/* * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include // Linear constraint (point-to-line) // d = pB - pA = xB + rB - xA - rA // C = dot(ay, d) // Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA, rA)) // = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB, ay), vB) // J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)] // Spring linear constraint // C = dot(ax, d) // Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) + dot(cross(rB, ax), vB) // J = [-ax -cross(d+rA, ax) ax cross(rB, ax)] // Motor rotational constraint // Cdot = wB - wA // J = [0 0 -1 0 0 1] void b2WheelJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) { bodyA = bA; bodyB = bB; localAnchorA = bodyA->GetLocalPoint(anchor); localAnchorB = bodyB->GetLocalPoint(anchor); localAxisA = bodyA->GetLocalVector(axis); } b2WheelJoint::b2WheelJoint(const b2WheelJointDef* def) : b2Joint(def) { m_localAnchorA = def->localAnchorA; m_localAnchorB = def->localAnchorB; m_localXAxisA = def->localAxisA; m_localYAxisA = b2Cross(1.0f, m_localXAxisA); m_mass = 0.0f; m_impulse = 0.0f; m_motorMass = 0.0; m_motorImpulse = 0.0f; m_springMass = 0.0f; m_springImpulse = 0.0f; m_maxMotorTorque = def->maxMotorTorque; m_motorSpeed = def->motorSpeed; m_enableMotor = def->enableMotor; m_frequencyHz = def->frequencyHz; m_dampingRatio = def->dampingRatio; m_bias = 0.0f; m_gamma = 0.0f; m_ax.SetZero(); m_ay.SetZero(); } void b2WheelJoint::InitVelocityConstraints(const b2SolverData& data) { m_indexA = m_bodyA->m_islandIndex; m_indexB = m_bodyB->m_islandIndex; m_localCenterA = m_bodyA->m_sweep.localCenter; m_localCenterB = m_bodyB->m_sweep.localCenter; m_invMassA = m_bodyA->m_invMass; m_invMassB = m_bodyB->m_invMass; m_invIA = m_bodyA->m_invI; m_invIB = m_bodyB->m_invI; float32 mA = m_invMassA, mB = m_invMassB; float32 iA = m_invIA, iB = m_invIB; b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; b2Rot qA(aA), qB(aB); // Compute the effective masses. b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = cB + rB - cA - rA; // Point to line constraint { m_ay = b2Mul(qA, m_localYAxisA); m_sAy = b2Cross(d + rA, m_ay); m_sBy = b2Cross(rB, m_ay); m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy; if (m_mass > 0.0f) { m_mass = 1.0f / m_mass; } } // Spring constraint m_springMass = 0.0f; m_bias = 0.0f; m_gamma = 0.0f; if (m_frequencyHz > 0.0f) { m_ax = b2Mul(qA, m_localXAxisA); m_sAx = b2Cross(d + rA, m_ax); m_sBx = b2Cross(rB, m_ax); float32 invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx; if (invMass > 0.0f) { m_springMass = 1.0f / invMass; float32 C = b2Dot(d, m_ax); // Frequency float32 omega = 2.0f * b2_pi * m_frequencyHz; // Damping coefficient float32 d = 2.0f * m_springMass * m_dampingRatio * omega; // Spring stiffness float32 k = m_springMass * omega * omega; // magic formulas float32 h = data.step.dt; m_gamma = h * (d + h * k); if (m_gamma > 0.0f) { m_gamma = 1.0f / m_gamma; } m_bias = C * h * k * m_gamma; m_springMass = invMass + m_gamma; if (m_springMass > 0.0f) { m_springMass = 1.0f / m_springMass; } } } else { m_springImpulse = 0.0f; } // Rotational motor if (m_enableMotor) { m_motorMass = iA + iB; if (m_motorMass > 0.0f) { m_motorMass = 1.0f / m_motorMass; } } else { m_motorMass = 0.0f; m_motorImpulse = 0.0f; } if (data.step.warmStarting) { // Account for variable time step. m_impulse *= data.step.dtRatio; m_springImpulse *= data.step.dtRatio; m_motorImpulse *= data.step.dtRatio; b2Vec2 P = m_impulse * m_ay + m_springImpulse * m_ax; float32 LA = m_impulse * m_sAy + m_springImpulse * m_sAx + m_motorImpulse; float32 LB = m_impulse * m_sBy + m_springImpulse * m_sBx + m_motorImpulse; vA -= m_invMassA * P; wA -= m_invIA * LA; vB += m_invMassB * P; wB += m_invIB * LB; } else { m_impulse = 0.0f; m_springImpulse = 0.0f; m_motorImpulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } void b2WheelJoint::SolveVelocityConstraints(const b2SolverData& data) { float32 mA = m_invMassA, mB = m_invMassB; float32 iA = m_invIA, iB = m_invIB; b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; // Solve spring constraint { float32 Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA; float32 impulse = -m_springMass * (Cdot + m_bias + m_gamma * m_springImpulse); m_springImpulse += impulse; b2Vec2 P = impulse * m_ax; float32 LA = impulse * m_sAx; float32 LB = impulse * m_sBx; vA -= mA * P; wA -= iA * LA; vB += mB * P; wB += iB * LB; } // Solve rotational motor constraint { float32 Cdot = wB - wA - m_motorSpeed; float32 impulse = -m_motorMass * Cdot; float32 oldImpulse = m_motorImpulse; float32 maxImpulse = data.step.dt * m_maxMotorTorque; m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); impulse = m_motorImpulse - oldImpulse; wA -= iA * impulse; wB += iB * impulse; } // Solve point to line constraint { float32 Cdot = b2Dot(m_ay, vB - vA) + m_sBy * wB - m_sAy * wA; float32 impulse = -m_mass * Cdot; m_impulse += impulse; b2Vec2 P = impulse * m_ay; float32 LA = impulse * m_sAy; float32 LB = impulse * m_sBy; vA -= mA * P; wA -= iA * LA; vB += mB * P; wB += iB * LB; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } bool b2WheelJoint::SolvePositionConstraints(const b2SolverData& data) { b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Rot qA(aA), qB(aB); b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = (cB - cA) + rB - rA; b2Vec2 ay = b2Mul(qA, m_localYAxisA); float32 sAy = b2Cross(d + rA, ay); float32 sBy = b2Cross(rB, ay); float32 C = b2Dot(d, ay); float32 k = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy; float32 impulse; if (k != 0.0f) { impulse = - C / k; } else { impulse = 0.0f; } b2Vec2 P = impulse * ay; float32 LA = impulse * sAy; float32 LB = impulse * sBy; cA -= m_invMassA * P; aA -= m_invIA * LA; cB += m_invMassB * P; aB += m_invIB * LB; data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; return b2Abs(C) <= b2_linearSlop; } b2Vec2 b2WheelJoint::GetAnchorA() const { return m_bodyA->GetWorldPoint(m_localAnchorA); } b2Vec2 b2WheelJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchorB); } b2Vec2 b2WheelJoint::GetReactionForce(float32 inv_dt) const { return inv_dt * (m_impulse * m_ay + m_springImpulse * m_ax); } float32 b2WheelJoint::GetReactionTorque(float32 inv_dt) const { return inv_dt * m_motorImpulse; } float32 b2WheelJoint::GetJointTranslation() const { b2Body* bA = m_bodyA; b2Body* bB = m_bodyB; b2Vec2 pA = bA->GetWorldPoint(m_localAnchorA); b2Vec2 pB = bB->GetWorldPoint(m_localAnchorB); b2Vec2 d = pB - pA; b2Vec2 axis = bA->GetWorldVector(m_localXAxisA); float32 translation = b2Dot(d, axis); return translation; } float32 b2WheelJoint::GetJointSpeed() const { float32 wA = m_bodyA->m_angularVelocity; float32 wB = m_bodyB->m_angularVelocity; return wB - wA; } bool b2WheelJoint::IsMotorEnabled() const { return m_enableMotor; } void b2WheelJoint::EnableMotor(bool flag) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_enableMotor = flag; } void b2WheelJoint::SetMotorSpeed(float32 speed) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_motorSpeed = speed; } void b2WheelJoint::SetMaxMotorTorque(float32 torque) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_maxMotorTorque = torque; } float32 b2WheelJoint::GetMotorTorque(float32 inv_dt) const { return inv_dt * m_motorImpulse; } void b2WheelJoint::Dump() { int32 indexA = m_bodyA->m_islandIndex; int32 indexB = m_bodyB->m_islandIndex; b2Log(" b2WheelJointDef jd;\n"); b2Log(" jd.bodyA = bodies[%d];\n", indexA); b2Log(" jd.bodyB = bodies[%d];\n", indexB); b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); b2Log(" jd.localAxisA.Set(%.15lef, %.15lef);\n", m_localXAxisA.x, m_localXAxisA.y); b2Log(" jd.enableMotor = bool(%d);\n", m_enableMotor); b2Log(" jd.motorSpeed = %.15lef;\n", m_motorSpeed); b2Log(" jd.maxMotorTorque = %.15lef;\n", m_maxMotorTorque); b2Log(" jd.frequencyHz = %.15lef;\n", m_frequencyHz); b2Log(" jd.dampingRatio = %.15lef;\n", m_dampingRatio); b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); }