#include "UnitTest.h" #include "RefPtrTest.h" #include "ui/UIHelper.h" USING_NS_CC; #if (CC_TARGET_PLATFORM == CC_PLATFORM_IOS) #if defined (__arm64__) #define USE_NEON64 #define INCLUDE_NEON64 #elif defined (__ARM_NEON__) #define USE_NEON32 #define INCLUDE_NEON32 #else #endif #elif (CC_TARGET_PLATFORM == CC_PLATFORM_ANDROID) #if defined (__arm64__) || defined (__aarch64__) #define USE_NEON64 #define INCLUDE_NEON64 #elif defined (__ARM_NEON__) #define INCLUDE_NEON32 #else #endif #else #endif #if defined (__SSE__) #define USE_SSE #define INCLUDE_SSE #endif #if (defined INCLUDE_NEON64) || (defined INCLUDE_NEON32) // FIXME: || (defined INCLUDE_SSE) #define UNIT_TEST_FOR_OPTIMIZED_MATH_UTIL #endif // For ' < o > ' multiply test scene. UnitTests::UnitTests() { ADD_TEST_CASE(TemplateVectorTest); ADD_TEST_CASE(TemplateMapTest); ADD_TEST_CASE(ValueTest); ADD_TEST_CASE(RefPtrTest); ADD_TEST_CASE(UTFConversionTest); ADD_TEST_CASE(UIHelperSubStringTest); #ifdef UNIT_TEST_FOR_OPTIMIZED_MATH_UTIL ADD_TEST_CASE(MathUtilTest); #endif }; std::string UnitTestDemo::title() const { return "UnitTest"; } //--------------------------------------------------------------- void TemplateVectorTest::onEnter() { UnitTestDemo::onEnter(); Vector vec; CCASSERT(vec.empty(), "vec should be empty."); CCASSERT(vec.capacity() == 0, "vec.capacity should be 0."); CCASSERT(vec.size() == 0, "vec.size should be 0."); CCASSERT(vec.max_size() > 0, "vec.max_size should > 0."); auto node1 = Node::create(); node1->setTag(1); vec.pushBack(node1); CCASSERT(node1->getReferenceCount() == 2, "node1->getReferenceCount should be 2."); auto node2 = Node::create(); node2->setTag(2); vec.pushBack(node2); CCASSERT(vec.getIndex(node1) == 0, "node1 should at index 0 in vec."); CCASSERT(vec.getIndex(node2) == 1, "node2 should at index 1 in vec."); auto node3 = Node::create(); node3->setTag(3); vec.insert(1, node3); CCASSERT(vec.at(0)->getTag() == 1, "The element at 0, tag should be 1."); CCASSERT(vec.at(1)->getTag() == 3, "The element at 1, tag should be 3."); CCASSERT(vec.at(2)->getTag() == 2, "The element at 2, tag should be 2."); // Test copy constructor Vector vec2(vec); CCASSERT(vec2.size() == vec.size(), "vec2 and vec should have equal size."); ssize_t size = vec.size(); for (ssize_t i = 0; i < size; ++i) { CCASSERT(vec2.at(i) == vec.at(i), "The element at the same index in vec2 and vec2 should be equal."); CCASSERT(vec.at(i)->getReferenceCount() == 3, "The reference cound of element in vec is 3. "); CCASSERT(vec2.at(i)->getReferenceCount() == 3, "The reference cound of element in vec2 is 3. "); } // Test copy assignment operator Vector vec3; vec3 = vec2; CCASSERT(vec3.size() == vec2.size(), "vec3 and vec2 should have equal size."); size = vec3.size(); for (ssize_t i = 0; i < size; ++i) { CCASSERT(vec3.at(i) == vec2.at(i), "The element at the same index in vec3 and vec2 should be equal."); CCASSERT(vec3.at(i)->getReferenceCount() == 4, "The reference cound of element in vec3 is 4. "); CCASSERT(vec2.at(i)->getReferenceCount() == 4, "The reference cound of element in vec2 is 4. "); CCASSERT(vec.at(i)->getReferenceCount() == 4, "The reference cound of element in vec is 4. "); } // Test move constructor auto createVector = [this](){ Vector ret; for (int i = 0; i < 20; i++) { ret.pushBack(Node::create()); } int j = 1000; for (auto& child : ret) { child->setTag(j++); } return ret; }; Vector vec4(createVector()); for (const auto& child : vec4) { CC_UNUSED_PARAM(child); CCASSERT(child->getReferenceCount() == 2, "child's reference count should be 2."); } // Test init Vector with capacity Vector vec5(10); CCASSERT(vec5.capacity() == 10, "vec5's capacity should be 10."); vec5.reserve(20); CCASSERT(vec5.capacity() == 20, "vec5's capacity should be 20."); CCASSERT(vec5.size() == 0, "vec5's size should be 0."); CCASSERT(vec5.empty(), "vec5 is empty now."); auto toRemovedNode = Node::create(); vec5.pushBack(toRemovedNode); CCASSERT(toRemovedNode->getReferenceCount() == 2, "toRemovedNode's reference count is 2."); // Test move assignment operator vec5 = createVector(); CCASSERT(toRemovedNode->getReferenceCount() == 1, "toRemovedNode's reference count is 1."); CCASSERT(vec5.size() == 20, "size should be 20"); for (const auto& child : vec5) { CC_UNUSED_PARAM(child); CCASSERT(child->getReferenceCount() == 2, "child's reference count is 2."); } // Test Vector::find CCASSERT(vec.find(node3) == (vec.begin() + 1), "node3 is the 2nd element in vec."); CCASSERT(std::find(std::begin(vec), std::end(vec), node2) == (vec.begin() + 2), "node2 is the 3rd element in vec."); CCASSERT(vec.front()->getTag() == 1, "vec's front element's tag is 1."); CCASSERT(vec.back()->getTag() == 2, "vec's back element's tag is 2."); CCASSERT(vec.getRandomObject(), "vec getRandomObject should return true."); CCASSERT(!vec.contains(Node::create()), "vec doesn't contain a empty Node instance."); CCASSERT(vec.contains(node1), "vec contains node1."); CCASSERT(vec.contains(node2), "vec contains node2."); CCASSERT(vec.contains(node3), "vec contains node3."); CCASSERT(vec.equals(vec2), "vec is equal to vec2."); CCASSERT(vec.equals(vec3), "vec is equal to vec3."); // Insert vec5.insert(2, node1); CCASSERT(vec5.at(2)->getTag() == 1, "vec5's 3rd element's tag is 1."); CCASSERT(vec5.size() == 21, "vec5's size is 21."); vec5.back()->setTag(100); vec5.popBack(); CCASSERT(vec5.size() == 20, "vec5's size is 20."); CCASSERT(vec5.back()->getTag() != 100, "the back element of vec5's tag is 100."); // Erase and clear Vector vec6 = createVector(); Vector vec7 = vec6; // Copy for check CCASSERT(vec6.size() == 20, "vec6's size is 20."); vec6.erase(vec6.begin() + 1); // CCASSERT(vec6.size() == 19, "vec6's size is 19."); CCASSERT((*(vec6.begin() + 1))->getTag() == 1002, "The 2rd element in vec6's tag is 1002."); vec6.erase(vec6.begin() + 2, vec6.begin() + 10); CCASSERT(vec6.size() == 11, "vec6's size is 11."); CCASSERT(vec6.at(0)->getTag() == 1000, "vec6's first element's tag is 1000."); CCASSERT(vec6.at(1)->getTag() == 1002, "vec6's second element's tag is 1002."); CCASSERT(vec6.at(2)->getTag() == 1011, "vec6's third element's tag is 1011."); CCASSERT(vec6.at(3)->getTag() == 1012, "vec6's fouth element's tag is 1012."); vec6.erase(3); CCASSERT(vec6.at(3)->getTag() == 1013, "vec6's 4th elemetn's tag is 1013."); vec6.eraseObject(vec6.at(2)); CCASSERT(vec6.at(2)->getTag() == 1013, "vec6's 3rd element's tag is 1013."); vec6.clear(); auto objA = Node::create(); // retain count is 1 auto objB = Node::create(); auto objC = Node::create(); { Vector array1; Vector array2; // push back objA 3 times array1.pushBack(objA); // retain count is 2 array1.pushBack(objA); // retain count is 3 array1.pushBack(objA); // retain count is 4 array2.pushBack(objA); // retain count is 5 array2.pushBack(objB); array2.pushBack(objC); for (auto obj : array1) { array2.eraseObject(obj); } CCASSERT(objA->getReferenceCount() == 4, "objA's reference count is 4."); } CCASSERT(objA->getReferenceCount() == 1, "objA's reference count is 1."); { Vector array1; // push back objA 3 times array1.pushBack(objA); // retain count is 2 array1.pushBack(objA); // retain count is 3 array1.pushBack(objA); // retain count is 4 CCASSERT(objA->getReferenceCount() == 4, "objA's reference count is 4."); array1.eraseObject(objA, true); // Remove all occurrences in the Vector. CCASSERT(objA->getReferenceCount() == 1, "objA's reference count is 1."); array1.pushBack(objA); // retain count is 2 array1.pushBack(objA); // retain count is 3 array1.pushBack(objA); // retain count is 4 array1.eraseObject(objA, false); CCASSERT(objA->getReferenceCount() == 3, "objA's reference count is 3."); // Only remove the first occurrence in the Vector. } // Check the retain count in vec7 CCASSERT(vec7.size() == 20, "vec7's size is 20."); for (const auto& child : vec7) { CC_UNUSED_PARAM(child); CCASSERT(child->getReferenceCount() == 2, "child's reference count is 2."); } // Sort Vector vecForSort = createVector(); std::sort(vecForSort.begin(), vecForSort.end(), [](Node* a, Node* b){ return a->getTag() >= b->getTag(); }); for (int i = 0; i < 20; ++i) { CCASSERT(vecForSort.at(i)->getTag() - 1000 == (19 - i), "vecForSort's element's tag is invalid."); } // Reverse vecForSort.reverse(); for (int i = 0; i < 20; ++i) { CCASSERT(vecForSort.at(i)->getTag() - 1000 == i, "vecForSort's element's tag is invalid."); } // Swap Vector vecForSwap = createVector(); vecForSwap.swap(2, 4); CCASSERT(vecForSwap.at(2)->getTag() == 1004, "vecForSwap's 3nd element's tag is 1004."); CCASSERT(vecForSwap.at(4)->getTag() == 1002, "vecForSwap's 5rd element's tag is 1002."); vecForSwap.swap(vecForSwap.at(2), vecForSwap.at(4)); CCASSERT(vecForSwap.at(2)->getTag() == 1002, "vecForSwap's 3rd element's tag is 1002."); CCASSERT(vecForSwap.at(4)->getTag() == 1004, "vecForSwap's 5rd element's tag is 1004."); // shrinkToFit Vector vecForShrink = createVector(); vecForShrink.reserve(100); CCASSERT(vecForShrink.capacity() == 100, "vecForShrink's capacity is 100."); vecForShrink.pushBack(Node::create()); vecForShrink.shrinkToFit(); CCASSERT(vecForShrink.capacity() == 21, "vecForShrink's capacity is 21."); // get random object // Set the seed by time std::srand((unsigned)time(nullptr)); Vector vecForRandom = createVector(); log("<--- begin ---->"); for (int i = 0; i < vecForRandom.size(); ++i) { log("Vector: random object tag = %d", vecForRandom.getRandomObject()->getTag()); } log("<---- end ---->"); // Self assignment Vector vecSelfAssign = createVector(); vecSelfAssign = vecSelfAssign; CCASSERT(vecSelfAssign.size() == 20, "vecSelfAssign's size is 20."); for (const auto& child : vecSelfAssign) { CC_UNUSED_PARAM(child); CCASSERT(child->getReferenceCount() == 2, "child's reference count is 2."); } vecSelfAssign = std::move(vecSelfAssign); CCASSERT(vecSelfAssign.size() == 20, "vecSelfAssign's size is 20."); for (const auto& child : vecSelfAssign) { CC_UNUSED_PARAM(child); CCASSERT(child->getReferenceCount() == 2, "child's reference count is 2."); } // const at Vector vecConstAt = createVector(); constFunc(vecConstAt); } void TemplateVectorTest::constFunc(const Vector& vec) const { log("vec[8] = %d", vec.at(8)->getTag()); } std::string TemplateVectorTest::subtitle() const { return "Vector, should not crash"; } //--------------------------------------------------------------- void TemplateMapTest::onEnter() { UnitTestDemo::onEnter(); auto createMap = [this](){ Map ret; for (int i = 0; i < 20; ++i) { auto node = Node::create(); node->setTag(1000 + i); ret.insert(StringUtils::toString(i), node); } return ret; }; // Default constructor Map map1; CCASSERT(map1.empty(), "map1 is empty."); CCASSERT(map1.size() == 0, "map1's size is 0."); CCASSERT(map1.keys().empty(), "map1's keys are empty."); CCASSERT(map1.keys(Node::create()).empty(), "map1's keys don't contain a empty Node."); // Move constructor Map map2 = createMap(); for (const auto& e : map2) { CC_UNUSED_PARAM(e); CCASSERT(e.second->getReferenceCount() == 2, "e.second element's reference count is 2."); } // Copy constructor Map map3(map2); for (const auto& e : map3) { CC_UNUSED_PARAM(e); CCASSERT(e.second->getReferenceCount() == 3, "e.second's reference count is 3."); } // Move assignment operator Map map4; auto unusedNode = Node::create(); map4.insert("unused",unusedNode); map4 = createMap(); CCASSERT(unusedNode->getReferenceCount() == 1, "unusedNode's reference count is 1."); for (const auto& e : map4) { CC_UNUSED_PARAM(e); CCASSERT(e.second->getReferenceCount() == 2, "e.second's reference count is 2."); } // Copy assignment operator Map map5; map5 = map4; for (const auto& e : map5) { CC_UNUSED_PARAM(e); CCASSERT(e.second->getReferenceCount() == 3, "e.second's reference count is 3."); } // Check size CCASSERT(map4.size() == map5.size(), "map4's size is equal to map5.size."); for (const auto& e : map4) { CC_UNUSED_PARAM(e); CCASSERT(e.second == map5.find(e.first)->second, "e.second can't be found in map5."); } // bucket_count, bucket_size(n), bucket log("--------------"); log("bucket_count = %d", static_cast(map4.bucketCount())); log("size = %d", static_cast(map4.size())); for (int i = 0; i < map4.bucketCount(); ++i) { log("bucket_size(%d) = %d", i, static_cast(map4.bucketSize(i))); } for (const auto& e : map4) { log("bucket(\"%s\"), bucket index = %d", e.first.c_str(), static_cast(map4.bucket(e.first))); } log("----- all keys---------"); // keys and at auto keys = map4.keys(); for (const auto& key : keys) { log("key = %s", key.c_str()); } auto node10Key = map4.at("10"); map4.insert("100", node10Key); map4.insert("101", node10Key); map4.insert("102", node10Key); log("------ keys for object --------"); auto keysForObject = map4.keys(node10Key); for (const auto& key : keysForObject) { log("key = %s", key.c_str()); } log("--------------"); // at in const function constFunc(map4); // find auto nodeToFind = map4.find("10"); CC_UNUSED_PARAM(nodeToFind); CCASSERT(nodeToFind->second->getTag() == 1010, "nodeToFind's tag value is 1010."); // insert Map map6; auto node1 = Node::create(); node1->setTag(101); auto node2 = Node::create(); node2->setTag(102); auto node3 = Node::create(); node3->setTag(103); map6.insert("insert01", node1); map6.insert("insert02", node2); map6.insert("insert03", node3); CCASSERT(node1->getReferenceCount() == 2, "node1's reference count is 2."); CCASSERT(node2->getReferenceCount() == 2, "node2's reference count is 2."); CCASSERT(node3->getReferenceCount() == 2, "node3's reference count is 2."); CCASSERT(map6.at("insert01") == node1, "The element at insert01 is equal to node1."); CCASSERT(map6.at("insert02") == node2, "The element at insert02 is equal to node2."); CCASSERT(map6.at("insert03") == node3, "The element at insert03 is equal to node3."); // erase Map mapForErase = createMap(); mapForErase.erase(mapForErase.find("9")); CCASSERT(mapForErase.find("9") == mapForErase.end(), "9 is already removed."); CCASSERT(mapForErase.size() == 19, "mapForErase's size is 19."); mapForErase.erase("7"); CCASSERT(mapForErase.find("7") == mapForErase.end(), "7 is already removed."); CCASSERT(mapForErase.size() == 18, "mapForErase's size is 18."); std::vector itemsToRemove; itemsToRemove.push_back("2"); itemsToRemove.push_back("3"); itemsToRemove.push_back("4"); mapForErase.erase(itemsToRemove); CCASSERT(mapForErase.size() == 15, "mapForErase's size is 15."); // clear Map mapForClear = createMap(); auto mapForClearCopy = mapForClear; mapForClear.clear(); for (const auto& e : mapForClearCopy) { CC_UNUSED_PARAM(e); CCASSERT(e.second->getReferenceCount() == 2, "e.second's reference count is 2."); } // get random object // Set the seed by time std::srand((unsigned)time(nullptr)); Map mapForRandom = createMap(); log("<--- begin ---->"); for (int i = 0; i < mapForRandom.size(); ++i) { log("Map: random object tag = %d", mapForRandom.getRandomObject()->getTag()); } log("<---- end ---->"); // Self assignment Map mapForSelfAssign = createMap(); mapForSelfAssign = mapForSelfAssign; CCASSERT(mapForSelfAssign.size() == 20, "mapForSelfAssign's size is 20."); for (const auto& e : mapForSelfAssign) { CC_UNUSED_PARAM(e); CCASSERT(e.second->getReferenceCount() == 2, "e.second's reference count is 2."); } mapForSelfAssign = std::move(mapForSelfAssign); CCASSERT(mapForSelfAssign.size() == 20, "mapForSelfAssign's size is 20."); for (const auto& e : mapForSelfAssign) { CC_UNUSED_PARAM(e); CCASSERT(e.second->getReferenceCount() == 2, "e.second's reference's count is 2."); } } void TemplateMapTest::constFunc(const Map& map) const { log("[%s]=(tag)%d", "0", map.at("0")->getTag()); log("[%s]=(tag)%d", "1", map.find("1")->second->getTag()); } std::string TemplateMapTest::subtitle() const { return "Map, should not crash"; } //---------------------------------- void ValueTest::onEnter() { UnitTestDemo::onEnter(); Value v1; CCASSERT(v1.getType() == Value::Type::NONE, "v1's value type should be VALUE::Type::NONE."); CCASSERT(v1.isNull(), "v1 is null."); Value v2(100); CCASSERT(v2.getType() == Value::Type::INTEGER, "v2's value type should be VALUE::Type::INTEGER."); CCASSERT(!v2.isNull(), "v2 is not null."); Value v3(101.4f); CCASSERT(v3.getType() == Value::Type::FLOAT, "v3's value type should be VALUE::Type::FLOAT."); CCASSERT(!v3.isNull(), "v3 is not null."); Value v4(106.1); CCASSERT(v4.getType() == Value::Type::DOUBLE, "v4's value type should be VALUE::Type::DOUBLE."); CCASSERT(!v4.isNull(), "v4 is not null."); unsigned char byte = 50; Value v5(byte); CCASSERT(v5.getType() == Value::Type::BYTE, "v5's value type should be Value::Type::BTYE."); CCASSERT(!v5.isNull(), "v5 is not null."); Value v6(true); CCASSERT(v6.getType() == Value::Type::BOOLEAN, "v6's value type is Value::Type::BOOLEAN."); CCASSERT(!v6.isNull(), "v6 is not null."); Value v7("string"); CCASSERT(v7.getType() == Value::Type::STRING, "v7's value type is Value::type::STRING."); CCASSERT(!v7.isNull(), "v7 is not null."); Value v8(std::string("string2")); CCASSERT(v8.getType() == Value::Type::STRING, "v8's value type is Value::Type::STRING."); CCASSERT(!v8.isNull(), "v8 is not null."); auto createValueVector = [&](){ ValueVector ret; ret.push_back(v1); ret.push_back(v2); ret.push_back(v3); return ret; }; Value v9(createValueVector()); CCASSERT(v9.getType() == Value::Type::VECTOR, "v9's value type is Value::Type::VECTOR."); CCASSERT(!v9.isNull(), "v9 is not null."); auto createValueMap = [&](){ ValueMap ret; ret["aaa"] = v1; ret["bbb"] = v2; ret["ccc"] = v3; return ret; }; Value v10(createValueMap()); CCASSERT(v10.getType() == Value::Type::MAP, "v10's value type is Value::Type::MAP."); CCASSERT(!v10.isNull(), "v10 is not null."); auto createValueMapIntKey = [&](){ ValueMapIntKey ret; ret[111] = v1; ret[222] = v2; ret[333] = v3; return ret; }; Value v11(createValueMapIntKey()); CCASSERT(v11.getType() == Value::Type::INT_KEY_MAP, "v11's value type is Value::Type::INT_KEY_MAP."); CCASSERT(!v11.isNull(), "v11 is not null."); } std::string ValueTest::subtitle() const { return "Value Test, should not crash"; } void ValueTest::constFunc(const Value& value) const { } // UTFConversionTest // FIXME: made as define to prevent compile warnings in release mode. Better is to be a `const static int` #define TEST_CODE_NUM 11 static const char16_t __utf16Code[] = { 0x3042, 0x3044, 0x3046, 0x3048, 0x304A, 0x3042, 0x3044, 0x3046, 0x3048, 0x304A, 0x0041, 0x0000, }; // to avoid Xcode error, char => unsigned char // If you use this table, please cast manually as (const char *). static const unsigned char __utf8Code[] = { 0xE3,0x81,0x82, 0xE3,0x81,0x84, 0xE3,0x81,0x86, 0xE3,0x81,0x88, 0xE3,0x81,0x8A, 0xE3,0x81,0x82, 0xE3,0x81,0x84, 0xE3,0x81,0x86, 0xE3,0x81,0x88, 0xE3,0x81,0x8A, 0x41, 0x00, }; static const char16_t WHITE_SPACE_CODE[] = { 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x0020, 0x0085, 0x00A0, 0x1680, 0x2000, 0x2001, 0x2002, 0x2003, 0x2004, 0x2005, 0x2006, 0x2007, 0x2008, 0x2009, 0x200A, 0x2028, 0x2029, 0x202F, 0x205F, 0x3000 }; static void doUTFConversion() { bool isSuccess = false; std::string originalUTF8 = (const char*)__utf8Code; std::u16string originalUTF16 = __utf16Code; //--------------------------- std::string utf8Str; isSuccess = StringUtils::UTF16ToUTF8(originalUTF16, utf8Str); if (isSuccess) { isSuccess = memcmp(utf8Str.data(), originalUTF8.data(), originalUTF8.length()+1)==0; } CCASSERT(isSuccess, "StringUtils::UTF16ToUTF8 failed"); //--------------------------- std::u16string utf16Str; isSuccess = StringUtils::UTF8ToUTF16(originalUTF8, utf16Str); if (isSuccess) { isSuccess = memcmp(utf16Str.data(), originalUTF16.data(), originalUTF16.length()+1)==0; } CCASSERT(isSuccess && (utf16Str.length() == TEST_CODE_NUM), "StringUtils::UTF8ToUTF16 failed"); //--------------------------- auto vec1 = StringUtils::getChar16VectorFromUTF16String(originalUTF16); CCASSERT(vec1.size() == originalUTF16.length(), "StringUtils::getChar16VectorFromUTF16String failed"); //--------------------------- std::vector vec2( vec1 ); vec2.push_back(0x2009); vec2.push_back(0x2009); vec2.push_back(0x2009); vec2.push_back(0x2009); std::vector vec3( vec2 ); StringUtils::trimUTF16Vector(vec2); CCASSERT(vec1.size() == vec2.size(), "StringUtils::trimUTF16Vector failed"); for (size_t i = 0; i < vec2.size(); i++ ) { CCASSERT(vec1.at(i) == vec2.at(i), "StringUtils::trimUTF16Vector failed"); } //--------------------------- CCASSERT(StringUtils::getCharacterCountInUTF8String(originalUTF8) == TEST_CODE_NUM, "StringUtils::getCharacterCountInUTF8String failed"); //--------------------------- CCASSERT(StringUtils::getIndexOfLastNotChar16(vec3, 0x2009) == (vec1.size()-1), "StringUtils::getIndexOfLastNotChar16 failed"); //--------------------------- CCASSERT(originalUTF16.length() == TEST_CODE_NUM, "The length of the original utf16 string isn't equal to TEST_CODE_NUM"); //--------------------------- size_t whiteCodeNum = sizeof(WHITE_SPACE_CODE) / sizeof(WHITE_SPACE_CODE[0]); for( size_t i = 0; i < whiteCodeNum; i++ ) { CCASSERT(StringUtils::isUnicodeSpace(WHITE_SPACE_CODE[i]), "StringUtils::isUnicodeSpace failed"); } CCASSERT(!StringUtils::isUnicodeSpace(0xFFFF), "StringUtils::isUnicodeSpace failed"); CCASSERT(!StringUtils::isCJKUnicode(0xFFFF) && StringUtils::isCJKUnicode(0x3100), "StringUtils::isCJKUnicode failed"); } void UTFConversionTest::onEnter() { UnitTestDemo::onEnter(); for (int i = 0; i < 10000; ++i) { doUTFConversion(); } } std::string UTFConversionTest::subtitle() const { return "UTF8 <-> UTF16 Conversion Test, no crash"; } // UIHelperSubStringTest void UIHelperSubStringTest::onEnter() { UnitTestDemo::onEnter(); using cocos2d::ui::Helper; { // Trivial case std::string source = "abcdefghij"; CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 2) == "ab"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 2, 2) == "cd"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 4, 2) == "ef"); } { // Empty string std::string source = ""; // OK CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 1) == ""); // Error: These cases cause "out of range" error CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 1) == ""); } { // Ascii std::string source = "abc"; // OK CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 2, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 3, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 3) == "abc"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 4) == "abc"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 2) == "bc"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 3) == "bc"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 2, 1) == "c"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 2, 2) == "c"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 3, 1) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 3, 2) == ""); // Error: These cases cause "out of range" error CC_ASSERT(Helper::getSubStringOfUTF8String(source, 4, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 4, 1) == ""); } { // CJK characters std::string source = "这里是中文测试例"; // OK CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 7, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 8, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 8, 1) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 1) == "这"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 4) == "这里是中"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 8) == "这里是中文测试例"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 100) == "这里是中文测试例"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 2, 5) == "是中文测试"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 6, 2) == "试例"); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 6, 100) == "试例"); // Error: These cases cause "out of range" error CC_ASSERT(Helper::getSubStringOfUTF8String(source, 9, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 9, 1) == ""); } { // Redundant UTF-8 sequence for Directory traversal attack (1) std::string source = "\xC0\xAF"; // Error: Can't convert string to correct encoding such as UTF-32 CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 1) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 1) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 2) == ""); } { // Redundant UTF-8 sequence for Directory traversal attack (2) std::string source = "\xE0\x80\xAF"; // Error: Can't convert string to correct encoding such as UTF-32 CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 1) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 1) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 3) == ""); } { // Redundant UTF-8 sequence for Directory traversal attack (3) std::string source = "\xF0\x80\x80\xAF"; // Error: Can't convert string to correct encoding such as UTF-32 CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 1) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 0) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 1, 1) == ""); CC_ASSERT(Helper::getSubStringOfUTF8String(source, 0, 4) == ""); } } std::string UIHelperSubStringTest::subtitle() const { return "ui::Helper::getSubStringOfUTF8String Test"; } // MathUtilTest namespace UnitTest { #ifdef INCLUDE_NEON32 #include "math/MathUtilNeon.inl" #endif #ifdef INCLUDE_NEON64 #include "math/MathUtilNeon64.inl" #endif #ifdef INCLUDE_SSE //FIXME: #include "math/MathUtilSSE.inl" #endif #include "math/MathUtil.inl" } // namespace UnitTest { // I know the next line looks ugly, but it's a way to test MathUtil. :) using namespace UnitTest::cocos2d; static void __checkMathUtilResult(const char* description, const float* a1, const float* a2, int size) { log("-------------checking %s ----------------------------", description); // Check whether the result of the optimized instruction is the same as which is implemented in C for (int i = 0; i < size; ++i) { bool r = fabs(a1[i] - a2[i]) < 0.00001f;//FLT_EPSILON; if (r) { log("Correct: a1[%d]=%f, a2[%d]=%f", i, a1[i], i, a2[i]); } else { log("Wrong: a1[%d]=%f, a2[%d]=%f", i, a1[i], i, a2[i]); } CCASSERT(r, "The optimized instruction is implemented in a wrong way, please check it!"); } } void MathUtilTest::onEnter() { UnitTestDemo::onEnter(); const int MAT4_SIZE = 16; const int VEC4_SIZE = 4; const float inMat41[MAT4_SIZE] = { 0.234023f, 2.472349f, 1.984244f, 2.23348f, 0.634124f, 0.234975f, 6.384572f, 0.82368f, 0.738028f, 1.845237f, 1.934721f, 1.62343f, 0.339023f, 3.472452f, 1.324714f, 4.23852f, }; const float inMat42[MAT4_SIZE] = { 1.640232f, 4.472349f, 0.983244f, 1.23343f, 2.834124f, 8.234975f, 0.082572f, 3.82464f, 3.238028f, 2.845237f, 0.331721f, 4.62544f, 4.539023f, 9.472452f, 3.520714f, 2.23252f, }; const float scalar = 1.323298f; const float x = 0.432234f; const float y = 1.333229f; const float z = 2.535292f; const float w = 4.632234f; const float inVec4[VEC4_SIZE] = {2.323478f, 0.238482f, 4.223783f, 7.238238f}; const float inVec42[VEC4_SIZE] = {0.322374f, 8.258883f, 3.293683f, 2.838337f}; float outMat4Opt[MAT4_SIZE] = {0}; float outMat4C[MAT4_SIZE] = {0}; float outVec4Opt[VEC4_SIZE] = {0}; float outVec4C[VEC4_SIZE] = {0}; // inline static void addMatrix(const float* m, float scalar, float* dst); MathUtilC::addMatrix(inMat41, scalar, outMat4C); #ifdef INCLUDE_NEON32 MathUtilNeon::addMatrix(inMat41, scalar, outMat4Opt); #endif #ifdef INCLUDE_NEON64 MathUtilNeon64::addMatrix(inMat41, scalar, outMat4Opt); #endif #ifdef INCLUDE_SSE // FIXME: #endif __checkMathUtilResult("inline static void addMatrix(const float* m, float scalar, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE); // Clean memset(outMat4C, 0, sizeof(outMat4C)); memset(outMat4Opt, 0, sizeof(outMat4Opt)); // inline static void addMatrix(const float* m1, const float* m2, float* dst); MathUtilC::addMatrix(inMat41, inMat42, outMat4C); #ifdef INCLUDE_NEON32 MathUtilNeon::addMatrix(inMat41, inMat42, outMat4Opt); #endif #ifdef INCLUDE_NEON64 MathUtilNeon64::addMatrix(inMat41, inMat42, outMat4Opt); #endif #ifdef INCLUDE_SSE // FIXME: #endif __checkMathUtilResult("inline static void addMatrix(const float* m1, const float* m2, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE); // Clean memset(outMat4C, 0, sizeof(outMat4C)); memset(outMat4Opt, 0, sizeof(outMat4Opt)); // inline static void subtractMatrix(const float* m1, const float* m2, float* dst); MathUtilC::subtractMatrix(inMat41, inMat42, outMat4C); #ifdef INCLUDE_NEON32 MathUtilNeon::subtractMatrix(inMat41, inMat42, outMat4Opt); #endif #ifdef INCLUDE_NEON64 MathUtilNeon64::subtractMatrix(inMat41, inMat42, outMat4Opt); #endif #ifdef INCLUDE_SSE // FIXME: #endif __checkMathUtilResult("inline static void subtractMatrix(const float* m1, const float* m2, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE); // Clean memset(outMat4C, 0, sizeof(outMat4C)); memset(outMat4Opt, 0, sizeof(outMat4Opt)); // inline static void multiplyMatrix(const float* m, float scalar, float* dst); MathUtilC::multiplyMatrix(inMat41, scalar, outMat4C); #ifdef INCLUDE_NEON32 MathUtilNeon::multiplyMatrix(inMat41, scalar, outMat4Opt); #endif #ifdef INCLUDE_NEON64 MathUtilNeon64::multiplyMatrix(inMat41, scalar, outMat4Opt); #endif #ifdef INCLUDE_SSE // FIXME: #endif __checkMathUtilResult("inline static void multiplyMatrix(const float* m, float scalar, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE); // Clean memset(outMat4C, 0, sizeof(outMat4C)); memset(outMat4Opt, 0, sizeof(outMat4Opt)); // inline static void multiplyMatrix(const float* m1, const float* m2, float* dst); MathUtilC::multiplyMatrix(inMat41, inMat42, outMat4C); #ifdef INCLUDE_NEON32 MathUtilNeon::multiplyMatrix(inMat41, inMat42, outMat4Opt); #endif #ifdef INCLUDE_NEON64 MathUtilNeon64::multiplyMatrix(inMat41, inMat42, outMat4Opt); #endif #ifdef INCLUDE_SSE // FIXME: #endif __checkMathUtilResult("inline static void multiplyMatrix(const float* m1, const float* m2, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE); // Clean memset(outMat4C, 0, sizeof(outMat4C)); memset(outMat4Opt, 0, sizeof(outMat4Opt)); // inline static void negateMatrix(const float* m, float* dst); MathUtilC::negateMatrix(inMat41, outMat4C); #ifdef INCLUDE_NEON32 MathUtilNeon::negateMatrix(inMat41, outMat4Opt); #endif #ifdef INCLUDE_NEON64 MathUtilNeon64::negateMatrix(inMat41, outMat4Opt); #endif #ifdef INCLUDE_SSE // FIXME: #endif __checkMathUtilResult("inline static void negateMatrix(const float* m, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE); // Clean memset(outMat4C, 0, sizeof(outMat4C)); memset(outMat4Opt, 0, sizeof(outMat4Opt)); // inline static void transposeMatrix(const float* m, float* dst); MathUtilC::transposeMatrix(inMat41, outMat4C); #ifdef INCLUDE_NEON32 MathUtilNeon::transposeMatrix(inMat41, outMat4Opt); #endif #ifdef INCLUDE_NEON64 MathUtilNeon64::transposeMatrix(inMat41, outMat4Opt); #endif #ifdef INCLUDE_SSE // FIXME: #endif __checkMathUtilResult("inline static void transposeMatrix(const float* m, float* dst);", outMat4C, outMat4Opt, MAT4_SIZE); // Clean memset(outMat4C, 0, sizeof(outMat4C)); memset(outMat4Opt, 0, sizeof(outMat4Opt)); // inline static void transformVec4(const float* m, float x, float y, float z, float w, float* dst); MathUtilC::transformVec4(inMat41, x, y, z, w, outVec4C); #ifdef INCLUDE_NEON32 MathUtilNeon::transformVec4(inMat41, x, y, z, w, outVec4Opt); #endif #ifdef INCLUDE_NEON64 MathUtilNeon64::transformVec4(inMat41, x, y, z, w, outVec4Opt); #endif #ifdef INCLUDE_SSE // FIXME: #endif __checkMathUtilResult("inline static void transformVec4(const float* m, float x, float y, float z, float w, float* dst);", outVec4C, outVec4Opt, VEC4_SIZE); // Clean memset(outVec4C, 0, sizeof(outVec4C)); memset(outVec4Opt, 0, sizeof(outVec4Opt)); // inline static void transformVec4(const float* m, const float* v, float* dst); MathUtilC::transformVec4(inMat41, inVec4, outVec4C); #ifdef INCLUDE_NEON32 MathUtilNeon::transformVec4(inMat41, inVec4, outVec4Opt); #endif #ifdef INCLUDE_NEON64 MathUtilNeon64::transformVec4(inMat41, inVec4, outVec4Opt); #endif #ifdef INCLUDE_SSE // FIXME: #endif __checkMathUtilResult("inline static void transformVec4(const float* m, const float* v, float* dst);", outVec4C, outVec4Opt, VEC4_SIZE); // Clean memset(outVec4C, 0, sizeof(outVec4C)); memset(outVec4Opt, 0, sizeof(outVec4Opt)); // inline static void crossVec3(const float* v1, const float* v2, float* dst); MathUtilC::crossVec3(inVec4, inVec42, outVec4C); #ifdef INCLUDE_NEON32 MathUtilNeon::crossVec3(inVec4, inVec42, outVec4Opt); #endif #ifdef INCLUDE_NEON64 MathUtilNeon64::crossVec3(inVec4, inVec42, outVec4Opt); #endif #ifdef INCLUDE_SSE // FIXME: #endif __checkMathUtilResult("inline static void crossVec3(const float* v1, const float* v2, float* dst);", outVec4C, outVec4Opt, VEC4_SIZE); // Clean memset(outVec4C, 0, sizeof(outVec4C)); memset(outVec4Opt, 0, sizeof(outVec4Opt)); } std::string MathUtilTest::subtitle() const { return "MathUtilTest"; }