/******************************************************************************* * Author : Angus Johnson * * Date : 26 October 2022 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2022 * * Purpose : This is the main polygon clipping module * * License : http://www.boost.org/LICENSE_1_0.txt * *******************************************************************************/ #ifndef CLIPPER_ENGINE_H #define CLIPPER_ENGINE_H #define CLIPPER2_VERSION "1.0.6" #include #include #include #include #include #include "clipper.core.h" namespace Clipper2Lib { struct Scanline; struct IntersectNode; struct Active; struct Vertex; struct LocalMinima; struct OutRec; struct Joiner; //Note: all clipping operations except for Difference are commutative. enum class ClipType { None, Intersection, Union, Difference, Xor }; enum class PathType { Subject, Clip }; enum class VertexFlags : uint32_t { None = 0, OpenStart = 1, OpenEnd = 2, LocalMax = 4, LocalMin = 8 }; constexpr enum VertexFlags operator &(enum VertexFlags a, enum VertexFlags b) { return (enum VertexFlags)(uint32_t(a) & uint32_t(b)); } constexpr enum VertexFlags operator |(enum VertexFlags a, enum VertexFlags b) { return (enum VertexFlags)(uint32_t(a) | uint32_t(b)); } struct Vertex { Point64 pt; Vertex* next = nullptr; Vertex* prev = nullptr; VertexFlags flags = VertexFlags::None; }; struct OutPt { Point64 pt; OutPt* next = nullptr; OutPt* prev = nullptr; OutRec* outrec; Joiner* joiner = nullptr; OutPt(const Point64& pt_, OutRec* outrec_): pt(pt_), outrec(outrec_) { next = this; prev = this; } }; class PolyPath; class PolyPath64; class PolyPathD; using PolyTree64 = PolyPath64; using PolyTreeD = PolyPathD; struct OutRec; typedef std::vector OutRecList; //OutRec: contains a path in the clipping solution. Edges in the AEL will //have OutRec pointers assigned when they form part of the clipping solution. struct OutRec { size_t idx = 0; OutRec* owner = nullptr; OutRecList* splits = nullptr; Active* front_edge = nullptr; Active* back_edge = nullptr; OutPt* pts = nullptr; PolyPath* polypath = nullptr; Rect64 bounds = {}; Path64 path; bool is_open = false; ~OutRec() { if (splits) delete splits; }; }; /////////////////////////////////////////////////////////////////// //Important: UP and DOWN here are premised on Y-axis positive down //displays, which is the orientation used in Clipper's development. /////////////////////////////////////////////////////////////////// struct Active { Point64 bot; Point64 top; int64_t curr_x = 0; //current (updated at every new scanline) double dx = 0.0; int wind_dx = 1; //1 or -1 depending on winding direction int wind_cnt = 0; int wind_cnt2 = 0; //winding count of the opposite polytype OutRec* outrec = nullptr; //AEL: 'active edge list' (Vatti's AET - active edge table) // a linked list of all edges (from left to right) that are present // (or 'active') within the current scanbeam (a horizontal 'beam' that // sweeps from bottom to top over the paths in the clipping operation). Active* prev_in_ael = nullptr; Active* next_in_ael = nullptr; //SEL: 'sorted edge list' (Vatti's ST - sorted table) // linked list used when sorting edges into their new positions at the // top of scanbeams, but also (re)used to process horizontals. Active* prev_in_sel = nullptr; Active* next_in_sel = nullptr; Active* jump = nullptr; Vertex* vertex_top = nullptr; LocalMinima* local_min = nullptr; // the bottom of an edge 'bound' (also Vatti) bool is_left_bound = false; }; struct LocalMinima { Vertex* vertex; PathType polytype; bool is_open; LocalMinima(Vertex* v, PathType pt, bool open) : vertex(v), polytype(pt), is_open(open){} }; struct IntersectNode { Point64 pt; Active* edge1; Active* edge2; IntersectNode() : pt(Point64(0, 0)), edge1(NULL), edge2(NULL) {} IntersectNode(Active* e1, Active* e2, Point64& pt_) : pt(pt_), edge1(e1), edge2(e2) { } }; #ifdef USINGZ typedef std::function ZCallback64; typedef std::function ZCallbackD; #endif // ClipperBase ------------------------------------------------------------- class ClipperBase { private: ClipType cliptype_ = ClipType::None; FillRule fillrule_ = FillRule::EvenOdd; FillRule fillpos = FillRule::Positive; int64_t bot_y_ = 0; bool minima_list_sorted_ = false; bool using_polytree_ = false; Active* actives_ = nullptr; Active *sel_ = nullptr; Joiner *horz_joiners_ = nullptr; std::vector minima_list_; //pointers in case of memory reallocs std::vector::iterator current_locmin_iter_; std::vector vertex_lists_; std::priority_queue scanline_list_; std::vector intersect_nodes_; std::vector joiner_list_; //pointers in case of memory reallocs void Reset(); void InsertScanline(int64_t y); bool PopScanline(int64_t &y); bool PopLocalMinima(int64_t y, LocalMinima *&local_minima); void DisposeAllOutRecs(); void DisposeVerticesAndLocalMinima(); void DeleteEdges(Active*& e); void AddLocMin(Vertex &vert, PathType polytype, bool is_open); bool IsContributingClosed(const Active &e) const; inline bool IsContributingOpen(const Active &e) const; void SetWindCountForClosedPathEdge(Active &edge); void SetWindCountForOpenPathEdge(Active &e); void InsertLocalMinimaIntoAEL(int64_t bot_y); void InsertLeftEdge(Active &e); inline void PushHorz(Active &e); inline bool PopHorz(Active *&e); inline OutPt* StartOpenPath(Active &e, const Point64& pt); inline void UpdateEdgeIntoAEL(Active *e); OutPt* IntersectEdges(Active &e1, Active &e2, const Point64& pt); inline void DeleteFromAEL(Active &e); inline void AdjustCurrXAndCopyToSEL(const int64_t top_y); void DoIntersections(const int64_t top_y); void AddNewIntersectNode(Active &e1, Active &e2, const int64_t top_y); bool BuildIntersectList(const int64_t top_y); void ProcessIntersectList(); void SwapPositionsInAEL(Active& edge1, Active& edge2); OutPt* AddOutPt(const Active &e, const Point64& pt); OutPt* AddLocalMinPoly(Active &e1, Active &e2, const Point64& pt, bool is_new = false); OutPt* AddLocalMaxPoly(Active &e1, Active &e2, const Point64& pt); void DoHorizontal(Active &horz); bool ResetHorzDirection(const Active &horz, const Active *max_pair, int64_t &horz_left, int64_t &horz_right); void DoTopOfScanbeam(const int64_t top_y); Active *DoMaxima(Active &e); void JoinOutrecPaths(Active &e1, Active &e2); void CompleteSplit(OutPt* op1, OutPt* op2, OutRec& outrec); bool ValidateClosedPathEx(OutPt*& outrec); void CleanCollinear(OutRec* outrec); void FixSelfIntersects(OutRec* outrec); OutPt* DoSplitOp(OutPt* outRecOp, OutPt* splitOp); Joiner* GetHorzTrialParent(const OutPt* op); bool OutPtInTrialHorzList(OutPt* op); void SafeDisposeOutPts(OutPt*& op); void SafeDeleteOutPtJoiners(OutPt* op); void AddTrialHorzJoin(OutPt* op); void DeleteTrialHorzJoin(OutPt* op); void ConvertHorzTrialsToJoins(); void AddJoin(OutPt* op1, OutPt* op2); void DeleteJoin(Joiner* joiner); void ProcessJoinerList(); OutRec* ProcessJoin(Joiner* joiner); protected: bool has_open_paths_ = false; bool succeeded_ = true; std::vector outrec_list_; //pointers in case list memory reallocated bool ExecuteInternal(ClipType ct, FillRule ft, bool use_polytrees); bool DeepCheckOwner(OutRec* outrec, OutRec* owner); #ifdef USINGZ ZCallback64 zCallback_ = nullptr; void SetZ(const Active& e1, const Active& e2, Point64& pt); #endif void CleanUp(); // unlike Clear, CleanUp preserves added paths void AddPath(const Path64& path, PathType polytype, bool is_open); void AddPaths(const Paths64& paths, PathType polytype, bool is_open); public: virtual ~ClipperBase(); bool PreserveCollinear = true; bool ReverseSolution = false; void Clear(); }; // PolyPath / PolyTree -------------------------------------------------------- //PolyTree: is intended as a READ-ONLY data structure for CLOSED paths returned //by clipping operations. While this structure is more complex than the //alternative Paths structure, it does preserve path 'ownership' - ie those //paths that contain (or own) other paths. This will be useful to some users. class PolyPath { protected: PolyPath* parent_; public: PolyPath(PolyPath* parent = nullptr): parent_(parent){} virtual ~PolyPath() { Clear(); }; //https://en.cppreference.com/w/cpp/language/rule_of_three PolyPath(const PolyPath&) = delete; PolyPath& operator=(const PolyPath&) = delete; unsigned Level() const { unsigned result = 0; const PolyPath* p = parent_; while (p) { ++result; p = p->parent_; } return result; } virtual PolyPath* AddChild(const Path64& path) = 0; virtual void Clear() {}; virtual size_t Count() const { return 0; } const PolyPath* Parent() const { return parent_; } bool IsHole() const { const PolyPath* pp = parent_; bool is_hole = pp; while (pp) { is_hole = !is_hole; pp = pp->parent_; } return is_hole; } }; class PolyPath64 : public PolyPath { private: std::vector childs_; Path64 polygon_; typedef typename std::vector::const_iterator pp64_itor; public: PolyPath64(PolyPath64* parent = nullptr) : PolyPath(parent) {} PolyPath64* operator [] (size_t index) { return static_cast(childs_[index]); } pp64_itor begin() const { return childs_.cbegin(); } pp64_itor end() const { return childs_.cend(); } PolyPath64* AddChild(const Path64& path) override { PolyPath64* result = new PolyPath64(this); childs_.push_back(result); result->polygon_ = path; return result; } void Clear() override { for (const PolyPath64* child : childs_) delete child; childs_.resize(0); } size_t Count() const override { return childs_.size(); } const Path64 Polygon() const { return polygon_; }; double Area() const { double result = Clipper2Lib::Area(polygon_); for (const PolyPath64* child : childs_) result += child->Area(); return result; } friend std::ostream& operator << (std::ostream& outstream, const PolyPath64& polypath) { const size_t level_indent = 4; const size_t coords_per_line = 4; const size_t last_on_line = coords_per_line - 1; unsigned level = polypath.Level(); if (level > 0) { std::string level_padding; level_padding.insert(0, (level - 1) * level_indent, ' '); std::string caption = polypath.IsHole() ? "Hole " : "Outer Polygon "; std::string childs = polypath.Count() == 1 ? " child" : " children"; outstream << level_padding.c_str() << caption << "with " << polypath.Count() << childs << std::endl; outstream << level_padding; size_t i = 0, highI = polypath.Polygon().size() - 1; for (; i < highI; ++i) { outstream << polypath.Polygon()[i] << ' '; if ((i % coords_per_line) == last_on_line) outstream << std::endl << level_padding; } if (highI > 0) outstream << polypath.Polygon()[i]; outstream << std::endl; } for (auto child : polypath) outstream << *child; return outstream; } }; class PolyPathD : public PolyPath { private: std::vector childs_; double inv_scale_; PathD polygon_; typedef typename std::vector::const_iterator ppD_itor; public: PolyPathD(PolyPathD* parent = nullptr) : PolyPath(parent) { inv_scale_ = parent ? parent->inv_scale_ : 1.0; } PolyPathD* operator [] (size_t index) { return static_cast(childs_[index]); } ppD_itor begin() const { return childs_.cbegin(); } ppD_itor end() const { return childs_.cend(); } void SetInvScale(double value) { inv_scale_ = value; } double InvScale() { return inv_scale_; } PolyPathD* AddChild(const Path64& path) override { PolyPathD* result = new PolyPathD(this); childs_.push_back(result); result->polygon_ = ScalePath(path, inv_scale_); return result; } void Clear() override { for (const PolyPathD* child : childs_) delete child; childs_.resize(0); } size_t Count() const override { return childs_.size(); } const PathD Polygon() const { return polygon_; }; double Area() const { double result = Clipper2Lib::Area(polygon_); for (const PolyPathD* child : childs_) result += child->Area(); return result; } }; class Clipper64 : public ClipperBase { private: void BuildPaths64(Paths64& solutionClosed, Paths64* solutionOpen); void BuildTree64(PolyPath64& polytree, Paths64& open_paths); public: #ifdef USINGZ void SetZCallback(ZCallback64 cb) { zCallback_ = cb; } #endif void AddSubject(const Paths64& subjects) { AddPaths(subjects, PathType::Subject, false); } void AddOpenSubject(const Paths64& open_subjects) { AddPaths(open_subjects, PathType::Subject, true); } void AddClip(const Paths64& clips) { AddPaths(clips, PathType::Clip, false); } bool Execute(ClipType clip_type, FillRule fill_rule, Paths64& closed_paths) { Paths64 dummy; return Execute(clip_type, fill_rule, closed_paths, dummy); } bool Execute(ClipType clip_type, FillRule fill_rule, Paths64& closed_paths, Paths64& open_paths) { closed_paths.clear(); open_paths.clear(); if (ExecuteInternal(clip_type, fill_rule, false)) BuildPaths64(closed_paths, &open_paths); CleanUp(); return succeeded_; } bool Execute(ClipType clip_type, FillRule fill_rule, PolyTree64& polytree) { Paths64 dummy; return Execute(clip_type, fill_rule, polytree, dummy); } bool Execute(ClipType clip_type, FillRule fill_rule, PolyTree64& polytree, Paths64& open_paths) { if (ExecuteInternal(clip_type, fill_rule, true)) { open_paths.clear(); polytree.Clear(); BuildTree64(polytree, open_paths); } CleanUp(); return succeeded_; } }; class ClipperD : public ClipperBase { private: double scale_ = 1.0, invScale_ = 1.0; #ifdef USINGZ ZCallbackD zCallback_ = nullptr; #endif void BuildPathsD(PathsD& solutionClosed, PathsD* solutionOpen); void BuildTreeD(PolyPathD& polytree, PathsD& open_paths); public: explicit ClipperD(int precision = 2) : ClipperBase() { scale_ = std::pow(10, precision); invScale_ = 1 / scale_; } #ifdef USINGZ void SetZCallback(ZCallbackD cb) { zCallback_ = cb; }; void ZCB(const Point64& e1bot, const Point64& e1top, const Point64& e2bot, const Point64& e2top, Point64& pt) { // de-scale (x & y) // temporarily convert integers to their initial float values // this will slow clipping marginally but will make it much easier // to understand the coordinates passed to the callback function PointD tmp = PointD(pt) * invScale_; PointD e1b = PointD(e1bot) * invScale_; PointD e1t = PointD(e1top) * invScale_; PointD e2b = PointD(e2bot) * invScale_; PointD e2t = PointD(e2top) * invScale_; zCallback_(e1b,e1t, e2b, e2t, tmp); pt.z = tmp.z; // only update 'z' }; void CheckCallback() { if(zCallback_) // if the user defined float point callback has been assigned // then assign the proxy callback function ClipperBase::zCallback_ = std::bind(&ClipperD::ZCB, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5); else ClipperBase::zCallback_ = nullptr; } #endif void AddSubject(const PathsD& subjects) { AddPaths(ScalePaths(subjects, scale_), PathType::Subject, false); } void AddOpenSubject(const PathsD& open_subjects) { AddPaths(ScalePaths(open_subjects, scale_), PathType::Subject, true); } void AddClip(const PathsD& clips) { AddPaths(ScalePaths(clips, scale_), PathType::Clip, false); } bool Execute(ClipType clip_type, FillRule fill_rule, PathsD& closed_paths) { PathsD dummy; return Execute(clip_type, fill_rule, closed_paths, dummy); } bool Execute(ClipType clip_type, FillRule fill_rule, PathsD& closed_paths, PathsD& open_paths) { #ifdef USINGZ CheckCallback(); #endif if (ExecuteInternal(clip_type, fill_rule, false)) { BuildPathsD(closed_paths, &open_paths); } CleanUp(); return succeeded_; } bool Execute(ClipType clip_type, FillRule fill_rule, PolyTreeD& polytree) { PathsD dummy; return Execute(clip_type, fill_rule, polytree, dummy); } bool Execute(ClipType clip_type, FillRule fill_rule, PolyTreeD& polytree, PathsD& open_paths) { #ifdef USINGZ CheckCallback(); #endif if (ExecuteInternal(clip_type, fill_rule, true)) { polytree.Clear(); polytree.SetInvScale(invScale_); open_paths.clear(); BuildTreeD(polytree, open_paths); } CleanUp(); return succeeded_; } }; } // namespace #endif // CLIPPER_ENGINE_H