#include "config.h" #include #include #include #include "alnumeric.h" #include "core/bsinc_defs.h" #include "defs.h" #include "hrtfbase.h" struct NEONTag; struct LerpTag; struct BSincTag; struct FastBSincTag; #if defined(__GNUC__) && !defined(__clang__) && !defined(__ARM_NEON) #pragma GCC target("fpu=neon") #endif namespace { inline float32x4_t set_f4(float l0, float l1, float l2, float l3) { float32x4_t ret{vmovq_n_f32(l0)}; ret = vsetq_lane_f32(l1, ret, 1); ret = vsetq_lane_f32(l2, ret, 2); ret = vsetq_lane_f32(l3, ret, 3); return ret; } constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits}; constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff}; inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs, const float left, const float right) { float32x4_t leftright4; { float32x2_t leftright2{vmov_n_f32(left)}; leftright2 = vset_lane_f32(right, leftright2, 1); leftright4 = vcombine_f32(leftright2, leftright2); } ASSUME(IrSize >= MinIrLength); for(size_t c{0};c < IrSize;c += 2) { float32x4_t vals = vld1q_f32(&Values[c][0]); float32x4_t coefs = vld1q_f32(&Coeffs[c][0]); vals = vmlaq_f32(vals, coefs, leftright4); vst1q_f32(&Values[c][0], vals); } } force_inline void MixLine(const al::span InSamples, float *RESTRICT dst, float &CurrentGain, const float TargetGain, const float delta, const size_t min_len, const size_t aligned_len, size_t Counter) { float gain{CurrentGain}; const float step{(TargetGain-gain) * delta}; size_t pos{0}; if(!(std::abs(step) > std::numeric_limits::epsilon())) gain = TargetGain; else { float step_count{0.0f}; /* Mix with applying gain steps in aligned multiples of 4. */ if(size_t todo{min_len >> 2}) { const float32x4_t four4{vdupq_n_f32(4.0f)}; const float32x4_t step4{vdupq_n_f32(step)}; const float32x4_t gain4{vdupq_n_f32(gain)}; float32x4_t step_count4{vdupq_n_f32(0.0f)}; step_count4 = vsetq_lane_f32(1.0f, step_count4, 1); step_count4 = vsetq_lane_f32(2.0f, step_count4, 2); step_count4 = vsetq_lane_f32(3.0f, step_count4, 3); do { const float32x4_t val4 = vld1q_f32(&InSamples[pos]); float32x4_t dry4 = vld1q_f32(&dst[pos]); dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4)); step_count4 = vaddq_f32(step_count4, four4); vst1q_f32(&dst[pos], dry4); pos += 4; } while(--todo); /* NOTE: step_count4 now represents the next four counts after the * last four mixed samples, so the lowest element represents the * next step count to apply. */ step_count = vgetq_lane_f32(step_count4, 0); } /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ for(size_t leftover{min_len&3};leftover;++pos,--leftover) { dst[pos] += InSamples[pos] * (gain + step*step_count); step_count += 1.0f; } if(pos == Counter) gain = TargetGain; else gain += step*step_count; /* Mix until pos is aligned with 4 or the mix is done. */ for(size_t leftover{aligned_len&3};leftover;++pos,--leftover) dst[pos] += InSamples[pos] * gain; } CurrentGain = gain; if(!(std::abs(gain) > GainSilenceThreshold)) return; if(size_t todo{(InSamples.size()-pos) >> 2}) { const float32x4_t gain4 = vdupq_n_f32(gain); do { const float32x4_t val4 = vld1q_f32(&InSamples[pos]); float32x4_t dry4 = vld1q_f32(&dst[pos]); dry4 = vmlaq_f32(dry4, val4, gain4); vst1q_f32(&dst[pos], dry4); pos += 4; } while(--todo); } for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover) dst[pos] += InSamples[pos] * gain; } } // namespace template<> float *Resample_(const InterpState*, float *RESTRICT src, uint frac, uint increment, const al::span dst) { const int32x4_t increment4 = vdupq_n_s32(static_cast(increment*4)); const float32x4_t fracOne4 = vdupq_n_f32(1.0f/MixerFracOne); const int32x4_t fracMask4 = vdupq_n_s32(MixerFracMask); alignas(16) uint pos_[4], frac_[4]; int32x4_t pos4, frac4; InitPosArrays(frac, increment, frac_, pos_); frac4 = vld1q_s32(reinterpret_cast(frac_)); pos4 = vld1q_s32(reinterpret_cast(pos_)); auto dst_iter = dst.begin(); for(size_t todo{dst.size()>>2};todo;--todo) { const int pos0{vgetq_lane_s32(pos4, 0)}; const int pos1{vgetq_lane_s32(pos4, 1)}; const int pos2{vgetq_lane_s32(pos4, 2)}; const int pos3{vgetq_lane_s32(pos4, 3)}; const float32x4_t val1{set_f4(src[pos0], src[pos1], src[pos2], src[pos3])}; const float32x4_t val2{set_f4(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])}; /* val1 + (val2-val1)*mu */ const float32x4_t r0{vsubq_f32(val2, val1)}; const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)}; const float32x4_t out{vmlaq_f32(val1, mu, r0)}; vst1q_f32(dst_iter, out); dst_iter += 4; frac4 = vaddq_s32(frac4, increment4); pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, MixerFracBits)); frac4 = vandq_s32(frac4, fracMask4); } if(size_t todo{dst.size()&3}) { src += static_cast(vgetq_lane_s32(pos4, 0)); frac = static_cast(vgetq_lane_s32(frac4, 0)); do { *(dst_iter++) = lerpf(src[0], src[1], static_cast(frac) * (1.0f/MixerFracOne)); frac += increment; src += frac>>MixerFracBits; frac &= MixerFracMask; } while(--todo); } return dst.data(); } template<> float *Resample_(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { const float *const filter{state->bsinc.filter}; const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)}; const size_t m{state->bsinc.m}; ASSUME(m > 0); src -= state->bsinc.l; for(float &out_sample : dst) { // Calculate the phase index and factor. const uint pi{frac >> FracPhaseBitDiff}; const float pf{static_cast(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; // Apply the scale and phase interpolated filter. float32x4_t r4{vdupq_n_f32(0.0f)}; { const float32x4_t pf4{vdupq_n_f32(pf)}; const float *RESTRICT fil{filter + m*pi*2}; const float *RESTRICT phd{fil + m}; const float *RESTRICT scd{fil + BSincPhaseCount*2*m}; const float *RESTRICT spd{scd + m}; size_t td{m >> 2}; size_t j{0u}; do { /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ const float32x4_t f4 = vmlaq_f32( vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j])), pf4, vmlaq_f32(vld1q_f32(&phd[j]), sf4, vld1q_f32(&spd[j]))); /* r += f*src */ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j])); j += 4; } while(--td); } r4 = vaddq_f32(r4, vrev64q_f32(r4)); out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); frac += increment; src += frac>>MixerFracBits; frac &= MixerFracMask; } return dst.data(); } template<> float *Resample_(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { const float *const filter{state->bsinc.filter}; const size_t m{state->bsinc.m}; ASSUME(m > 0); src -= state->bsinc.l; for(float &out_sample : dst) { // Calculate the phase index and factor. const uint pi{frac >> FracPhaseBitDiff}; const float pf{static_cast(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; // Apply the phase interpolated filter. float32x4_t r4{vdupq_n_f32(0.0f)}; { const float32x4_t pf4{vdupq_n_f32(pf)}; const float *RESTRICT fil{filter + m*pi*2}; const float *RESTRICT phd{fil + m}; size_t td{m >> 2}; size_t j{0u}; do { /* f = fil + pf*phd */ const float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), pf4, vld1q_f32(&phd[j])); /* r += f*src */ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j])); j += 4; } while(--td); } r4 = vaddq_f32(r4, vrev64q_f32(r4)); out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); frac += increment; src += frac>>MixerFracBits; frac &= MixerFracMask; } return dst.data(); } template<> void MixHrtf_(const float *InSamples, float2 *AccumSamples, const uint IrSize, const MixHrtfFilter *hrtfparams, const size_t BufferSize) { MixHrtfBase(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } template<> void MixHrtfBlend_(const float *InSamples, float2 *AccumSamples, const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) { MixHrtfBlendBase(InSamples, AccumSamples, IrSize, oldparams, newparams, BufferSize); } template<> void MixDirectHrtf_(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut, const al::span InSamples, float2 *AccumSamples, float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) { MixDirectHrtfBase(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, IrSize, BufferSize); } template<> void Mix_(const al::span InSamples, const al::span OutBuffer, float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) { const float delta{(Counter > 0) ? 1.0f / static_cast(Counter) : 0.0f}; const auto min_len = minz(Counter, InSamples.size()); const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; for(FloatBufferLine &output : OutBuffer) MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++, *TargetGains++, delta, min_len, aligned_len, Counter); } template<> void Mix_(const al::span InSamples, float *OutBuffer, float &CurrentGain, const float TargetGain, const size_t Counter) { const float delta{(Counter > 0) ? 1.0f / static_cast(Counter) : 0.0f}; const auto min_len = minz(Counter, InSamples.size()); const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain, TargetGain, delta, min_len, aligned_len, Counter); }