/* ** x86/x64 instruction emitter. ** Copyright (C) 2005-2013 Mike Pall. See Copyright Notice in luajit.h */ /* -- Emit basic instructions --------------------------------------------- */ #define MODRM(mode, r1, r2) ((MCode)((mode)+(((r1)&7)<<3)+((r2)&7))) #if LJ_64 #define REXRB(p, rr, rb) \ { MCode rex = 0x40 + (((rr)>>1)&4) + (((rb)>>3)&1); \ if (rex != 0x40) *--(p) = rex; } #define FORCE_REX 0x200 #define REX_64 (FORCE_REX|0x080000) #else #define REXRB(p, rr, rb) ((void)0) #define FORCE_REX 0 #define REX_64 0 #endif #define emit_i8(as, i) (*--as->mcp = (MCode)(i)) #define emit_i32(as, i) (*(int32_t *)(as->mcp-4) = (i), as->mcp -= 4) #define emit_u32(as, u) (*(uint32_t *)(as->mcp-4) = (u), as->mcp -= 4) #define emit_x87op(as, xo) \ (*(uint16_t *)(as->mcp-2) = (uint16_t)(xo), as->mcp -= 2) /* op */ static LJ_AINLINE MCode *emit_op(x86Op xo, Reg rr, Reg rb, Reg rx, MCode *p, int delta) { int n = (int8_t)xo; #if defined(__GNUC__) if (__builtin_constant_p(xo) && n == -2) p[delta-2] = (MCode)(xo >> 24); else if (__builtin_constant_p(xo) && n == -3) *(uint16_t *)(p+delta-3) = (uint16_t)(xo >> 16); else #endif *(uint32_t *)(p+delta-5) = (uint32_t)xo; p += n + delta; #if LJ_64 { uint32_t rex = 0x40 + ((rr>>1)&(4+(FORCE_REX>>1)))+((rx>>2)&2)+((rb>>3)&1); if (rex != 0x40) { rex |= (rr >> 16); if (n == -4) { *p = (MCode)rex; rex = (MCode)(xo >> 8); } else if ((xo & 0xffffff) == 0x6600fd) { *p = (MCode)rex; rex = 0x66; } *--p = (MCode)rex; } } #else UNUSED(rr); UNUSED(rb); UNUSED(rx); #endif return p; } /* op + modrm */ #define emit_opm(xo, mode, rr, rb, p, delta) \ (p[(delta)-1] = MODRM((mode), (rr), (rb)), \ emit_op((xo), (rr), (rb), 0, (p), (delta))) /* op + modrm + sib */ #define emit_opmx(xo, mode, scale, rr, rb, rx, p) \ (p[-1] = MODRM((scale), (rx), (rb)), \ p[-2] = MODRM((mode), (rr), RID_ESP), \ emit_op((xo), (rr), (rb), (rx), (p), -1)) /* op r1, r2 */ static void emit_rr(ASMState *as, x86Op xo, Reg r1, Reg r2) { MCode *p = as->mcp; as->mcp = emit_opm(xo, XM_REG, r1, r2, p, 0); } #if LJ_64 && defined(LUA_USE_ASSERT) /* [addr] is sign-extended in x64 and must be in lower 2G (not 4G). */ static int32_t ptr2addr(const void *p) { lua_assert((uintptr_t)p < (uintptr_t)0x80000000); return i32ptr(p); } #else #define ptr2addr(p) (i32ptr((p))) #endif /* op r, [addr] */ static void emit_rma(ASMState *as, x86Op xo, Reg rr, const void *addr) { MCode *p = as->mcp; *(int32_t *)(p-4) = ptr2addr(addr); #if LJ_64 p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP); as->mcp = emit_opm(xo, XM_OFS0, rr, RID_ESP, p, -5); #else as->mcp = emit_opm(xo, XM_OFS0, rr, RID_EBP, p, -4); #endif } /* op r, [base+ofs] */ static void emit_rmro(ASMState *as, x86Op xo, Reg rr, Reg rb, int32_t ofs) { MCode *p = as->mcp; x86Mode mode; if (ra_hasreg(rb)) { if (ofs == 0 && (rb&7) != RID_EBP) { mode = XM_OFS0; } else if (checki8(ofs)) { *--p = (MCode)ofs; mode = XM_OFS8; } else { p -= 4; *(int32_t *)p = ofs; mode = XM_OFS32; } if ((rb&7) == RID_ESP) *--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP); } else { *(int32_t *)(p-4) = ofs; #if LJ_64 p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP); p -= 5; rb = RID_ESP; #else p -= 4; rb = RID_EBP; #endif mode = XM_OFS0; } as->mcp = emit_opm(xo, mode, rr, rb, p, 0); } /* op r, [base+idx*scale+ofs] */ static void emit_rmrxo(ASMState *as, x86Op xo, Reg rr, Reg rb, Reg rx, x86Mode scale, int32_t ofs) { MCode *p = as->mcp; x86Mode mode; if (ofs == 0 && (rb&7) != RID_EBP) { mode = XM_OFS0; } else if (checki8(ofs)) { mode = XM_OFS8; *--p = (MCode)ofs; } else { mode = XM_OFS32; p -= 4; *(int32_t *)p = ofs; } as->mcp = emit_opmx(xo, mode, scale, rr, rb, rx, p); } /* op r, i */ static void emit_gri(ASMState *as, x86Group xg, Reg rb, int32_t i) { MCode *p = as->mcp; x86Op xo; if (checki8(i)) { *--p = (MCode)i; xo = XG_TOXOi8(xg); } else { p -= 4; *(int32_t *)p = i; xo = XG_TOXOi(xg); } as->mcp = emit_opm(xo, XM_REG, (Reg)(xg & 7) | (rb & REX_64), rb, p, 0); } /* op [base+ofs], i */ static void emit_gmroi(ASMState *as, x86Group xg, Reg rb, int32_t ofs, int32_t i) { x86Op xo; if (checki8(i)) { emit_i8(as, i); xo = XG_TOXOi8(xg); } else { emit_i32(as, i); xo = XG_TOXOi(xg); } emit_rmro(as, xo, (Reg)(xg & 7), rb, ofs); } #define emit_shifti(as, xg, r, i) \ (emit_i8(as, (i)), emit_rr(as, XO_SHIFTi, (Reg)(xg), (r))) /* op r, rm/mrm */ static void emit_mrm(ASMState *as, x86Op xo, Reg rr, Reg rb) { MCode *p = as->mcp; x86Mode mode = XM_REG; if (rb == RID_MRM) { rb = as->mrm.base; if (rb == RID_NONE) { rb = RID_EBP; mode = XM_OFS0; p -= 4; *(int32_t *)p = as->mrm.ofs; if (as->mrm.idx != RID_NONE) goto mrmidx; #if LJ_64 *--p = MODRM(XM_SCALE1, RID_ESP, RID_EBP); rb = RID_ESP; #endif } else { if (as->mrm.ofs == 0 && (rb&7) != RID_EBP) { mode = XM_OFS0; } else if (checki8(as->mrm.ofs)) { *--p = (MCode)as->mrm.ofs; mode = XM_OFS8; } else { p -= 4; *(int32_t *)p = as->mrm.ofs; mode = XM_OFS32; } if (as->mrm.idx != RID_NONE) { mrmidx: as->mcp = emit_opmx(xo, mode, as->mrm.scale, rr, rb, as->mrm.idx, p); return; } if ((rb&7) == RID_ESP) *--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP); } } as->mcp = emit_opm(xo, mode, rr, rb, p, 0); } /* op rm/mrm, i */ static void emit_gmrmi(ASMState *as, x86Group xg, Reg rb, int32_t i) { x86Op xo; if (checki8(i)) { emit_i8(as, i); xo = XG_TOXOi8(xg); } else { emit_i32(as, i); xo = XG_TOXOi(xg); } emit_mrm(as, xo, (Reg)(xg & 7) | (rb & REX_64), (rb & ~REX_64)); } /* -- Emit loads/stores --------------------------------------------------- */ /* Instruction selection for XMM moves. */ #define XMM_MOVRR(as) ((as->flags & JIT_F_SPLIT_XMM) ? XO_MOVSD : XO_MOVAPS) #define XMM_MOVRM(as) ((as->flags & JIT_F_SPLIT_XMM) ? XO_MOVLPD : XO_MOVSD) /* mov [base+ofs], i */ static void emit_movmroi(ASMState *as, Reg base, int32_t ofs, int32_t i) { emit_i32(as, i); emit_rmro(as, XO_MOVmi, 0, base, ofs); } /* mov [base+ofs], r */ #define emit_movtomro(as, r, base, ofs) \ emit_rmro(as, XO_MOVto, (r), (base), (ofs)) /* Get/set global_State fields. */ #define emit_opgl(as, xo, r, field) \ emit_rma(as, (xo), (r), (void *)&J2G(as->J)->field) #define emit_getgl(as, r, field) emit_opgl(as, XO_MOV, (r), field) #define emit_setgl(as, r, field) emit_opgl(as, XO_MOVto, (r), field) #define emit_setvmstate(as, i) \ (emit_i32(as, i), emit_opgl(as, XO_MOVmi, 0, vmstate)) /* mov r, i / xor r, r */ static void emit_loadi(ASMState *as, Reg r, int32_t i) { /* XOR r,r is shorter, but modifies the flags. This is bad for HIOP. */ if (i == 0 && !(LJ_32 && (IR(as->curins)->o == IR_HIOP || (as->curins+1 < as->T->nins && IR(as->curins+1)->o == IR_HIOP)))) { emit_rr(as, XO_ARITH(XOg_XOR), r, r); } else { MCode *p = as->mcp; *(int32_t *)(p-4) = i; p[-5] = (MCode)(XI_MOVri+(r&7)); p -= 5; REXRB(p, 0, r); as->mcp = p; } } /* mov r, addr */ #define emit_loada(as, r, addr) \ emit_loadi(as, (r), ptr2addr((addr))) #if LJ_64 /* mov r, imm64 or shorter 32 bit extended load. */ static void emit_loadu64(ASMState *as, Reg r, uint64_t u64) { if (checku32(u64)) { /* 32 bit load clears upper 32 bits. */ emit_loadi(as, r, (int32_t)u64); } else if (checki32((int64_t)u64)) { /* Sign-extended 32 bit load. */ MCode *p = as->mcp; *(int32_t *)(p-4) = (int32_t)u64; as->mcp = emit_opm(XO_MOVmi, XM_REG, REX_64, r, p, -4); } else { /* Full-size 64 bit load. */ MCode *p = as->mcp; *(uint64_t *)(p-8) = u64; p[-9] = (MCode)(XI_MOVri+(r&7)); p[-10] = 0x48 + ((r>>3)&1); p -= 10; as->mcp = p; } } #endif /* movsd r, [&tv->n] / xorps r, r */ static void emit_loadn(ASMState *as, Reg r, cTValue *tv) { if (tvispzero(tv)) /* Use xor only for +0. */ emit_rr(as, XO_XORPS, r, r); else emit_rma(as, XMM_MOVRM(as), r, &tv->n); } /* -- Emit control-flow instructions -------------------------------------- */ /* Label for short jumps. */ typedef MCode *MCLabel; #if LJ_32 && LJ_HASFFI /* jmp short target */ static void emit_sjmp(ASMState *as, MCLabel target) { MCode *p = as->mcp; ptrdiff_t delta = target - p; lua_assert(delta == (int8_t)delta); p[-1] = (MCode)(int8_t)delta; p[-2] = XI_JMPs; as->mcp = p - 2; } #endif /* jcc short target */ static void emit_sjcc(ASMState *as, int cc, MCLabel target) { MCode *p = as->mcp; ptrdiff_t delta = target - p; lua_assert(delta == (int8_t)delta); p[-1] = (MCode)(int8_t)delta; p[-2] = (MCode)(XI_JCCs+(cc&15)); as->mcp = p - 2; } /* jcc short (pending target) */ static MCLabel emit_sjcc_label(ASMState *as, int cc) { MCode *p = as->mcp; p[-1] = 0; p[-2] = (MCode)(XI_JCCs+(cc&15)); as->mcp = p - 2; return p; } /* Fixup jcc short target. */ static void emit_sfixup(ASMState *as, MCLabel source) { source[-1] = (MCode)(as->mcp-source); } /* Return label pointing to current PC. */ #define emit_label(as) ((as)->mcp) /* Compute relative 32 bit offset for jump and call instructions. */ static LJ_AINLINE int32_t jmprel(MCode *p, MCode *target) { ptrdiff_t delta = target - p; lua_assert(delta == (int32_t)delta); return (int32_t)delta; } /* jcc target */ static void emit_jcc(ASMState *as, int cc, MCode *target) { MCode *p = as->mcp; *(int32_t *)(p-4) = jmprel(p, target); p[-5] = (MCode)(XI_JCCn+(cc&15)); p[-6] = 0x0f; as->mcp = p - 6; } /* jmp target */ static void emit_jmp(ASMState *as, MCode *target) { MCode *p = as->mcp; *(int32_t *)(p-4) = jmprel(p, target); p[-5] = XI_JMP; as->mcp = p - 5; } /* call target */ static void emit_call_(ASMState *as, MCode *target) { MCode *p = as->mcp; #if LJ_64 if (target-p != (int32_t)(target-p)) { /* Assumes RID_RET is never an argument to calls and always clobbered. */ emit_rr(as, XO_GROUP5, XOg_CALL, RID_RET); emit_loadu64(as, RID_RET, (uint64_t)target); return; } #endif *(int32_t *)(p-4) = jmprel(p, target); p[-5] = XI_CALL; as->mcp = p - 5; } #define emit_call(as, f) emit_call_(as, (MCode *)(void *)(f)) /* -- Emit generic operations --------------------------------------------- */ /* Use 64 bit operations to handle 64 bit IR types. */ #if LJ_64 #define REX_64IR(ir, r) ((r) + (irt_is64((ir)->t) ? REX_64 : 0)) #else #define REX_64IR(ir, r) (r) #endif /* Generic move between two regs. */ static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src) { UNUSED(ir); if (dst < RID_MAX_GPR) emit_rr(as, XO_MOV, REX_64IR(ir, dst), src); else emit_rr(as, XMM_MOVRR(as), dst, src); } /* Generic load of register from stack slot. */ static void emit_spload(ASMState *as, IRIns *ir, Reg r, int32_t ofs) { if (r < RID_MAX_GPR) emit_rmro(as, XO_MOV, REX_64IR(ir, r), RID_ESP, ofs); else emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS, r, RID_ESP, ofs); } /* Generic store of register to stack slot. */ static void emit_spstore(ASMState *as, IRIns *ir, Reg r, int32_t ofs) { if (r < RID_MAX_GPR) emit_rmro(as, XO_MOVto, REX_64IR(ir, r), RID_ESP, ofs); else emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto, r, RID_ESP, ofs); } /* Add offset to pointer. */ static void emit_addptr(ASMState *as, Reg r, int32_t ofs) { if (ofs) { if ((as->flags & JIT_F_LEA_AGU)) emit_rmro(as, XO_LEA, r, r, ofs); else emit_gri(as, XG_ARITHi(XOg_ADD), r, ofs); } } #define emit_spsub(as, ofs) emit_addptr(as, RID_ESP|REX_64, -(ofs)) /* Prefer rematerialization of BASE/L from global_State over spills. */ #define emit_canremat(ref) ((ref) <= REF_BASE)