/* * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include #include #include #include #define B2_DEBUG_SOLVER 0 b2ContactSolver::b2ContactSolver(b2Contact** contacts, int32 contactCount, b2StackAllocator* allocator, float32 impulseRatio) { m_allocator = allocator; m_constraintCount = contactCount; m_constraints = (b2ContactConstraint*)m_allocator->Allocate(m_constraintCount * sizeof(b2ContactConstraint)); for (int32 i = 0; i < m_constraintCount; ++i) { b2Contact* contact = contacts[i]; b2Fixture* fixtureA = contact->m_fixtureA; b2Fixture* fixtureB = contact->m_fixtureB; b2Shape* shapeA = fixtureA->GetShape(); b2Shape* shapeB = fixtureB->GetShape(); float32 radiusA = shapeA->m_radius; float32 radiusB = shapeB->m_radius; b2Body* bodyA = fixtureA->GetBody(); b2Body* bodyB = fixtureB->GetBody(); b2Manifold* manifold = contact->GetManifold(); float32 friction = b2MixFriction(fixtureA->GetFriction(), fixtureB->GetFriction()); float32 restitution = b2MixRestitution(fixtureA->GetRestitution(), fixtureB->GetRestitution()); b2Vec2 vA = bodyA->m_linearVelocity; b2Vec2 vB = bodyB->m_linearVelocity; float32 wA = bodyA->m_angularVelocity; float32 wB = bodyB->m_angularVelocity; b2Assert(manifold->pointCount > 0); b2WorldManifold worldManifold; worldManifold.Initialize(manifold, bodyA->m_xf, radiusA, bodyB->m_xf, radiusB); b2ContactConstraint* cc = m_constraints + i; cc->bodyA = bodyA; cc->bodyB = bodyB; cc->manifold = manifold; cc->normal = worldManifold.normal; cc->pointCount = manifold->pointCount; cc->friction = friction; cc->localNormal = manifold->localNormal; cc->localPoint = manifold->localPoint; cc->radius = radiusA + radiusB; cc->type = manifold->type; for (int32 j = 0; j < cc->pointCount; ++j) { b2ManifoldPoint* cp = manifold->points + j; b2ContactConstraintPoint* ccp = cc->points + j; ccp->normalImpulse = impulseRatio * cp->normalImpulse; ccp->tangentImpulse = impulseRatio * cp->tangentImpulse; ccp->localPoint = cp->localPoint; ccp->rA = worldManifold.points[j] - bodyA->m_sweep.c; ccp->rB = worldManifold.points[j] - bodyB->m_sweep.c; float32 rnA = b2Cross(ccp->rA, cc->normal); float32 rnB = b2Cross(ccp->rB, cc->normal); rnA *= rnA; rnB *= rnB; float32 kNormal = bodyA->m_invMass + bodyB->m_invMass + bodyA->m_invI * rnA + bodyB->m_invI * rnB; b2Assert(kNormal > b2_epsilon); ccp->normalMass = 1.0f / kNormal; b2Vec2 tangent = b2Cross(cc->normal, 1.0f); float32 rtA = b2Cross(ccp->rA, tangent); float32 rtB = b2Cross(ccp->rB, tangent); rtA *= rtA; rtB *= rtB; float32 kTangent = bodyA->m_invMass + bodyB->m_invMass + bodyA->m_invI * rtA + bodyB->m_invI * rtB; b2Assert(kTangent > b2_epsilon); ccp->tangentMass = 1.0f / kTangent; // Setup a velocity bias for restitution. ccp->velocityBias = 0.0f; float32 vRel = b2Dot(cc->normal, vB + b2Cross(wB, ccp->rB) - vA - b2Cross(wA, ccp->rA)); if (vRel < -b2_velocityThreshold) { ccp->velocityBias = -restitution * vRel; } } // If we have two points, then prepare the block solver. if (cc->pointCount == 2) { b2ContactConstraintPoint* ccp1 = cc->points + 0; b2ContactConstraintPoint* ccp2 = cc->points + 1; float32 invMassA = bodyA->m_invMass; float32 invIA = bodyA->m_invI; float32 invMassB = bodyB->m_invMass; float32 invIB = bodyB->m_invI; float32 rn1A = b2Cross(ccp1->rA, cc->normal); float32 rn1B = b2Cross(ccp1->rB, cc->normal); float32 rn2A = b2Cross(ccp2->rA, cc->normal); float32 rn2B = b2Cross(ccp2->rB, cc->normal); float32 k11 = invMassA + invMassB + invIA * rn1A * rn1A + invIB * rn1B * rn1B; float32 k22 = invMassA + invMassB + invIA * rn2A * rn2A + invIB * rn2B * rn2B; float32 k12 = invMassA + invMassB + invIA * rn1A * rn2A + invIB * rn1B * rn2B; // Ensure a reasonable condition number. const float32 k_maxConditionNumber = 100.0f; if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) { // K is safe to invert. cc->K.col1.Set(k11, k12); cc->K.col2.Set(k12, k22); cc->normalMass = cc->K.GetInverse(); } else { // The constraints are redundant, just use one. // TODO_ERIN use deepest? cc->pointCount = 1; } } } } b2ContactSolver::~b2ContactSolver() { m_allocator->Free(m_constraints); } void b2ContactSolver::WarmStart() { // Warm start. for (int32 i = 0; i < m_constraintCount; ++i) { b2ContactConstraint* c = m_constraints + i; b2Body* bodyA = c->bodyA; b2Body* bodyB = c->bodyB; float32 invMassA = bodyA->m_invMass; float32 invIA = bodyA->m_invI; float32 invMassB = bodyB->m_invMass; float32 invIB = bodyB->m_invI; b2Vec2 normal = c->normal; b2Vec2 tangent = b2Cross(normal, 1.0f); for (int32 j = 0; j < c->pointCount; ++j) { b2ContactConstraintPoint* ccp = c->points + j; b2Vec2 P = ccp->normalImpulse * normal + ccp->tangentImpulse * tangent; bodyA->m_angularVelocity -= invIA * b2Cross(ccp->rA, P); bodyA->m_linearVelocity -= invMassA * P; bodyB->m_angularVelocity += invIB * b2Cross(ccp->rB, P); bodyB->m_linearVelocity += invMassB * P; } } } void b2ContactSolver::SolveVelocityConstraints() { for (int32 i = 0; i < m_constraintCount; ++i) { b2ContactConstraint* c = m_constraints + i; b2Body* bodyA = c->bodyA; b2Body* bodyB = c->bodyB; float32 wA = bodyA->m_angularVelocity; float32 wB = bodyB->m_angularVelocity; b2Vec2 vA = bodyA->m_linearVelocity; b2Vec2 vB = bodyB->m_linearVelocity; float32 invMassA = bodyA->m_invMass; float32 invIA = bodyA->m_invI; float32 invMassB = bodyB->m_invMass; float32 invIB = bodyB->m_invI; b2Vec2 normal = c->normal; b2Vec2 tangent = b2Cross(normal, 1.0f); float32 friction = c->friction; b2Assert(c->pointCount == 1 || c->pointCount == 2); // Solve tangent constraints for (int32 j = 0; j < c->pointCount; ++j) { b2ContactConstraintPoint* ccp = c->points + j; // Relative velocity at contact b2Vec2 dv = vB + b2Cross(wB, ccp->rB) - vA - b2Cross(wA, ccp->rA); // Compute tangent force float32 vt = b2Dot(dv, tangent); float32 lambda = ccp->tangentMass * (-vt); // b2Clamp the accumulated force float32 maxFriction = friction * ccp->normalImpulse; float32 newImpulse = b2Clamp(ccp->tangentImpulse + lambda, -maxFriction, maxFriction); lambda = newImpulse - ccp->tangentImpulse; // Apply contact impulse b2Vec2 P = lambda * tangent; vA -= invMassA * P; wA -= invIA * b2Cross(ccp->rA, P); vB += invMassB * P; wB += invIB * b2Cross(ccp->rB, P); ccp->tangentImpulse = newImpulse; } // Solve normal constraints if (c->pointCount == 1) { b2ContactConstraintPoint* ccp = c->points + 0; // Relative velocity at contact b2Vec2 dv = vB + b2Cross(wB, ccp->rB) - vA - b2Cross(wA, ccp->rA); // Compute normal impulse float32 vn = b2Dot(dv, normal); float32 lambda = -ccp->normalMass * (vn - ccp->velocityBias); // b2Clamp the accumulated impulse float32 newImpulse = b2Max(ccp->normalImpulse + lambda, 0.0f); lambda = newImpulse - ccp->normalImpulse; // Apply contact impulse b2Vec2 P = lambda * normal; vA -= invMassA * P; wA -= invIA * b2Cross(ccp->rA, P); vB += invMassB * P; wB += invIB * b2Cross(ccp->rB, P); ccp->normalImpulse = newImpulse; } else { // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). // Build the mini LCP for this contact patch // // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 // // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) // b = vn_0 - velocityBias // // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid // solution that satisfies the problem is chosen. // // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). // // Substitute: // // x = x' - a // // Plug into above equation: // // vn = A * x + b // = A * (x' - a) + b // = A * x' + b - A * a // = A * x' + b' // b' = b - A * a; b2ContactConstraintPoint* cp1 = c->points + 0; b2ContactConstraintPoint* cp2 = c->points + 1; b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse); b2Assert(a.x >= 0.0f && a.y >= 0.0f); // Relative velocity at contact b2Vec2 dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); b2Vec2 dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); // Compute normal velocity float32 vn1 = b2Dot(dv1, normal); float32 vn2 = b2Dot(dv2, normal); b2Vec2 b; b.x = vn1 - cp1->velocityBias; b.y = vn2 - cp2->velocityBias; b -= b2Mul(c->K, a); const float32 k_errorTol = 1e-3f; B2_NOT_USED(k_errorTol); for (;;) { // // Case 1: vn = 0 // // 0 = A * x' + b' // // Solve for x': // // x' = - inv(A) * b' // b2Vec2 x = - b2Mul(c->normalMass, b); if (x.x >= 0.0f && x.y >= 0.0f) { // Resubstitute for the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= invMassA * (P1 + P2); wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); vB += invMassB * (P1 + P2); wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); // Accumulate cp1->normalImpulse = x.x; cp2->normalImpulse = x.y; #if B2_DEBUG_SOLVER == 1 // Postconditions dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); // Compute normal velocity vn1 = b2Dot(dv1, normal); vn2 = b2Dot(dv2, normal); b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); #endif break; } // // Case 2: vn1 = 0 and x2 = 0 // // 0 = a11 * x1' + a12 * 0 + b1' // vn2 = a21 * x1' + a22 * 0 + b2' // x.x = - cp1->normalMass * b.x; x.y = 0.0f; vn1 = 0.0f; vn2 = c->K.col1.y * x.x + b.y; if (x.x >= 0.0f && vn2 >= 0.0f) { // Resubstitute for the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= invMassA * (P1 + P2); wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); vB += invMassB * (P1 + P2); wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); // Accumulate cp1->normalImpulse = x.x; cp2->normalImpulse = x.y; #if B2_DEBUG_SOLVER == 1 // Postconditions dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); // Compute normal velocity vn1 = b2Dot(dv1, normal); b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); #endif break; } // // Case 3: vn2 = 0 and x1 = 0 // // vn1 = a11 * 0 + a12 * x2' + b1' // 0 = a21 * 0 + a22 * x2' + b2' // x.x = 0.0f; x.y = - cp2->normalMass * b.y; vn1 = c->K.col2.x * x.y + b.x; vn2 = 0.0f; if (x.y >= 0.0f && vn1 >= 0.0f) { // Resubstitute for the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= invMassA * (P1 + P2); wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); vB += invMassB * (P1 + P2); wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); // Accumulate cp1->normalImpulse = x.x; cp2->normalImpulse = x.y; #if B2_DEBUG_SOLVER == 1 // Postconditions dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); // Compute normal velocity vn2 = b2Dot(dv2, normal); b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); #endif break; } // // Case 4: x1 = 0 and x2 = 0 // // vn1 = b1 // vn2 = b2; x.x = 0.0f; x.y = 0.0f; vn1 = b.x; vn2 = b.y; if (vn1 >= 0.0f && vn2 >= 0.0f ) { // Resubstitute for the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= invMassA * (P1 + P2); wA -= invIA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); vB += invMassB * (P1 + P2); wB += invIB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); // Accumulate cp1->normalImpulse = x.x; cp2->normalImpulse = x.y; break; } // No solution, give up. This is hit sometimes, but it doesn't seem to matter. break; } } bodyA->m_linearVelocity = vA; bodyA->m_angularVelocity = wA; bodyB->m_linearVelocity = vB; bodyB->m_angularVelocity = wB; } } void b2ContactSolver::StoreImpulses() { for (int32 i = 0; i < m_constraintCount; ++i) { b2ContactConstraint* c = m_constraints + i; b2Manifold* m = c->manifold; for (int32 j = 0; j < c->pointCount; ++j) { m->points[j].normalImpulse = c->points[j].normalImpulse; m->points[j].tangentImpulse = c->points[j].tangentImpulse; } } } struct b2PositionSolverManifold { void Initialize(b2ContactConstraint* cc, int32 index) { b2Assert(cc->pointCount > 0); switch (cc->type) { case b2Manifold::e_circles: { b2Vec2 pointA = cc->bodyA->GetWorldPoint(cc->localPoint); b2Vec2 pointB = cc->bodyB->GetWorldPoint(cc->points[0].localPoint); if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon) { normal = pointB - pointA; normal.Normalize(); } else { normal.Set(1.0f, 0.0f); } point = 0.5f * (pointA + pointB); separation = b2Dot(pointB - pointA, normal) - cc->radius; } break; case b2Manifold::e_faceA: { normal = cc->bodyA->GetWorldVector(cc->localNormal); b2Vec2 planePoint = cc->bodyA->GetWorldPoint(cc->localPoint); b2Vec2 clipPoint = cc->bodyB->GetWorldPoint(cc->points[index].localPoint); separation = b2Dot(clipPoint - planePoint, normal) - cc->radius; point = clipPoint; } break; case b2Manifold::e_faceB: { normal = cc->bodyB->GetWorldVector(cc->localNormal); b2Vec2 planePoint = cc->bodyB->GetWorldPoint(cc->localPoint); b2Vec2 clipPoint = cc->bodyA->GetWorldPoint(cc->points[index].localPoint); separation = b2Dot(clipPoint - planePoint, normal) - cc->radius; point = clipPoint; // Ensure normal points from A to B normal = -normal; } break; } } b2Vec2 normal; b2Vec2 point; float32 separation; }; // Sequential solver. bool b2ContactSolver::SolvePositionConstraints(float32 baumgarte) { float32 minSeparation = 0.0f; for (int32 i = 0; i < m_constraintCount; ++i) { b2ContactConstraint* c = m_constraints + i; b2Body* bodyA = c->bodyA; b2Body* bodyB = c->bodyB; float32 invMassA = bodyA->m_mass * bodyA->m_invMass; float32 invIA = bodyA->m_mass * bodyA->m_invI; float32 invMassB = bodyB->m_mass * bodyB->m_invMass; float32 invIB = bodyB->m_mass * bodyB->m_invI; // Solve normal constraints for (int32 j = 0; j < c->pointCount; ++j) { b2PositionSolverManifold psm; psm.Initialize(c, j); b2Vec2 normal = psm.normal; b2Vec2 point = psm.point; float32 separation = psm.separation; b2Vec2 rA = point - bodyA->m_sweep.c; b2Vec2 rB = point - bodyB->m_sweep.c; // Track max constraint error. minSeparation = b2Min(minSeparation, separation); // Prevent large corrections and allow slop. float32 C = b2Clamp(baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); // Compute the effective mass. float32 rnA = b2Cross(rA, normal); float32 rnB = b2Cross(rB, normal); float32 K = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB; // Compute normal impulse float32 impulse = K > 0.0f ? - C / K : 0.0f; b2Vec2 P = impulse * normal; bodyA->m_sweep.c -= invMassA * P; bodyA->m_sweep.a -= invIA * b2Cross(rA, P); bodyA->SynchronizeTransform(); bodyB->m_sweep.c += invMassB * P; bodyB->m_sweep.a += invIB * b2Cross(rB, P); bodyB->SynchronizeTransform(); } } // We can't expect minSpeparation >= -b2_linearSlop because we don't // push the separation above -b2_linearSlop. return minSeparation >= -1.5f * b2_linearSlop; }