/**************************************************************************** Copyright (c) 2013 cocos2d-x.org http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "CCPhysicsBody.h" #ifdef CC_USE_PHYSICS #include #if (CC_PHYSICS_ENGINE == CC_PHYSICS_CHIPMUNK) #include "chipmunk.h" #elif (CC_PHYSICS_ENGINE == CCPHYSICS_BOX2D) #include "Box2D.h" #endif #include "CCPhysicsShape.h" #include "CCPhysicsJoint.h" #include "CCPhysicsWorld.h" #include "chipmunk/CCPhysicsBodyInfo.h" #include "box2d/CCPhysicsBodyInfo.h" #include "chipmunk/CCPhysicsJointInfo.h" #include "box2d/CCPhysicsJointInfo.h" #include "chipmunk/CCPhysicsWorldInfo.h" #include "box2d/CCPhysicsWorldInfo.h" #include "chipmunk/CCPhysicsShapeInfo.h" #include "box2d/CCPhysicsShapeInfo.h" #include "chipmunk/CCPhysicsHelper.h" #include "box2d/CCPhysicsHelper.h" NS_CC_BEGIN #if (CC_PHYSICS_ENGINE == CC_PHYSICS_CHIPMUNK) namespace { static const float MASS_DEFAULT = 1.0; static const float MOMENT_DEFAULT = 200; static float GROUP_INDEX = 0; } PhysicsBody::PhysicsBody() : _owner(nullptr) , _world(nullptr) , _info(nullptr) , _dynamic(true) , _enable(true) , _rotationEnable(true) , _gravityEnable(true) , _massDefault(true) , _momentDefault(true) , _mass(MASS_DEFAULT) , _area(0.0f) , _density(0.0f) , _moment(MOMENT_DEFAULT) , _linearDamping(0.0f) , _angularDamping(0.0f) , _tag(0) , _categoryBitmask(UINT_MAX) , _collisionBitmask(UINT_MAX) , _contactTestBitmask(0) { } PhysicsBody::~PhysicsBody() { CC_SAFE_DELETE(_info); removeAllShapes(); for (auto it = _joints.begin(); it != _joints.end(); ++it) { PhysicsJoint* joint = *it; PhysicsBody* other = joint->getBodyA() == this ? joint->getBodyA() : joint->getBodyB(); other->_joints.erase(std::find(other->_joints.begin(), other->_joints.end(), joint)); delete joint; } } PhysicsBody* PhysicsBody::create() { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createCircle(float radius, PhysicsMaterial material) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeCircle::create(radius, material)); body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createBox(Size size, PhysicsMaterial material) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeBox::create(size, material)); body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createPolygon(Point* points, int count, PhysicsMaterial material) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapePolygon::create(points, count, material)); body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createEdgeSegment(Point a, Point b, PhysicsMaterial material, float border/* = 1*/) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeEdgeSegment::create(a, b, material, border)); body->_dynamic = false; body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createEdgeBox(Size size, PhysicsMaterial material, float border/* = 1*/) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeEdgeBox::create(size, material, border)); body->_dynamic = false; body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createEdgePolygon(Point* points, int count, PhysicsMaterial material, float border/* = 1*/) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeEdgePolygon::create(points, count, material, border)); body->_dynamic = false; body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } PhysicsBody* PhysicsBody::createEdgeChain(Point* points, int count, PhysicsMaterial material, float border/* = 1*/) { PhysicsBody* body = new PhysicsBody(); if (body && body->init()) { body->addShape(PhysicsShapeEdgeChain::create(points, count, material, border)); body->_dynamic = false; body->autorelease(); return body; } CC_SAFE_DELETE(body); return nullptr; } bool PhysicsBody::init() { do { _info = new PhysicsBodyInfo(); CC_BREAK_IF(_info == nullptr); _info->body = cpBodyNew(PhysicsHelper::float2cpfloat(_mass), PhysicsHelper::float2cpfloat(_moment)); _info->group = ++GROUP_INDEX; CC_BREAK_IF(_info->body == nullptr); return true; } while (false); return false; } void PhysicsBody::setDynamic(bool dynamic) { if (dynamic != _dynamic) { _dynamic = dynamic; if (_world != nullptr) { if (dynamic) { cpSpaceAddBody(_world->_info->space, _info->body); }else { cpSpaceRemoveBody(_world->_info->space, _info->body); } } } } void PhysicsBody::setRotationEnable(bool enable) { if (_rotationEnable != enable) { cpBodySetMoment(_info->body, enable ? _moment : PHYSICS_INFINITY); _rotationEnable = enable; } } void PhysicsBody::setGravityEnable(bool enable) { if (_gravityEnable != enable) { _gravityEnable = enable; if (_world != nullptr) { if (enable) { applyForce(_world->getGravity()); }else { applyForce(-_world->getGravity()); } } } } void PhysicsBody::setPosition(Point position) { cpBodySetPos(_info->body, PhysicsHelper::point2cpv(position)); } void PhysicsBody::setRotation(float rotation) { cpBodySetAngle(_info->body, PhysicsHelper::float2cpfloat(rotation)); } Point PhysicsBody::getPosition() const { cpVect vec = cpBodyGetPos(_info->body); return PhysicsHelper::cpv2point(vec); } float PhysicsBody::getRotation() const { return -PhysicsHelper::cpfloat2float(cpBodyGetAngle(_info->body) / 3.14f * 180.0f); } void PhysicsBody::addShape(PhysicsShape* shape) { if (shape == nullptr) return; // add shape to body if (std::find(_shapes.begin(), _shapes.end(), shape) == _shapes.end()) { shape->setBody(this); _shapes.push_back(shape); // calculate the area, mass, and desity // area must update before mass, because the density changes depend on it. _area += shape->getArea(); addMass(shape->getMass()); addMoment(shape->getMoment()); if (_world != nullptr) { _world->addShape(shape); } shape->retain(); } } void PhysicsBody::applyForce(Point force) { applyForce(force, Point::ZERO); } void PhysicsBody::applyForce(Point force, Point offset) { cpBodyApplyForce(_info->body, PhysicsHelper::point2cpv(force), PhysicsHelper::point2cpv(offset)); } void PhysicsBody::applyImpulse(Point impulse) { applyImpulse(impulse, Point()); } void PhysicsBody::applyImpulse(Point impulse, Point offset) { cpBodyApplyImpulse(_info->body, PhysicsHelper::point2cpv(impulse), PhysicsHelper::point2cpv(offset)); } void PhysicsBody::applyTorque(float torque) { cpBodySetTorque(_info->body, PhysicsHelper::float2cpfloat(torque)); } void PhysicsBody::setMass(float mass) { if (mass <= 0) { return; } _mass = mass; _massDefault = false; // update density if (_mass == PHYSICS_INFINITY) { _density = PHYSICS_INFINITY; } else { if (_area > 0) { _density = _mass / _area; }else { _density = 0; } } cpBodySetMass(_info->body, PhysicsHelper::float2cpfloat(_mass)); } void PhysicsBody::addMass(float mass) { if (mass == PHYSICS_INFINITY) { _mass = PHYSICS_INFINITY; _massDefault = false; _density = PHYSICS_INFINITY; } else if (mass == -PHYSICS_INFINITY) { return; } else if (_mass != PHYSICS_INFINITY) { if (_massDefault) { _mass = 0; _massDefault = false; } if (_mass + mass > 0) { _mass += mass; }else { _mass = MASS_DEFAULT; _massDefault = true; } if (_area > 0) { _density = _mass / _area; } else { _density = 0; } } cpBodySetMass(_info->body, PhysicsHelper::float2cpfloat(_mass)); } void PhysicsBody::addMoment(float moment) { if (moment == PHYSICS_INFINITY) { // if moment is INFINITY, the moment of the body will become INFINITY _moment = PHYSICS_INFINITY; _momentDefault = false; } else if (moment == -PHYSICS_INFINITY) { // if moment is -INFINITY, it won't change return; } else { // if moment of the body is INFINITY is has no effect if (_moment != PHYSICS_INFINITY) { if (_momentDefault) { _moment = 0; _momentDefault = false; } if (_moment + moment > 0) { _moment += moment; } else { _moment = MOMENT_DEFAULT; _momentDefault = true; } } } if (_rotationEnable) { cpBodySetMoment(_info->body, PhysicsHelper::float2cpfloat(_moment)); } } void PhysicsBody::setVelocity(Point velocity) { cpBodySetVel(_info->body, PhysicsHelper::point2cpv(velocity)); } Point PhysicsBody::getVelocity() { return PhysicsHelper::cpv2point(cpBodyGetVel(_info->body)); } void PhysicsBody::setAngularVelocity(float velocity) { cpBodySetAngVel(_info->body, PhysicsHelper::float2cpfloat(velocity)); } float PhysicsBody::getAngularVelocity() { return PhysicsHelper::cpfloat2float(cpBodyGetAngVel(_info->body)); } void PhysicsBody::setVelocityLimit(float limit) { cpBodySetVelLimit(_info->body, PhysicsHelper::float2cpfloat(limit)); } float PhysicsBody::getVelocityLimit() { return PhysicsHelper::cpfloat2float(cpBodyGetVelLimit(_info->body)); } void PhysicsBody::setAngularVelocityLimit(float limit) { cpBodySetVelLimit(_info->body, PhysicsHelper::float2cpfloat(limit)); } float PhysicsBody::getAngularVelocityLimit() { return PhysicsHelper::cpfloat2float(cpBodyGetAngVelLimit(_info->body)); } void PhysicsBody::setMoment(float moment) { _moment = moment; _momentDefault = false; if (_rotationEnable) { cpBodySetMoment(_info->body, PhysicsHelper::float2cpfloat(_moment)); } } PhysicsShape* PhysicsBody::getShapeByTag(int tag) { for (auto shape : _shapes) { if (shape->getTag() == tag) { return shape; } } return nullptr; } void PhysicsBody::removeShapeByTag(int tag) { for (auto shape : _shapes) { if (shape->getTag() == tag) { removeShape(shape); return; } } } void PhysicsBody::removeShape(PhysicsShape* shape) { auto it = std::find(_shapes.begin(), _shapes.end(), shape); if (it != _shapes.end()) { // deduce the area, mass and moment // area must update before mass, because the density changes depend on it. _area -= shape->getArea(); addMass(-shape->getMass()); addMoment(-shape->getMoment()); //remove if (_world) { _world->removeShape(shape); } _shapes.erase(it); shape->setBody(nullptr); shape->release(); } } void PhysicsBody::removeAllShapes() { for (auto shape : _shapes) { if (_world) { _world->removeShape(shape); } delete shape; } _shapes.clear(); } void PhysicsBody::setEnable(bool enable) { if (_enable != enable) { _enable = enable; if (_world) { if (enable) { _world->addBody(this); }else { _world->removeBody(this); } } } } bool PhysicsBody::isResting() { return cpBodyIsSleeping(_info->body) == cpTrue; } void PhysicsBody::update(float delta) { // damping compute if (_dynamic) { _info->body->v.x *= cpfclamp(1.0f - delta * _linearDamping, 0.0f, 1.0f); _info->body->v.y *= cpfclamp(1.0f - delta * _linearDamping, 0.0f, 1.0f); _info->body->w *= cpfclamp(1.0f - delta * _angularDamping, 0.0f, 1.0f); } } //Clonable* PhysicsBody::clone() const //{ // PhysicsBody* body = new PhysicsBody(); // // body->autorelease(); // // return body; //} #elif (CC_PHYSICS_ENGINE == CC_PHYSICS_BOX2D) #endif NS_CC_END #endif // CC_USE_PHYSICS