/* * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include // Find the separation between poly1 and poly2 for a give edge normal on poly1. static float32 b2EdgeSeparation(const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1, const b2PolygonShape* poly2, const b2Transform& xf2) { int32 count1 = poly1->m_vertexCount; const b2Vec2* vertices1 = poly1->m_vertices; const b2Vec2* normals1 = poly1->m_normals; int32 count2 = poly2->m_vertexCount; const b2Vec2* vertices2 = poly2->m_vertices; b2Assert(0 <= edge1 && edge1 < count1); // Convert normal from poly1's frame into poly2's frame. b2Vec2 normal1World = b2Mul(xf1.R, normals1[edge1]); b2Vec2 normal1 = b2MulT(xf2.R, normal1World); // Find support vertex on poly2 for -normal. int32 index = 0; float32 minDot = b2_maxFloat; for (int32 i = 0; i < count2; ++i) { float32 dot = b2Dot(vertices2[i], normal1); if (dot < minDot) { minDot = dot; index = i; } } b2Vec2 v1 = b2Mul(xf1, vertices1[edge1]); b2Vec2 v2 = b2Mul(xf2, vertices2[index]); float32 separation = b2Dot(v2 - v1, normal1World); return separation; } // Find the max separation between poly1 and poly2 using edge normals from poly1. static float32 b2FindMaxSeparation(int32* edgeIndex, const b2PolygonShape* poly1, const b2Transform& xf1, const b2PolygonShape* poly2, const b2Transform& xf2) { int32 count1 = poly1->m_vertexCount; const b2Vec2* normals1 = poly1->m_normals; // Vector pointing from the centroid of poly1 to the centroid of poly2. b2Vec2 d = b2Mul(xf2, poly2->m_centroid) - b2Mul(xf1, poly1->m_centroid); b2Vec2 dLocal1 = b2MulT(xf1.R, d); // Find edge normal on poly1 that has the largest projection onto d. int32 edge = 0; float32 maxDot = -b2_maxFloat; for (int32 i = 0; i < count1; ++i) { float32 dot = b2Dot(normals1[i], dLocal1); if (dot > maxDot) { maxDot = dot; edge = i; } } // Get the separation for the edge normal. float32 s = b2EdgeSeparation(poly1, xf1, edge, poly2, xf2); // Check the separation for the previous edge normal. int32 prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1; float32 sPrev = b2EdgeSeparation(poly1, xf1, prevEdge, poly2, xf2); // Check the separation for the next edge normal. int32 nextEdge = edge + 1 < count1 ? edge + 1 : 0; float32 sNext = b2EdgeSeparation(poly1, xf1, nextEdge, poly2, xf2); // Find the best edge and the search direction. int32 bestEdge; float32 bestSeparation; int32 increment; if (sPrev > s && sPrev > sNext) { increment = -1; bestEdge = prevEdge; bestSeparation = sPrev; } else if (sNext > s) { increment = 1; bestEdge = nextEdge; bestSeparation = sNext; } else { *edgeIndex = edge; return s; } // Perform a local search for the best edge normal. for ( ; ; ) { if (increment == -1) edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1; else edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0; s = b2EdgeSeparation(poly1, xf1, edge, poly2, xf2); if (s > bestSeparation) { bestEdge = edge; bestSeparation = s; } else { break; } } *edgeIndex = bestEdge; return bestSeparation; } static void b2FindIncidentEdge(b2ClipVertex c[2], const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1, const b2PolygonShape* poly2, const b2Transform& xf2) { int32 count1 = poly1->m_vertexCount; const b2Vec2* normals1 = poly1->m_normals; int32 count2 = poly2->m_vertexCount; const b2Vec2* vertices2 = poly2->m_vertices; const b2Vec2* normals2 = poly2->m_normals; b2Assert(0 <= edge1 && edge1 < count1); // Get the normal of the reference edge in poly2's frame. b2Vec2 normal1 = b2MulT(xf2.R, b2Mul(xf1.R, normals1[edge1])); // Find the incident edge on poly2. int32 index = 0; float32 minDot = b2_maxFloat; for (int32 i = 0; i < count2; ++i) { float32 dot = b2Dot(normal1, normals2[i]); if (dot < minDot) { minDot = dot; index = i; } } // Build the clip vertices for the incident edge. int32 i1 = index; int32 i2 = i1 + 1 < count2 ? i1 + 1 : 0; c[0].v = b2Mul(xf2, vertices2[i1]); c[0].id.features.referenceEdge = (uint8)edge1; c[0].id.features.incidentEdge = (uint8)i1; c[0].id.features.incidentVertex = 0; c[1].v = b2Mul(xf2, vertices2[i2]); c[1].id.features.referenceEdge = (uint8)edge1; c[1].id.features.incidentEdge = (uint8)i2; c[1].id.features.incidentVertex = 1; } // Find edge normal of max separation on A - return if separating axis is found // Find edge normal of max separation on B - return if separation axis is found // Choose reference edge as min(minA, minB) // Find incident edge // Clip // The normal points from 1 to 2 void b2CollidePolygons(b2Manifold* manifold, const b2PolygonShape* polyA, const b2Transform& xfA, const b2PolygonShape* polyB, const b2Transform& xfB) { manifold->pointCount = 0; float32 totalRadius = polyA->m_radius + polyB->m_radius; int32 edgeA = 0; float32 separationA = b2FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB); if (separationA > totalRadius) return; int32 edgeB = 0; float32 separationB = b2FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA); if (separationB > totalRadius) return; const b2PolygonShape* poly1; // reference polygon const b2PolygonShape* poly2; // incident polygon b2Transform xf1, xf2; int32 edge1; // reference edge uint8 flip; const float32 k_relativeTol = 0.98f; const float32 k_absoluteTol = 0.001f; if (separationB > k_relativeTol * separationA + k_absoluteTol) { poly1 = polyB; poly2 = polyA; xf1 = xfB; xf2 = xfA; edge1 = edgeB; manifold->type = b2Manifold::e_faceB; flip = 1; } else { poly1 = polyA; poly2 = polyB; xf1 = xfA; xf2 = xfB; edge1 = edgeA; manifold->type = b2Manifold::e_faceA; flip = 0; } b2ClipVertex incidentEdge[2]; b2FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2); int32 count1 = poly1->m_vertexCount; const b2Vec2* vertices1 = poly1->m_vertices; b2Vec2 v11 = vertices1[edge1]; b2Vec2 v12 = edge1 + 1 < count1 ? vertices1[edge1+1] : vertices1[0]; b2Vec2 localTangent = v12 - v11; localTangent.Normalize(); b2Vec2 localNormal = b2Cross(localTangent, 1.0f); b2Vec2 planePoint = 0.5f * (v11 + v12); b2Vec2 tangent = b2Mul(xf1.R, localTangent); b2Vec2 normal = b2Cross(tangent, 1.0f); v11 = b2Mul(xf1, v11); v12 = b2Mul(xf1, v12); // Face offset. float32 frontOffset = b2Dot(normal, v11); // Side offsets, extended by polytope skin thickness. float32 sideOffset1 = -b2Dot(tangent, v11) + totalRadius; float32 sideOffset2 = b2Dot(tangent, v12) + totalRadius; // Clip incident edge against extruded edge1 side edges. b2ClipVertex clipPoints1[2]; b2ClipVertex clipPoints2[2]; int np; // Clip to box side 1 np = b2ClipSegmentToLine(clipPoints1, incidentEdge, -tangent, sideOffset1); if (np < 2) return; // Clip to negative box side 1 np = b2ClipSegmentToLine(clipPoints2, clipPoints1, tangent, sideOffset2); if (np < 2) { return; } // Now clipPoints2 contains the clipped points. manifold->localNormal = localNormal; manifold->localPoint = planePoint; int32 pointCount = 0; for (int32 i = 0; i < b2_maxManifoldPoints; ++i) { float32 separation = b2Dot(normal, clipPoints2[i].v) - frontOffset; if (separation <= totalRadius) { b2ManifoldPoint* cp = manifold->points + pointCount; cp->localPoint = b2MulT(xf2, clipPoints2[i].v); cp->id = clipPoints2[i].id; cp->id.features.flip = flip; ++pointCount; } } manifold->pointCount = pointCount; }