lsox(as, ai, rd, rd, ofs); emit_dn(as, ARMI_ADD^m, rd, rn); return; } if (ofs <= -lim || ofs >= lim) { Reg rn = ra_alloc1(as, ref, allow); Reg rm = ra_allock(as, ofs, rset_exclude(allow, rn)); if ((ai & 0x04000000)) ai |= ARMI_LS_R; emit_dnm(as, ai|ARMI_LS_P|ARMI_LS_U, rd, rn, rm); return; } } } base = ra_alloc1(as, ref, allow); #if !LJ_SOFTFP if ((ai & 0x08000000)) emit_vlso(as, ai, rd, base, ofs); else #endif if ((ai & 0x04000000)) emit_lso(as, ai, rd, base, ofs); else emit_lsox(as, ai, rd, base, ofs); } #if !LJ_SOFTFP /* Fuse to multiply-add/sub instruction. */ static int asm_fusemadd(ASMState *as, IRIns *ir, ARMIns ai, ARMIns air) { IRRef lref = ir->op1, rref = ir->op2; IRIns *irm; if (lref != rref && ((mayfuse(as, lref) && (irm = IR(lref), irm->o == IR_MUL) && ra_noreg(irm->r)) || (mayfuse(as, rref) && (irm = IR(rref), irm->o == IR_MUL) && (rref = lref, ai = air, ra_noreg(irm->r))))) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg add = ra_hintalloc(as, rref, dest, RSET_FPR); Reg right, left = ra_alloc2(as, irm, rset_exclude(rset_exclude(RSET_FPR, dest), add)); right = (left >> 8); left &= 255; emit_dnm(as, ai, (dest & 15), (left & 15), (right & 15)); if (dest != add) emit_dm(as, ARMI_VMOV_D, (dest & 15), (add & 15)); return 1; } return 0; } #endif /* -- Calls --------------------------------------------------------------- */ /* Generate a call to a C function. */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t n, nargs = CCI_NARGS(ci); int32_t ofs = 0; #if LJ_SOFTFP Reg gpr = REGARG_FIRSTGPR; #else Reg gpr, fpr = REGARG_FIRSTFPR, fprodd = 0; #endif if ((void *)ci->func) emit_call(as, (void *)ci->func); #if !LJ_SOFTFP for (gpr = REGARG_FIRSTGPR; gpr <= REGARG_LASTGPR; gpr++) as->cost[gpr] = REGCOST(~0u, ASMREF_L); gpr = REGARG_FIRSTGPR; #endif for (n = 0; n < nargs; n++) { /* Setup args. */ IRRef ref = args[n]; IRIns *ir = IR(ref); #if !LJ_SOFTFP if (ref && irt_isfp(ir->t)) { RegSet of = as->freeset; Reg src; if (!LJ_ABI_SOFTFP && !(ci->flags & CCI_VARARG)) { if (irt_isnum(ir->t)) { if (fpr <= REGARG_LASTFPR) { ra_leftov(as, fpr, ref); fpr++; continue; } } else if (fprodd) { /* Ick. */ src = ra_alloc1(as, ref, RSET_FPR); emit_dm(as, ARMI_VMOV_S, (fprodd & 15), (src & 15) | 0x00400000); fprodd = 0; continue; } else if (fpr <= REGARG_LASTFPR) { ra_leftov(as, fpr, ref); fprodd = fpr++; continue; } /* Workaround to protect argument GPRs from being used for remat. */ as->freeset &= ~RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1); src = ra_alloc1(as, ref, RSET_FPR); /* May alloc GPR to remat FPR. */ as->freeset |= (of & RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1)); fprodd = 0; goto stackfp; } /* Workaround to protect argument GPRs from being used for remat. */ as->freeset &= ~RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1); src = ra_alloc1(as, ref, RSET_FPR); /* May alloc GPR to remat FPR. */ as->freeset |= (of & RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1)); if (irt_isnum(ir->t)) gpr = (gpr+1) & ~1u; if (gpr <= REGARG_LASTGPR) { lua_assert(rset_test(as->freeset, gpr)); /* Must have been evicted. */ if (irt_isnum(ir->t)) { lua_assert(rset_test(as->freeset, gpr+1)); /* Ditto. */ emit_dnm(as, ARMI_VMOV_RR_D, gpr, gpr+1, (src & 15)); gpr += 2; } else { emit_dn(as, ARMI_VMOV_R_S, gpr, (src & 15)); gpr++; } } else { stackfp: if (irt_isnum(ir->t)) ofs = (ofs + 4) & ~4; emit_spstore(as, ir, src, ofs); ofs += irt_isnum(ir->t) ? 8 : 4; } } else #endif { if (gpr <= REGARG_LASTGPR) { lua_assert(rset_test(as->freeset, gpr)); /* Must have been evicted. */ if (ref) ra_leftov(as, gpr, ref); gpr++; } else { if (ref) { Reg r = ra_alloc1(as, ref, RSET_GPR); emit_spstore(as, ir, r, ofs); } ofs += 4; } } } } /* Setup result reg/sp for call. Evict scratch regs. */ static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci) { RegSet drop = RSET_SCRATCH; int hiop = ((ir+1)->o == IR_HIOP); if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ if (hiop && ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */ ra_evictset(as, drop); /* Evictions must be performed first. */ if (ra_used(ir)) { lua_assert(!irt_ispri(ir->t)); if (!LJ_SOFTFP && irt_isfp(ir->t)) { if (LJ_ABI_SOFTFP || (ci->flags & (CCI_CASTU64|CCI_VARARG))) { Reg dest = (ra_dest(as, ir, RSET_FPR) & 15); if (irt_isnum(ir->t)) emit_dnm(as, ARMI_VMOV_D_RR, RID_RETLO, RID_RETHI, dest); else emit_dn(as, ARMI_VMOV_S_R, RID_RET, dest); } else { ra_destreg(as, ir, RID_FPRET); } } else if (hiop) { ra_destpair(as, ir); } else { ra_destreg(as, ir, RID_RET); } } UNUSED(ci); } static void asm_call(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX]; const CCallInfo *ci = &lj_ir_callinfo[ir->op2]; asm_collectargs(as, ir, ci, args); asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } static void asm_callx(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX]; CCallInfo ci; IRRef func; IRIns *irf; ci.flags = asm_callx_flags(as, ir); asm_collectargs(as, ir, &ci, args); asm_setupresult(as, ir, &ci); func = ir->op2; irf = IR(func); if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); } if (irref_isk(func)) { /* Call to constant address. */ ci.func = (ASMFunction)(void *)(irf->i); } else { /* Need a non-argument register for indirect calls. */ Reg freg = ra_alloc1(as, func, RSET_RANGE(RID_R4, RID_R12+1)); emit_m(as, ARMI_BLXr, freg); ci.func = (ASMFunction)(void *)0; } asm_gencall(as, &ci, args); } /* -- Returns ------------------------------------------------------------- */ /* Return to lower frame. Guard that it goes to the right spot. */ static void asm_retf(ASMState *as, IRIns *ir) { Reg base = ra_alloc1(as, REF_BASE, RSET_GPR); void *pc = ir_kptr(IR(ir->op2)); int32_t delta = 1+bc_a(*((const BCIns *)pc - 1)); as->topslot -= (BCReg)delta; if ((int32_t)as->topslot < 0) as->topslot = 0; /* Need to force a spill on REF_BASE now to update the stack slot. */ emit_lso(as, ARMI_STR, base, RID_SP, ra_spill(as, IR(REF_BASE))); emit_setgl(as, base, jit_base); emit_addptr(as, base, -8*delta); asm_guardcc(as, CC_NE); emit_nm(as, ARMI_CMP, RID_TMP, ra_allock(as, i32ptr(pc), rset_exclude(RSET_GPR, base))); emit_lso(as, ARMI_LDR, RID_TMP, base, -4); } /* -- Type conversions ---------------------------------------------------- */ #if !LJ_SOFTFP static void asm_tointg(ASMState *as, IRIns *ir, Reg left) { Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); Reg dest = ra_dest(as, ir, RSET_GPR); asm_guardcc(as, CC_NE); emit_d(as, ARMI_VMRS, 0); emit_dm(as, ARMI_VCMP_D, (tmp & 15), (left & 15)); emit_dm(as, ARMI_VCVT_F64_S32, (tmp & 15), (tmp & 15)); emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15)); emit_dm(as, ARMI_VCVT_S32_F64, (tmp & 15), (left & 15)); } static void asm_tobit(ASMState *as, IRIns *ir) { RegSet allow = RSET_FPR; Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, allow); Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left)); Reg tmp = ra_scratch(as, rset_clear(allow, right)); emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15)); emit_dnm(as, ARMI_VADD_D, (tmp & 15), (left & 15), (right & 15)); } #endif static void asm_conv(ASMState *as, IRIns *ir) { IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); #if !LJ_SOFTFP int stfp = (st == IRT_NUM || st == IRT_FLOAT); #endif IRRef lref = ir->op1; /* 64 bit integer conversions are handled by SPLIT. */ lua_assert(!irt_isint64(ir->t) && !(st == IRT_I64 || st == IRT_U64)); #if LJ_SOFTFP /* FP conversions are handled by SPLIT. */ lua_assert(!irt_isfp(ir->t) && !(st == IRT_NUM || st == IRT_FLOAT)); /* Can't check for same types: SPLIT uses CONV int.int + BXOR for sfp NEG. */ #else lua_assert(irt_type(ir->t) != st); if (irt_isfp(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); if (stfp) { /* FP to FP conversion. */ emit_dm(as, st == IRT_NUM ? ARMI_VCVT_F32_F64 : ARMI_VCVT_F64_F32, (dest & 15), (ra_alloc1(as, lref, RSET_FPR) & 15)); } else { /* Integer to FP conversion. */ Reg left = ra_alloc1(as, lref, RSET_GPR); ARMIns ai = irt_isfloat(ir->t) ? (st == IRT_INT ? ARMI_VCVT_F32_S32 : ARMI_VCVT_F32_U32) : (st == IRT_INT ? ARMI_VCVT_F64_S32 : ARMI_VCVT_F64_U32); emit_dm(as, ai, (dest & 15), (dest & 15)); emit_dn(as, ARMI_VMOV_S_R, left, (dest & 15)); } } else if (stfp) { /* FP to integer conversion. */ if (irt_isguard(ir->t)) { /* Checked conversions are only supported from number to int. */ lua_assert(irt_isint(ir->t) && st == IRT_NUM); asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR)); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, lref, RSET_FPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); ARMIns ai; emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15)); ai = irt_isint(ir->t) ? (st == IRT_NUM ? ARMI_VCVT_S32_F64 : ARMI_VCVT_S32_F32) : (st == IRT_NUM ? ARMI_VCVT_U32_F64 : ARMI_VCVT_U32_F32); emit_dm(as, ai, (tmp & 15), (left & 15)); } } else #endif { Reg dest = ra_dest(as, ir, RSET_GPR); if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */ Reg left = ra_alloc1(as, lref, RSET_GPR); lua_assert(irt_isint(ir->t) || irt_isu32(ir->t)); if ((as->flags & JIT_F_ARMV6)) { ARMIns ai = st == IRT_I8 ? ARMI_SXTB : st == IRT_U8 ? ARMI_UXTB : st == IRT_I16 ? ARMI_SXTH : ARMI_UXTH; emit_dm(as, ai, dest, left); } else if (st == IRT_U8) { emit_dn(as, ARMI_AND|ARMI_K12|255, dest, left); } else { uint32_t shift = st == IRT_I8 ? 24 : 16; ARMShift sh = st == IRT_U16 ? ARMSH_LSR : ARMSH_ASR; emit_dm(as, ARMI_MOV|ARMF_SH(sh, shift), dest, RID_TMP); emit_dm(as, ARMI_MOV|ARMF_SH(ARMSH_LSL, shift), RID_TMP, left); } } else { /* Handle 32/32 bit no-op (cast). */ ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */ } } } #if !LJ_SOFTFP && LJ_HASFFI static void asm_conv64(ASMState *as, IRIns *ir) { IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK); IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH); IRCallID id; CCallInfo ci; IRRef args[2]; args[0] = (ir-1)->op1; args[1] = ir->op1; if (st == IRT_NUM || st == IRT_FLOAT) { id = IRCALL_fp64_d2l + ((st == IRT_FLOAT) ? 2 : 0) + (dt - IRT_I64); ir--; } else { id = IRCALL_fp64_l2d + ((dt == IRT_FLOAT) ? 2 : 0) + (st - IRT_I64); } ci = lj_ir_callinfo[id]; #if !LJ_ABI_SOFTFP ci.flags |= CCI_VARARG; /* These calls don't use the hard-float ABI! */ #endif asm_setupresult(as, ir, &ci); asm_gencall(as, &ci, args); } #endif static void asm_strto(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num]; IRRef args[2]; Reg rlo = 0, rhi = 0, tmp; int destused = ra_used(ir); int32_t ofs = 0; ra_evictset(as, RSET_SCRATCH); #if LJ_SOFTFP if (destused) { if (ra_hasspill(ir->s) && ra_hasspill((ir+1)->s) && (ir->s & 1) == 0 && ir->s + 1 == (ir+1)->s) { int i; for (i = 0; i < 2; i++) { Reg r = (ir+i)->r; if (ra_hasreg(r)) { ra_free(as, r); ra_modified(as, r); emit_spload(as, ir+i, r, sps_scale((ir+i)->s)); } } ofs = sps_scale(ir->s); destused = 0; } else { rhi = ra_dest(as, ir+1, RSET_GPR); rlo = ra_dest(as, ir, rset_exclude(RSET_GPR, rhi)); } } asm_guardcc(as, CC_EQ); if (destused) { emit_lso(as, ARMI_LDR, rhi, RID_SP, 4); emit_lso(as, ARMI_LDR, rlo, RID_SP, 0); } #else UNUSED(rhi); if (destused) { if (ra_hasspill(ir->s)) { ofs = sps_scale(ir->s); destused = 0; if (ra_hasreg(ir->r)) { ra_free(as, ir->r); ra_modified(as, ir->r); emit_spload(as, ir, ir->r, ofs); } } else { rlo = ra_dest(as, ir, RSET_FPR); } } asm_guardcc(as, CC_EQ); if (destused) emit_vlso(as, ARMI_VLDR_D, rlo, RID_SP, 0); #endif emit_n(as, ARMI_CMP|ARMI_K12|0, RID_RET); /* Test return status. */ args[0] = ir->op1; /* GCstr *str */ args[1] = ASMREF_TMP1; /* TValue *n */ asm_gencall(as, ci, args); tmp = ra_releasetmp(as, ASMREF_TMP1); if (ofs == 0) emit_dm(as, ARMI_MOV, tmp, RID_SP); else emit_opk(as, ARMI_ADD, tmp, RID_SP, ofs, RSET_GPR); } /* Get pointer to TValue. */ static void asm_tvptr(ASMState *as, Reg dest, IRRef ref) { IRIns *ir = IR(ref); if (irt_isnum(ir->t)) { if (irref_isk(ref)) { /* Use the number constant itself as a TValue. */ ra_allockreg(as, i32ptr(ir_knum(ir)), dest); } else { #if LJ_SOFTFP lua_assert(0); #else /* Otherwise force a spill and use the spill slot. */ emit_opk(as, ARMI_ADD, dest, RID_SP, ra_spill(as, ir), RSET_GPR); #endif } } else { /* Otherwise use [sp] and [sp+4] to hold the TValue. */ RegSet allow = rset_exclude(RSET_GPR, dest); Reg type; emit_dm(as, ARMI_MOV, dest, RID_SP); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, allow); emit_lso(as, ARMI_STR, src, RID_SP, 0); } if ((ir+1)->o == IR_HIOP) type = ra_alloc1(as, ref+1, allow); else type = ra_allock(as, irt_toitype(ir->t), allow); emit_lso(as, ARMI_STR, type, RID_SP, 4); } } static void asm_tostr(ASMState *as, IRIns *ir) { IRRef args[2]; args[0] = ASMREF_L; as->gcsteps++; if (irt_isnum(IR(ir->op1)->t) || (ir+1)->o == IR_HIOP) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum]; args[1] = ASMREF_TMP1; /* const lua_Number * */ asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op1); } else { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint]; args[1] = ir->op1; /* int32_t k */ asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); } } /* -- Memory references --------------------------------------------------- */ static void asm_aref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx, base; if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; uint32_t k = emit_isk12(ARMI_ADD, ofs + 8*IR(ir->op2)->i); if (k) { base = ra_alloc1(as, refa, RSET_GPR); emit_dn(as, ARMI_ADD^k, dest, base); return; } } base = ra_alloc1(as, ir->op1, RSET_GPR); idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base)); emit_dnm(as, ARMI_ADD|ARMF_SH(ARMSH_LSL, 3), dest, base, idx); } /* Inlined hash lookup. Specialized for key type and for const keys. ** The equivalent C code is: ** Node *n = hashkey(t, key); ** do { ** if (lj_obj_equal(&n->key, key)) return &n->val; ** } while ((n = nextnode(n))); ** return niltv(L); */ static void asm_href(ASMState *as, IRIns *ir, IROp merge) { RegSet allow = RSET_GPR; int destused = ra_used(ir); Reg dest = ra_dest(as, ir, allow); Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest)); Reg key = 0, keyhi = 0, keynumhi = RID_NONE, tmp = RID_TMP; IRRef refkey = ir->op2; IRIns *irkey = IR(refkey); IRType1 kt = irkey->t; int32_t k = 0, khi = emit_isk12(ARMI_CMP, irt_toitype(kt)); uint32_t khash; MCLabel l_end, l_loop; rset_clear(allow, tab); if (!irref_isk(refkey) || irt_isstr(kt)) { #if LJ_SOFTFP key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); if (irkey[1].o == IR_HIOP) { if (ra_hasreg((irkey+1)->r)) { keynumhi = (irkey+1)->r; keyhi = RID_TMP; ra_noweak(as, keynumhi); } else { keyhi = keynumhi = ra_allocref(as, refkey+1, allow); } rset_clear(allow, keynumhi); khi = 0; } #else if (irt_isnum(kt)) { key = ra_scratch(as, allow); rset_clear(allow, key); keyhi = keynumhi = ra_scratch(as, allow); rset_clear(allow, keyhi); khi = 0; } else { key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); } #endif } else if (irt_isnum(kt)) { int32_t val = (int32_t)ir_knum(irkey)->u32.lo; k = emit_isk12(ARMI_CMP, val); if (!k) { key = ra_allock(as, val, allow); rset_clear(allow, key); } val = (int32_t)ir_knum(irkey)->u32.hi; khi = emit_isk12(ARMI_CMP, val); if (!khi) { keyhi = ra_allock(as, val, allow); rset_clear(allow, keyhi); } } else if (!irt_ispri(kt)) { k = emit_isk12(ARMI_CMP, irkey->i); if (!k) { key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); } } if (!irt_ispri(kt)) tmp = ra_scratchpair(as, allow); /* Key not found in chain: jump to exit (if merged) or load niltv. */ l_end = emit_label(as); as->invmcp = NULL; if (merge == IR_NE) asm_guardcc(as, CC_AL); else if (destused) emit_loada(as, dest, niltvg(J2G(as->J))); /* Follow hash chain until the end. */ l_loop = --as->mcp; emit_n(as, ARMI_CMP|ARMI_K12|0, dest); emit_lso(as, ARMI_LDR, dest, dest, (int32_t)offsetof(Node, next)); /* Type and value comparison. */ if (merge == IR_EQ) asm_guardcc(as, CC_EQ); else emit_branch(as, ARMF_CC(ARMI_B, CC_EQ), l_end); if (!irt_ispri(kt)) { emit_nm(as, ARMF_CC(ARMI_CMP, CC_EQ)^k, tmp, key); emit_nm(as, ARMI_CMP^khi, tmp+1, keyhi); emit_lsox(as, ARMI_LDRD, tmp, dest, (int32_t)offsetof(Node, key)); } else { emit_n(as, ARMI_CMP^khi, tmp); emit_lso(as, ARMI_LDR, tmp, dest, (int32_t)offsetof(Node, key.it)); } *l_loop = ARMF_CC(ARMI_B, CC_NE) | ((as->mcp-l_loop-2) & 0x00ffffffu); /* Load main position relative to tab->node into dest. */ khash = irref_isk(refkey) ? ir_khash(irkey) : 1; if (khash == 0) { emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node)); } else { emit_dnm(as, ARMI_ADD|ARMF_SH(ARMSH_LSL, 3), dest, dest, tmp); emit_dnm(as, ARMI_ADD|ARMF_SH(ARMSH_LSL, 1), tmp, tmp, tmp); if (irt_isstr(kt)) { /* Fetch of str->hash is cheaper than ra_allock. */ emit_dnm(as, ARMI_AND, tmp, tmp+1, RID_TMP); emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node)); emit_lso(as, ARMI_LDR, tmp+1, key, (int32_t)offsetof(GCstr, hash)); emit_lso(as, ARMI_LDR, RID_TMP, tab, (int32_t)offsetof(GCtab, hmask)); } else if (irref_isk(refkey)) { emit_opk(as, ARMI_AND, tmp, RID_TMP, (int32_t)khash, rset_exclude(rset_exclude(RSET_GPR, tab), dest)); emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node)); emit_lso(as, ARMI_LDR, RID_TMP, tab, (int32_t)offsetof(GCtab, hmask)); } else { /* Must match with hash*() in lj_tab.c. */ if (ra_hasreg(keynumhi)) { /* Canonicalize +-0.0 to 0.0. */ if (keyhi == RID_TMP) emit_dm(as, ARMF_CC(ARMI_MOV, CC_NE), keyhi, keynumhi); emit_d(as, ARMF_CC(ARMI_MOV, CC_EQ)|ARMI_K12|0, keyhi); } emit_dnm(as, ARMI_AND, tmp, tmp, RID_TMP); emit_dnm(as, ARMI_SUB|ARMF_SH(ARMSH_ROR, 32-HASH_ROT3), tmp, tmp, tmp+1); emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node)); emit_dnm(as, ARMI_EOR|ARMF_SH(ARMSH_ROR, 32-((HASH_ROT2+HASH_ROT1)&31)), tmp, tmp+1, tmp); emit_lso(as, ARMI_LDR, RID_TMP, tab, (int32_t)offsetof(GCtab, hmask)); emit_dnm(as, ARMI_SUB|ARMF_SH(ARMSH_ROR, 32-HASH_ROT1), tmp+1, tmp+1, tmp); if (ra_hasreg(keynumhi)) { emit_dnm(as, ARMI_EOR, tmp+1, tmp, key); emit_dnm(as, ARMI_ORR|ARMI_S, RID_TMP, tmp, key); /* Test for +-0.0. */ emit_dnm(as, ARMI_ADD, tmp, keynumhi, keynumhi); #if !LJ_SOFTFP emit_dnm(as, ARMI_VMOV_RR_D, key, keynumhi, (ra_alloc1(as, refkey, RSET_FPR) & 15)); #endif } else { emit_dnm(as, ARMI_EOR, tmp+1, tmp, key); emit_opk(as, ARMI_ADD, tmp, key, (int32_t)HASH_BIAS, rset_exclude(rset_exclude(RSET_GPR, tab), key)); } } } } static void asm_hrefk(ASMState *as, IRIns *ir) { IRIns *kslot = IR(ir->op2); IRIns *irkey = IR(kslot->op1); int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node)); int32_t kofs = ofs + (int32_t)offsetof(Node, key); Reg dest = (ra_used(ir) || ofs > 4095) ? ra_dest(as, ir, RSET_GPR) : RID_NONE; Reg node = ra_alloc1(as, ir->op1, RSET_GPR); Reg key = RID_NONE, type = RID_TMP, idx = node; RegSet allow = rset_exclude(RSET_GPR, node); lua_assert(ofs % sizeof(Node) == 0); if (ofs > 4095) { idx = dest; rset_clear(allow, dest); kofs = (int32_t)offsetof(Node, key); } else if (ra_hasreg(dest)) { emit_opk(as, ARMI_ADD, dest, node, ofs, allow); } asm_guardcc(as, CC_NE); if (!irt_ispri(irkey->t)) { RegSet even = (as->freeset & allow); even = even & (even >> 1) & RSET_GPREVEN; if (even) { key = ra_scratch(as, even); if (rset_test(as->freeset, key+1)) { type = key+1; ra_modified(as, type); } } else { key = ra_scratch(as, allow); } rset_clear(allow, key); } rset_clear(allow, type); if (irt_isnum(irkey->t)) { emit_opk(as, ARMF_CC(ARMI_CMP, CC_EQ), 0, type, (int32_t)ir_knum(irkey)->u32.hi, allow); emit_opk(as, ARMI_CMP, 0, key, (int32_t)ir_knum(irkey)->u32.lo, allow); } else { if (ra_hasreg(key)) emit_opk(as, ARMF_CC(ARMI_CMP, CC_EQ), 0, key, irkey->i, allow); emit_n(as, ARMI_CMN|ARMI_K12|-irt_toitype(irkey->t), type); } emit_lso(as, ARMI_LDR, type, idx, kofs+4); if (ra_hasreg(key)) emit_lso(as, ARMI_LDR, key, idx, kofs); if (ofs > 4095) emit_opk(as, ARMI_ADD, dest, node, ofs, RSET_GPR); } static void asm_newref(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey]; IRRef args[3]; if (ir->r == RID_SINK) return; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* GCtab *t */ args[2] = ASMREF_TMP1; /* cTValue *key */ asm_setupresult(as, ir, ci); /* TValue * */ asm_gencall(as, ci, args); asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op2); } static void asm_uref(ASMState *as, IRIns *ir) { /* NYI: Check that UREFO is still open and not aliasing a slot. */ Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v; emit_lsptr(as, ARMI_LDR, dest, v); } else { Reg uv = ra_scratch(as, RSET_GPR); Reg func = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->o == IR_UREFC) { asm_guardcc(as, CC_NE); emit_n(as, ARMI_CMP|ARMI_K12|1, RID_TMP); emit_opk(as, ARMI_ADD, dest, uv, (int32_t)offsetof(GCupval, tv), RSET_GPR); emit_lso(as, ARMI_LDRB, RID_TMP, uv, (int32_t)offsetof(GCupval, closed)); } else { emit_lso(as, ARMI_LDR, dest, uv, (int32_t)offsetof(GCupval, v)); } emit_lso(as, ARMI_LDR, uv, func, (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8)); } } static void asm_fref(ASMState *as, IRIns *ir) { UNUSED(as); UNUSED(ir); lua_assert(!ra_used(ir)); } static void asm_strref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); IRRef ref = ir->op2, refk = ir->op1; Reg r; if (irref_isk(ref)) { IRRef tmp = refk; refk = ref; ref = tmp; } else if (!irref_isk(refk)) { uint32_t k, m = ARMI_K12|sizeof(GCstr); Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); IRIns *irr = IR(ir->op2); if (ra_hasreg(irr->r)) { ra_noweak(as, irr->r); right = irr->r; } else if (mayfuse(as, irr->op2) && irr->o == IR_ADD && irref_isk(irr->op2) && (k = emit_isk12(ARMI_ADD, (int32_t)sizeof(GCstr) + IR(irr->op2)->i))) { m = k; right = ra_alloc1(as, irr->op1, rset_exclude(RSET_GPR, left)); } else { right = ra_allocref(as, ir->op2, rset_exclude(RSET_GPR, left)); } emit_dn(as, ARMI_ADD^m, dest, dest); emit_dnm(as, ARMI_ADD, dest, left, right); return; } r = ra_alloc1(as, ref, RSET_GPR); emit_opk(as, ARMI_ADD, dest, r, sizeof(GCstr) + IR(refk)->i, rset_exclude(RSET_GPR, r)); } /* -- Loads and stores ---------------------------------------------------- */ static ARMIns asm_fxloadins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: return ARMI_LDRSB; case IRT_U8: return ARMI_LDRB; case IRT_I16: return ARMI_LDRSH; case IRT_U16: return ARMI_LDRH; case IRT_NUM: lua_assert(!LJ_SOFTFP); return ARMI_VLDR_D; case IRT_FLOAT: if (!LJ_SOFTFP) return ARMI_VLDR_S; default: return ARMI_LDR; } } static ARMIns asm_fxstoreins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: case IRT_U8: return ARMI_STRB; case IRT_I16: case IRT_U16: return ARMI_STRH; case IRT_NUM: lua_assert(!LJ_SOFTFP); return ARMI_VSTR_D; case IRT_FLOAT: if (!LJ_SOFTFP) return ARMI_VSTR_S; default: return ARMI_STR; } } static void asm_fload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx = ra_alloc1(as, ir->op1, RSET_GPR); ARMIns ai = asm_fxloadins(ir); int32_t ofs; if (ir->op2 == IRFL_TAB_ARRAY) { ofs = asm_fuseabase(as, ir->op1); if (ofs) { /* Turn the t->array load into an add for colocated arrays. */ emit_dn(as, ARMI_ADD|ARMI_K12|ofs, dest, idx); return; } } ofs = field_ofs[ir->op2]; if ((ai & 0x04000000)) emit_lso(as, ai, dest, idx, ofs); else emit_lsox(as, ai, dest, idx, ofs); } static void asm_fstore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { Reg src = ra_alloc1(as, ir->op2, RSET_GPR); IRIns *irf = IR(ir->op1); Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src)); int32_t ofs = field_ofs[irf->op2]; ARMIns ai = asm_fxstoreins(ir); if ((ai & 0x04000000)) emit_lso(as, ai, src, idx, ofs); else emit_lsox(as, ai, src, idx, ofs); } } static void asm_xload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, (!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR); lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED)); asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR, 0); } static void asm_xstore(ASMState *as, IRIns *ir, int32_t ofs) { if (ir->r != RID_SINK) { Reg src = ra_alloc1(as, ir->op2, (!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR); asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1, rset_exclude(RSET_GPR, src), ofs); } } static void asm_ahuvload(ASMState *as, IRIns *ir) { int hiop = (LJ_SOFTFP && (ir+1)->o == IR_HIOP); IRType t = hiop ? IRT_NUM : irt_type(ir->t); Reg dest = RID_NONE, type = RID_NONE, idx; RegSet allow = RSET_GPR; int32_t ofs = 0; if (hiop && ra_used(ir+1)) { type = ra_dest(as, ir+1, allow); rset_clear(allow, type); } if (ra_used(ir)) { lua_assert((LJ_SOFTFP ? 0 : irt_isnum(ir->t)) || irt_isint(ir->t) || irt_isaddr(ir->t)); dest = ra_dest(as, ir, (!LJ_SOFTFP && t == IRT_NUM) ? RSET_FPR : allow); rset_clear(allow, dest); } idx = asm_fuseahuref(as, ir->op1, &ofs, allow, (!LJ_SOFTFP && t == IRT_NUM) ? 1024 : 4096); if (!hiop || type == RID_NONE) { rset_clear(allow, idx); if (ofs < 256 && ra_hasreg(dest) && (dest & 1) == 0 && rset_test((as->freeset & allow), dest+1)) { type = dest+1; ra_modified(as, type); } else { type = RID_TMP; } } asm_guardcc(as, t == IRT_NUM ? CC_HS : CC_NE); emit_n(as, ARMI_CMN|ARMI_K12|-irt_toitype_(t), type); if (ra_hasreg(dest)) { #if !LJ_SOFTFP if (t == IRT_NUM) emit_vlso(as, ARMI_VLDR_D, dest, idx, ofs); else #endif emit_lso(as, ARMI_LDR, dest, idx, ofs); } emit_lso(as, ARMI_LDR, type, idx, ofs+4); } static void asm_ahustore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { RegSet allow = RSET_GPR; Reg idx, src = RID_NONE, type = RID_NONE; int32_t ofs = 0; #if !LJ_SOFTFP if (irt_isnum(ir->t)) { src = ra_alloc1(as, ir->op2, RSET_FPR); idx = asm_fuseahuref(as, ir->op1, &ofs, allow, 1024); emit_vlso(as, ARMI_VSTR_D, src, idx, ofs); } else #endif { int hiop = (LJ_SOFTFP && (ir+1)->o == IR_HIOP); if (!irt_ispri(ir->t)) { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); } if (hiop) type = ra_alloc1(as, (ir+1)->op2, allow); else type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); idx = asm_fuseahuref(as, ir->op1, &ofs, rset_exclude(allow, type), 4096); if (ra_hasreg(src)) emit_lso(as, ARMI_STR, src, idx, ofs); emit_lso(as, ARMI_STR, type, idx, ofs+4); } } } static void asm_sload(ASMState *as, IRIns *ir) { int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0); int hiop = (LJ_SOFTFP && (ir+1)->o == IR_HIOP); IRType t = hiop ? IRT_NUM : irt_type(ir->t); Reg dest = RID_NONE, type = RID_NONE, base; RegSet allow = RSET_GPR; lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */ lua_assert(irt_isguard(ir->t) || !(ir->op2 & IRSLOAD_TYPECHECK)); #if LJ_SOFTFP lua_assert(!(ir->op2 & IRSLOAD_CONVERT)); /* Handled by LJ_SOFTFP SPLIT. */ if (hiop && ra_used(ir+1)) { type = ra_dest(as, ir+1, allow); rset_clear(allow, type); } #else if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(ir->t) && t == IRT_INT) { dest = ra_scratch(as, RSET_FPR); asm_tointg(as, ir, dest); t = IRT_NUM; /* Continue with a regular number type check. */ } else #endif if (ra_used(ir)) { lua_assert((LJ_SOFTFP ? 0 : irt_isnum(ir->t)) || irt_isint(ir->t) || irt_isaddr(ir->t)); dest = ra_dest(as, ir, (!LJ_SOFTFP && t == IRT_NUM) ? RSET_FPR : allow); rset_clear(allow, dest); base = ra_alloc1(as, REF_BASE, allow); if ((ir->op2 & IRSLOAD_CONVERT)) { if (t == IRT_INT) { Reg tmp = ra_scratch(as, RSET_FPR); emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15)); emit_dm(as, ARMI_VCVT_S32_F64, (tmp & 15), (tmp & 15)); dest = tmp; t = IRT_NUM; /* Check for original type. */ } else { Reg tmp = ra_scratch(as, RSET_GPR); emit_dm(as, ARMI_VCVT_F64_S32, (dest & 15), (dest & 15)); emit_dn(as, ARMI_VMOV_S_R, tmp, (dest & 15)); dest = tmp; t = IRT_INT; /* Check for original type. */ } } goto dotypecheck; } base = ra_alloc1(as, REF_BASE, allow); dotypecheck: rset_clear(allow, base); if ((ir->op2 & IRSLOAD_TYPECHECK)) { if (ra_noreg(type)) { if (ofs < 256 && ra_hasreg(dest) && (dest & 1) == 0 && rset_test((as->freeset & allow), dest+1)) { type = dest+1; ra_modified(as, type); } else { type = RID_TMP; } } asm_guardcc(as, t == IRT_NUM ? CC_HS : CC_NE); emit_n(as, ARMI_CMN|ARMI_K12|-irt_toitype_(t), type); } if (ra_hasreg(dest)) { #if !LJ_SOFTFP if (t == IRT_NUM) { if (ofs < 1024) { emit_vlso(as, ARMI_VLDR_D, dest, base, ofs); } else { if (ra_hasreg(type)) emit_lso(as, ARMI_LDR, type, base, ofs+4); emit_vlso(as, ARMI_VLDR_D, dest, RID_TMP, 0); emit_opk(as, ARMI_ADD, RID_TMP, base, ofs, allow); return; } } else #endif emit_lso(as, ARMI_LDR, dest, base, ofs); } if (ra_hasreg(type)) emit_lso(as, ARMI_LDR, type, base, ofs+4); } /* -- Allocations --------------------------------------------------------- */ #if LJ_HASFFI static void asm_cnew(ASMState *as, IRIns *ir) { CTState *cts = ctype_ctsG(J2G(as->J)); CTypeID ctypeid = (CTypeID)IR(ir->op1)->i; CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ? lj_ctype_size(cts, ctypeid) : (CTSize)IR(ir->op2)->i; const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco]; IRRef args[2]; RegSet allow = (RSET_GPR & ~RSET_SCRATCH); RegSet drop = RSET_SCRATCH; lua_assert(sz != CTSIZE_INVALID); args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* MSize size */ as->gcsteps++; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); if (ra_used(ir)) ra_destreg(as, ir, RID_RET); /* GCcdata * */ /* Initialize immutable cdata object. */ if (ir->o == IR_CNEWI) { int32_t ofs = sizeof(GCcdata); lua_assert(sz == 4 || sz == 8); if (sz == 8) { ofs += 4; ir++; lua_assert(ir->o == IR_HIOP); } for (;;) { Reg r = ra_alloc1(as, ir->op2, allow); emit_lso(as, ARMI_STR, r, RID_RET, ofs); rset_clear(allow, r); if (ofs == sizeof(GCcdata)) break; ofs -= 4; ir--; } } /* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */ { uint32_t k = emit_isk12(ARMI_MOV, ctypeid); Reg r = k ? RID_R1 : ra_allock(as, ctypeid, allow); emit_lso(as, ARMI_STRB, RID_TMP, RID_RET, offsetof(GCcdata, gct)); emit_lsox(as, ARMI_STRH, r, RID_RET, offsetof(GCcdata, ctypeid)); emit_d(as, ARMI_MOV|ARMI_K12|~LJ_TCDATA, RID_TMP); if (k) emit_d(as, ARMI_MOV^k, RID_R1); } asm_gencall(as, ci, args); ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)), ra_releasetmp(as, ASMREF_TMP1)); } #else #define asm_cnew(as, ir) ((void)0) #endif /* -- Write barriers ------------------------------------------------------ */ static void asm_tbar(ASMState *as, IRIns *ir) { Reg tab = ra_alloc1(as, ir->op1, RSET_GPR); Reg link = ra_scratch(as, rset_exclude(RSET_GPR, tab)); Reg gr = ra_allock(as, i32ptr(J2G(as->J)), rset_exclude(rset_exclude(RSET_GPR, tab), link)); Reg mark = RID_TMP; MCLabel l_end = emit_label(as); emit_lso(as, ARMI_STR, link, tab, (int32_t)offsetof(GCtab, gclist)); emit_lso(as, ARMI_STRB, mark, tab, (int32_t)offsetof(GCtab, marked)); emit_lso(as, ARMI_STR, tab, gr, (int32_t)offsetof(global_State, gc.grayagain)); emit_dn(as, ARMI_BIC|ARMI_K12|LJ_GC_BLACK, mark, mark); emit_lso(as, ARMI_LDR, link, gr, (int32_t)offsetof(global_State, gc.grayagain)); emit_branch(as, ARMF_CC(ARMI_B, CC_EQ), l_end); emit_n(as, ARMI_TST|ARMI_K12|LJ_GC_BLACK, mark); emit_lso(as, ARMI_LDRB, mark, tab, (int32_t)offsetof(GCtab, marked)); } static void asm_obar(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv]; IRRef args[2]; MCLabel l_end; Reg obj, val, tmp; /* No need for other object barriers (yet). */ lua_assert(IR(ir->op1)->o == IR_UREFC); ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ir->op1; /* TValue *tv */ asm_gencall(as, ci, args); if ((l_end[-1] >> 28) == CC_AL) l_end[-1] = ARMF_CC(l_end[-1], CC_NE); else emit_branch(as, ARMF_CC(ARMI_B, CC_EQ), l_end); ra_allockreg(as, i32ptr(J2G(as->J)), ra_releasetmp(as, ASMREF_TMP1)); obj = IR(ir->op1)->r; tmp = ra_scratch(as, rset_exclude(RSET_GPR, obj)); emit_n(as, ARMF_CC(ARMI_TST, CC_NE)|ARMI_K12|LJ_GC_BLACK, tmp); emit_n(as, ARMI_TST|ARMI_K12|LJ_GC_WHITES, RID_TMP); val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj)); emit_lso(as, ARMI_LDRB, tmp, obj, (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)); emit_lso(as, ARMI_LDRB, RID_TMP, val, (int32_t)offsetof(GChead, marked)); } /* -- Arithmetic and logic operations ------------------------------------- */ #if !LJ_SOFTFP static void asm_fparith(ASMState *as, IRIns *ir, ARMIns ai) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; emit_dnm(as, ai, (dest & 15), (left & 15), (right & 15)); } static void asm_fpunary(ASMState *as, IRIns *ir, ARMIns ai) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR); emit_dm(as, ai, (dest & 15), (left & 15)); } static int asm_fpjoin_pow(ASMState *as, IRIns *ir) { IRIns *irp = IR(ir->op1); if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) { IRIns *irpp = IR(irp->op1); if (irpp == ir-2 && irpp->o == IR_FPMATH && irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_pow]; IRRef args[2]; args[0] = irpp->op1; args[1] = irp->op2; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); return 1; } } return 0; } #endif static int asm_swapops(ASMState *as, IRRef lref, IRRef rref) { IRIns *ir; if (irref_isk(rref)) return 0; /* Don't swap constants to the left. */ if (irref_isk(lref)) return 1; /* But swap constants to the right. */ ir = IR(rref); if ((ir->o >= IR_BSHL && ir->o <= IR_BROR) || (ir->o == IR_ADD && ir->op1 == ir->op2)) return 0; /* Don't swap fusable operands to the left. */ ir = IR(lref); if ((ir->o >= IR_BSHL && ir->o <= IR_BROR) || (ir->o == IR_ADD && ir->op1 == ir->op2)) return 1; /* But swap fusable operands to the right. */ return 0; /* Otherwise don't swap. */ } static void asm_intop(ASMState *as, IRIns *ir, ARMIns ai) { IRRef lref = ir->op1, rref = ir->op2; Reg left, dest = ra_dest(as, ir, RSET_GPR); uint32_t m; if (asm_swapops(as, lref, rref)) { IRRef tmp = lref; lref = rref; rref = tmp; if ((ai & ~ARMI_S) == ARMI_SUB || (ai & ~ARMI_S) == ARMI_SBC) ai ^= (ARMI_SUB^ARMI_RSB); } left = ra_hintalloc(as, lref, dest, RSET_GPR); m = asm_fuseopm(as, ai, rref, rset_exclude(RSET_GPR, left)); if (irt_isguard(ir->t)) { /* For IR_ADDOV etc. */ asm_guardcc(as, CC_VS); ai |= ARMI_S; } emit_dn(as, ai^m, dest, left); } static void asm_intop_s(ASMState *as, IRIns *ir, ARMIns ai) { if (as->flagmcp == as->mcp) { /* Drop cmp r, #0. */ as->flagmcp = NULL; as->mcp++; ai |= ARMI_S; } asm_intop(as, ir, ai); } static void asm_bitop(ASMState *as, IRIns *ir, ARMIns ai) { if (as->flagmcp == as->mcp) { /* Try to drop cmp r, #0. */ uint32_t cc = (as->mcp[1] >> 28); as->flagmcp = NULL; if (cc <= CC_NE) { as->mcp++; ai |= ARMI_S; } else if (cc == CC_GE) { *++as->mcp ^= ((CC_GE^CC_PL) << 28); ai |= ARMI_S; } else if (cc == CC_LT) { *++as->mcp ^= ((CC_LT^CC_MI) << 28); ai |= ARMI_S; } /* else: other conds don't work with bit ops. */ } if (ir->op2 == 0) { Reg dest = ra_dest(as, ir, RSET_GPR); uint32_t m = asm_fuseopm(as, ai, ir->op1, RSET_GPR); emit_d(as, ai^m, dest); } else { /* NYI: Turn BAND !k12 into uxtb, uxth or bfc or shl+shr. */ asm_intop(as, ir, ai); } } static void asm_intneg(ASMState *as, IRIns *ir, ARMIns ai) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); emit_dn(as, ai|ARMI_K12|0, dest, left); } /* NYI: use add/shift for MUL(OV) with constants. FOLD only does 2^k. */ static void asm_intmul(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, dest)); Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); Reg tmp = RID_NONE; /* ARMv5 restriction: dest != left and dest_hi != left. */ if (dest == left && left != right) { left = right; right = dest; } if (irt_isguard(ir->t)) { /* IR_MULOV */ if (!(as->flags & JIT_F_ARMV6) && dest == left) tmp = left = ra_scratch(as, rset_exclude(RSET_FPR, left)); asm_guardcc(as, CC_NE); emit_nm(as, ARMI_TEQ|ARMF_SH(ARMSH_ASR, 31), RID_TMP, dest); emit_dnm(as, ARMI_SMULL|ARMF_S(right), dest, RID_TMP, left); } else { if (!(as->flags & JIT_F_ARMV6) && dest == left) tmp = left = RID_TMP; emit_nm(as, ARMI_MUL|ARMF_S(right), dest, left); } /* Only need this for the dest == left == right case. */ if (ra_hasreg(tmp)) emit_dm(as, ARMI_MOV, tmp, right); } static void asm_add(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { if (!asm_fusemadd(as, ir, ARMI_VMLA_D, ARMI_VMLA_D)) asm_fparith(as, ir, ARMI_VADD_D); return; } #endif asm_intop_s(as, ir, ARMI_ADD); } static void asm_sub(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { if (!asm_fusemadd(as, ir, ARMI_VNMLS_D, ARMI_VMLS_D)) asm_fparith(as, ir, ARMI_VSUB_D); return; } #endif asm_intop_s(as, ir, ARMI_SUB); } static void asm_mul(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { asm_fparith(as, ir, ARMI_VMUL_D); return; } #endif asm_intmul(as, ir); } static void asm_neg(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { asm_fpunary(as, ir, ARMI_VNEG_D); return; } #endif asm_intneg(as, ir, ARMI_RSB); } static void asm_callid(ASMState *as, IRIns *ir, IRCallID id) { const CCallInfo *ci = &lj_ir_callinfo[id]; IRRef args[2]; args[0] = ir->op1; args[1] = ir->op2; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } #if !LJ_SOFTFP static void asm_callround(ASMState *as, IRIns *ir, int id) { /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RID2RSET(RID_R0)|RID2RSET(RID_R1)|RID2RSET(RID_R2)| RID2RSET(RID_R3)|RID2RSET(RID_R12); RegSet of; Reg dest, src; ra_evictset(as, drop); dest = ra_dest(as, ir, RSET_FPR); emit_dnm(as, ARMI_VMOV_D_RR, RID_RETLO, RID_RETHI, (dest & 15)); emit_call(as, id == IRFPM_FLOOR ? (void *)lj_vm_floor_sf : id == IRFPM_CEIL ? (void *)lj_vm_ceil_sf : (void *)lj_vm_trunc_sf); /* Workaround to protect argument GPRs from being used for remat. */ of = as->freeset; as->freeset &= ~RSET_RANGE(RID_R0, RID_R1+1); as->cost[RID_R0] = as->cost[RID_R1] = REGCOST(~0u, ASMREF_L); src = ra_alloc1(as, ir->op1, RSET_FPR); /* May alloc GPR to remat FPR. */ as->freeset |= (of & RSET_RANGE(RID_R0, RID_R1+1)); emit_dnm(as, ARMI_VMOV_RR_D, RID_R0, RID_R1, (src & 15)); } #endif static void asm_bitswap(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); if ((as->flags & JIT_F_ARMV6)) { emit_dm(as, ARMI_REV, dest, left); } else { Reg tmp2 = dest; if (tmp2 == left) tmp2 = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, dest), left)); emit_dnm(as, ARMI_EOR|ARMF_SH(ARMSH_LSR, 8), dest, tmp2, RID_TMP); emit_dm(as, ARMI_MOV|ARMF_SH(ARMSH_ROR, 8), tmp2, left); emit_dn(as, ARMI_BIC|ARMI_K12|256*8|255, RID_TMP, RID_TMP); emit_dnm(as, ARMI_EOR|ARMF_SH(ARMSH_ROR, 16), RID_TMP, left, left); } } static void asm_bitshift(ASMState *as, IRIns *ir, ARMShift sh) { if (irref_isk(ir->op2)) { /* Constant shifts. */ /* NYI: Turn SHL+SHR or BAND+SHR into uxtb, uxth or ubfx. */ /* NYI: Turn SHL+ASR into sxtb, sxth or sbfx. */ Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); int32_t shift = (IR(ir->op2)->i & 31); emit_dm(as, ARMI_MOV|ARMF_SH(sh, shift), dest, left); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_dm(as, ARMI_MOV|ARMF_RSH(sh, right), dest, left); } } static void asm_intmin_max(ASMState *as, IRIns *ir, int cc) { uint32_t kcmp = 0, kmov = 0; Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); Reg right = 0; if (irref_isk(ir->op2)) { kcmp = emit_isk12(ARMI_CMP, IR(ir->op2)->i); if (kcmp) kmov = emit_isk12(ARMI_MOV, IR(ir->op2)->i); } if (!kmov) { kcmp = 0; right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); } if (kmov || dest != right) { emit_dm(as, ARMF_CC(ARMI_MOV, cc)^kmov, dest, right); cc ^= 1; /* Must use opposite conditions for paired moves. */ } else { cc ^= (CC_LT^CC_GT); /* Otherwise may swap CC_LT <-> CC_GT. */ } if (dest != left) emit_dm(as, ARMF_CC(ARMI_MOV, cc), dest, left); emit_nm(as, ARMI_CMP^kcmp, left, right); } #if LJ_SOFTFP static void asm_sfpmin_max(ASMState *as, IRIns *ir, int cc) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_softfp_cmp]; RegSet drop = RSET_SCRATCH; Reg r; IRRef args[4]; args[0] = ir->op1; args[1] = (ir+1)->op1; args[2] = ir->op2; args[3] = (ir+1)->op2; /* __aeabi_cdcmple preserves r0-r3. */ if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); if (ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r); if (!rset_test(as->freeset, RID_R2) && regcost_ref(as->cost[RID_R2]) == args[2]) rset_clear(drop, RID_R2); if (!rset_test(as->freeset, RID_R3) && regcost_ref(as->cost[RID_R3]) == args[3]) rset_clear(drop, RID_R3); ra_evictset(as, drop); ra_destpair(as, ir); emit_dm(as, ARMF_CC(ARMI_MOV, cc), RID_RETHI, RID_R3); emit_dm(as, ARMF_CC(ARMI_MOV, cc), RID_RETLO, RID_R2); emit_call(as, (void *)ci->func); for (r = RID_R0; r <= RID_R3; r++) ra_leftov(as, r, args[r-RID_R0]); } #else static void asm_fpmin_max(ASMState *as, IRIns *ir, int cc) { Reg dest = (ra_dest(as, ir, RSET_FPR) & 15); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = ((left >> 8) & 15); left &= 15; if (dest != left) emit_dm(as, ARMF_CC(ARMI_VMOV_D, cc^1), dest, left); if (dest != right) emit_dm(as, ARMF_CC(ARMI_VMOV_D, cc), dest, right); emit_d(as, ARMI_VMRS, 0); emit_dm(as, ARMI_VCMP_D, left, right); } #endif static void asm_min_max(ASMState *as, IRIns *ir, int cc, int fcc) { #if LJ_SOFTFP UNUSED(fcc); #else if (irt_isnum(ir->t)) asm_fpmin_max(as, ir, fcc); else #endif asm_intmin_max(as, ir, cc); } /* -- Comparisons --------------------------------------------------------- */ /* Map of comparisons to flags. ORDER IR. */ static const uint8_t asm_compmap[IR_ABC+1] = { /* op FP swp int cc FP cc */ /* LT */ CC_GE + (CC_HS << 4), /* GE x */ CC_LT + (CC_HI << 4), /* LE */ CC_GT + (CC_HI << 4), /* GT x */ CC_LE + (CC_HS << 4), /* ULT x */ CC_HS + (CC_LS << 4), /* UGE */ CC_LO + (CC_LO << 4), /* ULE x */ CC_HI + (CC_LO << 4), /* UGT */ CC_LS + (CC_LS << 4), /* EQ */ CC_NE + (CC_NE << 4), /* NE */ CC_EQ + (CC_EQ << 4), /* ABC */ CC_LS + (CC_LS << 4) /* Same as UGT. */ }; #if LJ_SOFTFP /* FP comparisons. */ static void asm_sfpcomp(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_softfp_cmp]; RegSet drop = RSET_SCRATCH; Reg r; IRRef args[4]; int swp = (((ir->o ^ (ir->o >> 2)) & ~(ir->o >> 3) & 1) << 1); args[swp^0] = ir->op1; args[swp^1] = (ir+1)->op1; args[swp^2] = ir->op2; args[swp^3] = (ir+1)->op2; /* __aeabi_cdcmple preserves r0-r3. This helps to reduce spills. */ for (r = RID_R0; r <= RID_R3; r++) if (!rset_test(as->freeset, r) && regcost_ref(as->cost[r]) == args[r-RID_R0]) rset_clear(drop, r); ra_evictset(as, drop); asm_guardcc(as, (asm_compmap[ir->o] >> 4)); emit_call(as, (void *)ci->func); for (r = RID_R0; r <= RID_R3; r++) ra_leftov(as, r, args[r-RID_R0]); } #else /* FP comparisons. */ static void asm_fpcomp(ASMState *as, IRIns *ir) { Reg left, right; ARMIns ai; int swp = ((ir->o ^ (ir->o >> 2)) & ~(ir->o >> 3) & 1); if (!swp && irref_isk(ir->op2) && ir_knum(IR(ir->op2))->u64 == 0) { left = (ra_alloc1(as, ir->op1, RSET_FPR) & 15); right = 0; ai = ARMI_VCMPZ_D; } else { left = ra_alloc2(as, ir, RSET_FPR); if (swp) { right = (left & 15); left = ((left >> 8) & 15); } else { right = ((left >> 8) & 15); left &= 15; } ai = ARMI_VCMP_D; } asm_guardcc(as, (asm_compmap[ir->o] >> 4)); emit_d(as, ARMI_VMRS, 0); emit_dm(as, ai, left, right); } #endif /* Integer comparisons. */ static void asm_intcomp(ASMState *as, IRIns *ir) { ARMCC cc = (asm_compmap[ir->o] & 15); IRRef lref = ir->op1, rref = ir->op2; Reg left; uint32_t m; int cmpprev0 = 0; lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); if (asm_swapops(as, lref, rref)) { Reg tmp = lref; lref = rref; rref = tmp; if (cc >= CC_GE) cc ^= 7; /* LT <-> GT, LE <-> GE */ else if (cc > CC_NE) cc ^= 11; /* LO <-> HI, LS <-> HS */ } if (irref_isk(rref) && IR(rref)->i == 0) { IRIns *irl = IR(lref); cmpprev0 = (irl+1 == ir); /* Combine comp(BAND(left, right), 0) into tst left, right. */ if (cmpprev0 && irl->o == IR_BAND && !ra_used(irl)) { IRRef blref = irl->op1, brref = irl->op2; uint32_t m2 = 0; Reg bleft; if (asm_swapops(as, blref, brref)) { Reg tmp = blref; blref = brref; brref = tmp; } if (irref_isk(brref)) { m2 = emit_isk12(ARMI_AND, IR(brref)->i); if ((m2 & (ARMI_AND^ARMI_BIC))) goto notst; /* Not beneficial if we miss a constant operand. */ } if (cc == CC_GE) cc = CC_PL; else if (cc == CC_LT) cc = CC_MI; else if (cc > CC_NE) goto notst; /* Other conds don't work with tst. */ bleft = ra_alloc1(as, blref, RSET_GPR); if (!m2) m2 = asm_fuseopm(as, 0, brref, rset_exclude(RSET_GPR, bleft)); asm_guardcc(as, cc); emit_n(as, ARMI_TST^m2, bleft); return; } } notst: left = ra_alloc1(as, lref, RSET_GPR); m = asm_fuseopm(as, ARMI_CMP, rref, rset_exclude(RSET_GPR, left)); asm_guardcc(as, cc); emit_n(as, ARMI_CMP^m, left); /* Signed comparison with zero and referencing previous ins? */ if (cmpprev0 && (cc <= CC_NE || cc >= CC_GE)) as->flagmcp = as->mcp; /* Allow elimination of the compare. */ } /* 64 bit integer comparisons. */ static void asm_int64comp(ASMState *as, IRIns *ir) { int signedcomp = (ir->o <= IR_GT); ARMCC cclo, cchi; Reg leftlo, lefthi; uint32_t mlo, mhi; RegSet allow = RSET_GPR, oldfree; /* Always use unsigned comparison for loword. */ cclo = asm_compmap[ir->o + (signedcomp ? 4 : 0)] & 15; leftlo = ra_alloc1(as, ir->op1, allow); oldfree = as->freeset; mlo = asm_fuseopm(as, ARMI_CMP, ir->op2, rset_clear(allow, leftlo)); allow &= ~(oldfree & ~as->freeset); /* Update for allocs of asm_fuseopm. */ /* Use signed or unsigned comparison for hiword. */ cchi = asm_compmap[ir->o] & 15; lefthi = ra_alloc1(as, (ir+1)->op1, allow); mhi = asm_fuseopm(as, ARMI_CMP, (ir+1)->op2, rset_clear(allow, lefthi)); /* All register allocations must be performed _before_ this point. */ if (signedcomp) { MCLabel l_around = emit_label(as); asm_guardcc(as, cclo); emit_n(as, ARMI_CMP^mlo, leftlo); emit_branch(as, ARMF_CC(ARMI_B, CC_NE), l_around); if (cchi == CC_GE || cchi == CC_LE) cchi ^= 6; /* GE -> GT, LE -> LT */ asm_guardcc(as, cchi); } else { asm_guardcc(as, cclo); emit_n(as, ARMF_CC(ARMI_CMP, CC_EQ)^mlo, leftlo); } emit_n(as, ARMI_CMP^mhi, lefthi); } /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */ /* Hiword op of a split 64 bit op. Previous op must be the loword op. */ static void asm_hiop(ASMState *as, IRIns *ir) { #if LJ_HASFFI || LJ_SOFTFP /* HIOP is marked as a store because it needs its own DCE logic. */ int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */ if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1; if ((ir-1)->o <= IR_NE) { /* 64 bit integer or FP comparisons. ORDER IR. */ as->curins--; /* Always skip the loword comparison. */ #if LJ_SOFTFP if (!irt_isint(ir->t)) asm_sfpcomp(as, ir-1); else #endif asm_int64comp(as, ir-1); return; #if LJ_SOFTFP } else if ((ir-1)->o == IR_MIN || (ir-1)->o == IR_MAX) { as->curins--; /* Always skip the loword min/max. */ if (uselo || usehi) asm_sfpmin_max(as, ir-1, (ir-1)->o == IR_MIN ? CC_HI : CC_LO); return; #elif LJ_HASFFI } else if ((ir-1)->o == IR_CONV) { as->curins--; /* Always skip the CONV. */ if (usehi || uselo) asm_conv64(as, ir); return; #endif } else if ((ir-1)->o == IR_XSTORE) { if ((ir-1)->r != RID_SINK) asm_xstore(as, ir, 4); return; } if (!usehi) return; /* Skip unused hiword op for all remaining ops. */ switch ((ir-1)->o) { #if LJ_HASFFI case IR_ADD: as->curins--; asm_intop(as, ir, ARMI_ADC); asm_intop(as, ir-1, ARMI_ADD|ARMI_S); break; case IR_SUB: as->curins--; asm_intop(as, ir, ARMI_SBC); asm_intop(as, ir-1, ARMI_SUB|ARMI_S); break; case IR_NEG: as->curins--; asm_intneg(as, ir, ARMI_RSC); asm_intneg(as, ir-1, ARMI_RSB|ARMI_S); break; #endif #if LJ_SOFTFP case IR_SLOAD: case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: case IR_STRTO: if (!uselo) ra_allocref(as, ir->op1, RSET_GPR); /* Mark lo op as used. */ break; #endif case IR_CALLN: case IR_CALLS: case IR_CALLXS: if (!uselo) ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */ break; #if LJ_SOFTFP case IR_ASTORE: case IR_HSTORE: case IR_USTORE: case IR_TOSTR: #endif case IR_CNEWI: /* Nothing to do here. Handled by lo op itself. */ break; default: lua_assert(0); break; } #else UNUSED(as); UNUSED(ir); lua_assert(0); #endif } /* -- Stack handling ------------------------------------------------------ */ /* Check Lua stack size for overflow. Use exit handler as fallback. */ static void asm_stack_check(ASMState *as, BCReg topslot, IRIns *irp, RegSet allow, ExitNo exitno) { Reg pbase; uint32_t k; if (irp) { if (!ra_hasspill(irp->s)) { pbase = irp->r; lua_assert(ra_hasreg(pbase)); } else if (allow) { pbase = rset_pickbot(allow); } else { pbase = RID_RET; emit_lso(as, ARMI_LDR, RID_RET, RID_SP, 0); /* Restore temp. register. */ } } else { pbase = RID_BASE; } emit_branch(as, ARMF_CC(ARMI_BL, CC_LS), exitstub_addr(as->J, exitno)); k = emit_isk12(0, (int32_t)(8*topslot)); lua_assert(k); emit_n(as, ARMI_CMP^k, RID_TMP); emit_dnm(as, ARMI_SUB, RID_TMP, RID_TMP, pbase); emit_lso(as, ARMI_LDR, RID_TMP, RID_TMP, (int32_t)offsetof(lua_State, maxstack)); if (irp) { /* Must not spill arbitrary registers in head of side trace. */ int32_t i = i32ptr(&J2G(as->J)->jit_L); if (ra_hasspill(irp->s)) emit_lso(as, ARMI_LDR, pbase, RID_SP, sps_scale(irp->s)); emit_lso(as, ARMI_LDR, RID_TMP, RID_TMP, (i & 4095)); if (ra_hasspill(irp->s) && !allow) emit_lso(as, ARMI_STR, RID_RET, RID_SP, 0); /* Save temp. register. */ emit_loadi(as, RID_TMP, (i & ~4095)); } else { emit_getgl(as, RID_TMP, jit_L); } } /* Restore Lua stack from on-trace state. */ static void asm_stack_restore(ASMState *as, SnapShot *snap) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1]; MSize n, nent = snap->nent; /* Store the value of all modified slots to the Lua stack. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); int32_t ofs = 8*((int32_t)s-1); IRRef ref = snap_ref(sn); IRIns *ir = IR(ref); if ((sn & SNAP_NORESTORE)) continue; if (irt_isnum(ir->t)) { #if LJ_SOFTFP RegSet odd = rset_exclude(RSET_GPRODD, RID_BASE); Reg tmp; lua_assert(irref_isk(ref)); /* LJ_SOFTFP: must be a number constant. */ tmp = ra_allock(as, (int32_t)ir_knum(ir)->u32.lo, rset_exclude(RSET_GPREVEN, RID_BASE)); emit_lso(as, ARMI_STR, tmp, RID_BASE, ofs); if (rset_test(as->freeset, tmp+1)) odd = RID2RSET(tmp+1); tmp = ra_allock(as, (int32_t)ir_knum(ir)->u32.hi, odd); emit_lso(as, ARMI_STR, tmp, RID_BASE, ofs+4); #else Reg src = ra_alloc1(as, ref, RSET_FPR); emit_vlso(as, ARMI_VSTR_D, src, RID_BASE, ofs); #endif } else { RegSet odd = rset_exclude(RSET_GPRODD, RID_BASE); Reg type; lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t)); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPREVEN, RID_BASE)); emit_lso(as, ARMI_STR, src, RID_BASE, ofs); if (rset_test(as->freeset, src+1)) odd = RID2RSET(src+1); } if ((sn & (SNAP_CONT|SNAP_FRAME))) { if (s == 0) continue; /* Do not overwrite link to previous frame. */ type = ra_allock(as, (int32_t)(*flinks--), odd); #if LJ_SOFTFP } else if ((sn & SNAP_SOFTFPNUM)) { type = ra_alloc1(as, ref+1, rset_exclude(RSET_GPRODD, RID_BASE)); #endif } else { type = ra_allock(as, (int32_t)irt_toitype(ir->t), odd); } emit_lso(as, ARMI_STR, type, RID_BASE, ofs+4); } checkmclim(as); } lua_assert(map + nent == flinks); } /* -- GC handling --------------------------------------------------------- */ /* Check GC threshold and do one or more GC steps. */ static void asm_gc_check(ASMState *as) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit]; IRRef args[2]; MCLabel l_end; Reg tmp1, tmp2; ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */ asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */ emit_n(as, ARMI_CMP|ARMI_K12|0, RID_RET); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ASMREF_TMP2; /* MSize steps */ asm_gencall(as, ci, args); tmp1 = ra_releasetmp(as, ASMREF_TMP1); tmp2 = ra_releasetmp(as, ASMREF_TMP2); emit_loadi(as, tmp2, as->gcsteps); /* Jump around GC step if GC total < GC threshold. */ emit_branch(as, ARMF_CC(ARMI_B, CC_LS), l_end); emit_nm(as, ARMI_CMP, RID_TMP, tmp2); emit_lso(as, ARMI_LDR, tmp2, tmp1, (int32_t)offsetof(global_State, gc.threshold)); emit_lso(as, ARMI_LDR, RID_TMP, tmp1, (int32_t)offsetof(global_State, gc.total)); ra_allockreg(as, i32ptr(J2G(as->J)), tmp1); as->gcsteps = 0; checkmclim(as); } /* -- Loop handling ------------------------------------------------------- */ /* Fixup the loop branch. */ static void asm_loop_fixup(ASMState *as) { MCode *p = as->mctop; MCode *target = as->mcp; if (as->loopinv) { /* Inverted loop branch? */ /* asm_guardcc already inverted the bcc and patched the final bl. */ p[-2] |= ((uint32_t)(target-p) & 0x00ffffffu); } else { p[-1] = ARMI_B | ((uint32_t)((target-p)-1) & 0x00ffffffu); } } /* -- Head of trace ------------------------------------------------------- */ /* Reload L register from g->jit_L. */ static void asm_head_lreg(ASMState *as) { IRIns *ir = IR(ASMREF_L); if (ra_used(ir)) { Reg r = ra_dest(as, ir, RSET_GPR); emit_getgl(as, r, jit_L); ra_evictk(as); } } /* Coalesce BASE register for a root trace. */ static void asm_head_root_base(ASMState *as) { IRIns *ir; asm_head_lreg(as); ir = IR(REF_BASE); if (ra_hasreg(ir->r) && rset_test(as->modset, ir->r)) ra_spill(as, ir); ra_destreg(as, ir, RID_BASE); } /* Coalesce BASE register for a side trace. */ static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow) { IRIns *ir; asm_head_lreg(as); ir = IR(REF_BASE); if (ra_hasreg(ir->r) && rset_test(as->modset, ir->r)) ra_spill(as, ir); if (ra_hasspill(irp->s)) { rset_clear(allow, ra_dest(as, ir, allow)); } else { Reg r = irp->r; lua_assert(ra_hasreg(r)); rset_clear(allow, r); if (r != ir->r && !rset_test(as->freeset, r)) ra_restore(as, regcost_ref(as->cost[r])); ra_destreg(as, ir, r); } return allow; } /* -- Tail of trace ------------------------------------------------------- */ /* Fixup the tail code. */ static void asm_tail_fixup(ASMState *as, TraceNo lnk) { MCode *p = as->mctop; MCode *target; int32_t spadj = as->T->spadjust; if (spadj == 0) { as->mctop = --p; } else { /* Patch stack adjustment. */ uint32_t k = emit_isk12(ARMI_ADD, spadj); lua_assert(k); p[-2] = (ARMI_ADD^k) | ARMF_D(RID_SP) | ARMF_N(RID_SP); } /* Patch exit branch. */ target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp; p[-1] = ARMI_B|(((target-p)-1)&0x00ffffffu); } /* Prepare tail of code. */ static void asm_tail_prep(ASMState *as) { MCode *p = as->mctop - 1; /* Leave room for exit branch. */ if (as->loopref) { as->invmcp = as->mcp = p; } else { as->mcp = p-1; /* Leave room for stack pointer adjustment. */ as->invmcp = NULL; } *p = 0; /* Prevent load/store merging. */ } /* -- Instruction dispatch ------------------------------------------------ */ /* Assemble a single instruction. */ static void asm_ir(ASMState *as, IRIns *ir) { switch ((IROp)ir->o) { /* Miscellaneous ops. */ case IR_LOOP: asm_loop(as); break; case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break; case IR_USE: ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break; case IR_PHI: asm_phi(as, ir); break; case IR_HIOP: asm_hiop(as, ir); break; case IR_GCSTEP: asm_gcstep(as, ir); break; /* Guarded assertions. */ case IR_EQ: case IR_NE: if ((ir-1)->o == IR_HREF && ir->op1 == as->curins-1) { as->curins--; asm_href(as, ir-1, (IROp)ir->o); break; } /* fallthrough */ case IR_LT: case IR_GE: case IR_LE: case IR_GT: case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT: case IR_ABC: #if !LJ_SOFTFP if (irt_isnum(ir->t)) { asm_fpcomp(as, ir); break; } #endif asm_intcomp(as, ir); break; case IR_RETF: asm_retf(as, ir); break; /* Bit ops. */ case IR_BNOT: asm_bitop(as, ir, ARMI_MVN); break; case IR_BSWAP: asm_bitswap(as, ir); break; case IR_BAND: asm_bitop(as, ir, ARMI_AND); break; case IR_BOR: asm_bitop(as, ir, ARMI_ORR); break; case IR_BXOR: asm_bitop(as, ir, ARMI_EOR); break; case IR_BSHL: asm_bitshift(as, ir, ARMSH_LSL); break; case IR_BSHR: asm_bitshift(as, ir, ARMSH_LSR); break; case IR_BSAR: asm_bitshift(as, ir, ARMSH_ASR); break; case IR_BROR: asm_bitshift(as, ir, ARMSH_ROR); break; case IR_BROL: lua_assert(0); break; /* Arithmetic ops. */ case IR_ADD: case IR_ADDOV: asm_add(as, ir); break; case IR_SUB: case IR_SUBOV: asm_sub(as, ir); break; case IR_MUL: case IR_MULOV: asm_mul(as, ir); break; case IR_MOD: asm_callid(as, ir, IRCALL_lj_vm_modi); break; case IR_NEG: asm_neg(as, ir); break; #if LJ_SOFTFP case IR_DIV: case IR_POW: case IR_ABS: case IR_ATAN2: case IR_LDEXP: case IR_FPMATH: case IR_TOBIT: lua_assert(0); /* Unused for LJ_SOFTFP. */ break; #else case IR_DIV: asm_fparith(as, ir, ARMI_VDIV_D); break; case IR_POW: asm_callid(as, ir, IRCALL_lj_vm_powi); break; case IR_ABS: asm_fpunary(as, ir, ARMI_VABS_D); break; case IR_ATAN2: asm_callid(as, ir, IRCALL_atan2); break; case IR_LDEXP: asm_callid(as, ir, IRCALL_ldexp); break; case IR_FPMATH: if (ir->op2 == IRFPM_EXP2 && asm_fpjoin_pow(as, ir)) break; if (ir->op2 <= IRFPM_TRUNC) asm_callround(as, ir, ir->op2); else if (ir->op2 == IRFPM_SQRT) asm_fpunary(as, ir, ARMI_VSQRT_D); else asm_callid(as, ir, IRCALL_lj_vm_floor + ir->op2); break; case IR_TOBIT: asm_tobit(as, ir); break; #endif case IR_MIN: asm_min_max(as, ir, CC_GT, CC_HI); break; case IR_MAX: asm_min_max(as, ir, CC_LT, CC_LO); break; /* Memory references. */ case IR_AREF: asm_aref(as, ir); break; case IR_HREF: asm_href(as, ir, 0); break; case IR_HREFK: asm_hrefk(as, ir); break; case IR_NEWREF: asm_newref(as, ir); break; case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break; case IR_FREF: asm_fref(as, ir); break; case IR_STRREF: asm_strref(as, ir); break; /* Loads and stores. */ case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: asm_ahuvload(as, ir); break; case IR_FLOAD: asm_fload(as, ir); break; case IR_XLOAD: asm_xload(as, ir); break; case IR_SLOAD: asm_sload(as, ir); break; case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break; case IR_FSTORE: asm_fstore(as, ir); break; case IR_XSTORE: asm_xstore(as, ir, 0); break; /* Allocations. */ case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break; case IR_TNEW: asm_tnew(as, ir); break; case IR_TDUP: asm_tdup(as, ir); break; case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break; /* Write barriers. */ case IR_TBAR: asm_tbar(as, ir); break; case IR_OBAR: asm_obar(as, ir); break; /* Type conversions. */ case IR_CONV: asm_conv(as, ir); break; case IR_TOSTR: asm_tostr(as, ir); break; case IR_STRTO: asm_strto(as, ir); break; /* Calls. */ case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break; case IR_CALLXS: asm_callx(as, ir); break; case IR_CARG: break; default: setintV(&as->J->errinfo, ir->o); lj_trace_err_info(as->J, LJ_TRERR_NYIIR); break; } } /* -- Trace setup --------------------------------------------------------- */ /* Ensure there are enough stack slots for call arguments. */ static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci) { IRRef args[CCI_NARGS_MAX]; uint32_t i, nargs = (int)CCI_NARGS(ci); int nslots = 0, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR, fprodd = 0; asm_collectargs(as, ir, ci, args); for (i = 0; i < nargs; i++) { if (!LJ_SOFTFP && args[i] && irt_isfp(IR(args[i])->t)) { if (!LJ_ABI_SOFTFP && !(ci->flags & CCI_VARARG)) { if (irt_isnum(IR(args[i])->t)) { if (nfpr > 0) nfpr--; else fprodd = 0, nslots = (nslots + 3) & ~1; } else { if (fprodd) fprodd--; else if (nfpr > 0) fprodd = 1, nfpr--; else nslots++; } } else if (irt_isnum(IR(args[i])->t)) { ngpr &= ~1; if (ngpr > 0) ngpr -= 2; else nslots += 2; } else { if (ngpr > 0) ngpr--; else nslots++; } } else { if (ngpr > 0) ngpr--; else nslots++; } } if (nslots > as->evenspill) /* Leave room for args in stack slots. */ as->evenspill = nslots; return REGSP_HINT(RID_RET); } static void asm_setup_target(ASMState *as) { /* May need extra exit for asm_stack_check on side traces. */ asm_exitstub_setup(as, as->T->nsnap + (as->parent ? 1 : 0)); } /* -- Trace patching ------------------------------------------------------ */ /* Patch exit jumps of existing machine code to a new target. */ void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target) { MCode *p = T->mcode; MCode *pe = (MCode *)((char *)p + T->szmcode); MCode *cstart = NULL, *cend = p; MCode *mcarea = lj_mcode_patch(J, p, 0); MCode *px = exitstub_addr(J, exitno) - 2; for (; p < pe; p++) { /* Look for bl_cc exitstub, replace with b_cc target. */ uint32_t ins = *p; if ((ins & 0x0f000000u) == 0x0b000000u && ins < 0xf0000000u && ((ins ^ (px-p)) & 0x00ffffffu) == 0) { *p = (ins & 0xfe000000u) | (((target-p)-2) & 0x00ffffffu); cend = p+1; if (!cstart) cstart = p; } } lua_assert(cstart != NULL); lj_mcode_sync(cstart, cend); lj_mcode_patch(J, mcarea, 1); }