/**************************************************************************** Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2013-2016 Chukong Technologies Inc. Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd. Copyright (c) 2020 C4games Ltd Copyright (c) 2021-2022 Bytedance Inc. https://axmolengine.github.io/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "platform/CCImage.h" #include "renderer/backend/PixelFormatUtils.h" #include #include #include "base/ccConfig.h" // AX_USE_JPEG, AX_USE_WEBP #define STBI_NO_JPEG #define STBI_NO_PNG #define STBI_NO_GIF #define STBI_NO_PSD #define STBI_NO_PIC #define STBI_NO_PNM #define STBI_NO_HDR #define STBI_NO_TGA #define STB_IMAGE_IMPLEMENTATION #if AX_TARGET_PLATFORM == AX_PLATFORM_IOS # define STBI_NO_THREAD_LOCALS #endif #include "stb/stb_image.h" extern "C" { // To resolve link error when building 32bits with Xcode 6. // More information please refer to the discussion in https://github.com/cocos2d/cocos2d-x/pull/6986 #if defined(__unix) || (AX_TARGET_PLATFORM == AX_PLATFORM_IOS) # ifndef __ENABLE_COMPATIBILITY_WITH_UNIX_2003__ # define __ENABLE_COMPATIBILITY_WITH_UNIX_2003__ # include # include FILE* fopen$UNIX2003(const char* filename, const char* mode) { return fopen(filename, mode); } size_t fwrite$UNIX2003(const void* a, size_t b, size_t c, FILE* d) { return fwrite(a, b, c, d); } int fputs$UNIX2003(const char* res1, FILE* res2) { return fputs(res1, res2); } char* strerror$UNIX2003(int errnum) { return strerror(errnum); } DIR* opendir$INODE64$UNIX2003(char* dirName) { return opendir(dirName); } DIR* opendir$INODE64(char* dirName) { return opendir(dirName); } int closedir$UNIX2003(DIR* dir) { return closedir(dir); } struct dirent* readdir$INODE64(DIR* dir) { return readdir(dir); } # endif #endif #if AX_USE_PNG # include "png.h" #endif // AX_USE_PNG #if AX_USE_JPEG # include "jpeglib.h" # include #endif // AX_USE_JPEG } /* extern "C" */ #include "base/ktxspec_v1.h" #include "base/s3tc.h" #include "base/atitc.h" #include "base/pvr.h" #include "base/TGAlib.h" #include "base/etc1.h" #include "base/etc2.h" #include "base/astc.h" #if AX_USE_WEBP # include "decode.h" #endif // AX_USE_WEBP #include "base/ccMacros.h" #include "platform/CCCommon.h" #include "platform/CCStdC.h" #include "platform/CCFileUtils.h" #include "base/CCConfiguration.h" #include "base/ccUtils.h" #include "base/ZipUtils.h" #if (AX_TARGET_PLATFORM == AX_PLATFORM_ANDROID) # include "platform/android/CCFileUtils-android.h" # include "platform/CCGL.h" #endif NS_AX_BEGIN ////////////////////////////////////////////////////////////////////////// // struct and data for pvr structure namespace { static const int PVR_TEXTURE_FLAG_TYPE_MASK = 0xff; // Values taken from PVRTexture.h from http://www.imgtec.com enum class PVR2TextureFlag { Mipmap = (1 << 8), // has mip map levels Twiddle = (1 << 9), // is twiddled Bumpmap = (1 << 10), // has normals encoded for a bump map Tiling = (1 << 11), // is bordered for tiled pvr Cubemap = (1 << 12), // is a cubemap/skybox FalseMipCol = (1 << 13), // are there false colored MIP levels Volume = (1 << 14), // is this a volume texture Alpha = (1 << 15), // v2.1 is there transparency info in the texture VerticalFlip = (1 << 16), // v2.1 is the texture vertically flipped }; enum class PVR3TextureFlag { PremultipliedAlpha = (1 << 1) // has premultiplied alpha }; static const char gPVRTexIdentifier[5] = "PVR!"; // v2 enum class PVR2TexturePixelFormat : uint8_t { RGBA4444 = 0x10, RGBA5551, RGBA8888, RGB565, RGB555, // unsupported RGB888, I8, AI88, PVRTC2BPP_RGBA, PVRTC4BPP_RGBA, BGRA8888, A8, }; // v3 enum class PVR3TexturePixelFormat : uint64_t { PVRTC2BPP_RGB = 0ULL, PVRTC2BPP_RGBA = 1ULL, PVRTC4BPP_RGB = 2ULL, PVRTC4BPP_RGBA = 3ULL, PVRTC2_2BPP_RGBA = 4ULL, PVRTC2_4BPP_RGBA = 5ULL, ETC1 = 6ULL, DXT1 = 7ULL, DXT2 = 8ULL, DXT3 = 9ULL, DXT4 = 10ULL, DXT5 = 11ULL, BC1 = 7ULL, BC2 = 9ULL, BC3 = 11ULL, BC4 = 12ULL, BC5 = 13ULL, BC6 = 14ULL, BC7 = 15ULL, UYVY = 16ULL, YUY2 = 17ULL, BW1bpp = 18ULL, R9G9B9E5 = 19ULL, RGBG8888 = 20ULL, GRGB8888 = 21ULL, ETC2_RGB = 22ULL, ETC2_RGBA = 23ULL, ETC2_RGBA1 = 24ULL, EAC_R11_Unsigned = 25ULL, EAC_R11_Signed = 26ULL, EAC_RG11_Unsigned = 27ULL, EAC_RG11_Signed = 28ULL, BGRA8888 = 0x0808080861726762ULL, RGBA8888 = 0x0808080861626772ULL, RGBA4444 = 0x0404040461626772ULL, RGBA5551 = 0x0105050561626772ULL, RGB565 = 0x0005060500626772ULL, RGB888 = 0x0008080800626772ULL, A8 = 0x0000000800000061ULL, L8 = 0x000000080000006cULL, LA88 = 0x000008080000616cULL, }; // v2 typedef const std::map _pixel2_formathash; static const _pixel2_formathash::value_type v2_pixel_formathash_value[] = { _pixel2_formathash::value_type(PVR2TexturePixelFormat::BGRA8888, backend::PixelFormat::BGRA8), _pixel2_formathash::value_type(PVR2TexturePixelFormat::RGBA8888, backend::PixelFormat::RGBA8), _pixel2_formathash::value_type(PVR2TexturePixelFormat::RGBA4444, backend::PixelFormat::RGBA4), _pixel2_formathash::value_type(PVR2TexturePixelFormat::RGBA5551, backend::PixelFormat::RGB5A1), _pixel2_formathash::value_type(PVR2TexturePixelFormat::RGB565, backend::PixelFormat::RGB565), _pixel2_formathash::value_type(PVR2TexturePixelFormat::RGB888, backend::PixelFormat::RGB8), _pixel2_formathash::value_type(PVR2TexturePixelFormat::A8, backend::PixelFormat::A8), _pixel2_formathash::value_type(PVR2TexturePixelFormat::I8, backend::PixelFormat::L8), _pixel2_formathash::value_type(PVR2TexturePixelFormat::AI88, backend::PixelFormat::LA8), _pixel2_formathash::value_type(PVR2TexturePixelFormat::PVRTC2BPP_RGBA, backend::PixelFormat::PVRTC2A), _pixel2_formathash::value_type(PVR2TexturePixelFormat::PVRTC4BPP_RGBA, backend::PixelFormat::PVRTC4A), }; static const int PVR2_MAX_TABLE_ELEMENTS = sizeof(v2_pixel_formathash_value) / sizeof(v2_pixel_formathash_value[0]); static const _pixel2_formathash v2_pixel_formathash(v2_pixel_formathash_value, v2_pixel_formathash_value + PVR2_MAX_TABLE_ELEMENTS); // v3 typedef const std::map _pixel3_formathash; static _pixel3_formathash::value_type v3_pixel_formathash_value[] = { _pixel3_formathash::value_type(PVR3TexturePixelFormat::BGRA8888, backend::PixelFormat::BGRA8), _pixel3_formathash::value_type(PVR3TexturePixelFormat::RGBA8888, backend::PixelFormat::RGBA8), _pixel3_formathash::value_type(PVR3TexturePixelFormat::RGBA4444, backend::PixelFormat::RGBA4), _pixel3_formathash::value_type(PVR3TexturePixelFormat::RGBA5551, backend::PixelFormat::RGB5A1), _pixel3_formathash::value_type(PVR3TexturePixelFormat::RGB565, backend::PixelFormat::RGB565), _pixel3_formathash::value_type(PVR3TexturePixelFormat::RGB888, backend::PixelFormat::RGB8), _pixel3_formathash::value_type(PVR3TexturePixelFormat::A8, backend::PixelFormat::A8), _pixel3_formathash::value_type(PVR3TexturePixelFormat::L8, backend::PixelFormat::L8), _pixel3_formathash::value_type(PVR3TexturePixelFormat::LA88, backend::PixelFormat::LA8), _pixel3_formathash::value_type(PVR3TexturePixelFormat::PVRTC2BPP_RGB, backend::PixelFormat::PVRTC2), _pixel3_formathash::value_type(PVR3TexturePixelFormat::PVRTC2BPP_RGBA, backend::PixelFormat::PVRTC2A), _pixel3_formathash::value_type(PVR3TexturePixelFormat::PVRTC4BPP_RGB, backend::PixelFormat::PVRTC4), _pixel3_formathash::value_type(PVR3TexturePixelFormat::PVRTC4BPP_RGBA, backend::PixelFormat::PVRTC4A), _pixel3_formathash::value_type(PVR3TexturePixelFormat::ETC1, backend::PixelFormat::ETC1), }; static const int PVR3_MAX_TABLE_ELEMENTS = sizeof(v3_pixel_formathash_value) / sizeof(v3_pixel_formathash_value[0]); static const _pixel3_formathash v3_pixel_formathash(v3_pixel_formathash_value, v3_pixel_formathash_value + PVR3_MAX_TABLE_ELEMENTS); typedef struct _PVRTexHeader { unsigned int headerLength; unsigned int height; unsigned int width; unsigned int numMipmaps; unsigned int flags; unsigned int dataLength; unsigned int bpp; unsigned int bitmaskRed; unsigned int bitmaskGreen; unsigned int bitmaskBlue; unsigned int bitmaskAlpha; unsigned int pvrTag; unsigned int numSurfs; } PVRv2TexHeader; #ifdef _MSC_VER # pragma pack(push, 1) #endif typedef struct { uint32_t version; uint32_t flags; uint64_t pixelFormat; uint32_t colorSpace; uint32_t channelType; uint32_t height; uint32_t width; uint32_t depth; uint32_t numberOfSurfaces; uint32_t numberOfFaces; uint32_t numberOfMipmaps; uint32_t metadataLength; #ifdef _MSC_VER } PVRv3TexHeader; # pragma pack(pop) #else } __attribute__((packed)) PVRv3TexHeader; #endif } // namespace // pvr structure end ////////////////////////////////////////////////////////////////////////// // struct and data for s3tc(dds) struct namespace { struct DDColorKey { uint32_t colorSpaceLowValue; uint32_t colorSpaceHighValue; }; struct DDSCaps { uint32_t caps; uint32_t caps2; uint32_t caps3; uint32_t caps4; }; struct DDPixelFormat { uint32_t size; uint32_t flags; uint32_t fourCC; uint32_t RGBBitCount; uint32_t RBitMask; uint32_t GBitMask; uint32_t BBitMask; uint32_t ABitMask; }; struct DDSURFACEDESC2 { uint32_t size; uint32_t flags; uint32_t height; uint32_t width; union { uint32_t pitch; uint32_t linearSize; } DUMMYUNIONNAMEN1; union { uint32_t backBufferCount; uint32_t depth; } DUMMYUNIONNAMEN5; union { uint32_t mipMapCount; uint32_t refreshRate; uint32_t srcVBHandle; } DUMMYUNIONNAMEN2; uint32_t alphaBitDepth; uint32_t reserved; uint32_t surface; union { DDColorKey ddckCKDestOverlay; uint32_t emptyFaceColor; } DUMMYUNIONNAMEN3; DDColorKey ddckCKDestBlt; DDColorKey ddckCKSrcOverlay; DDColorKey ddckCKSrcBlt; union { DDPixelFormat ddpfPixelFormat; uint32_t FVF; } DUMMYUNIONNAMEN4; DDSCaps ddsCaps; uint32_t textureStage; }; #pragma pack(push, 1) struct S3TCTexHeader { char fileCode[4]; DDSURFACEDESC2 ddsd; }; #pragma pack(pop) } // namespace // s3tc struct end ////////////////////////////////////////////////////////////////////////// namespace { typedef struct { const uint8_t* data; ssize_t size; int offset; } tImageSource; #if AX_USE_PNG void pngWriteCallback(png_structp png_ptr, png_bytep data, size_t length) { if (png_ptr == NULL) return; FileStream* fileStream = (FileStream*)png_get_io_ptr(png_ptr); const auto check = fileStream->write(data, length); if (check != length) png_error(png_ptr, "Write Error"); } static void pngReadCallback(png_structp png_ptr, png_bytep data, png_size_t length) { tImageSource* isource = (tImageSource*)png_get_io_ptr(png_ptr); if ((int)(isource->offset + length) <= isource->size) { memcpy(data, isource->data + isource->offset, length); isource->offset += length; } else { png_error(png_ptr, "pngReaderCallback failed"); } } #endif // AX_USE_PNG } // namespace /* * Notes: PVR file Specification have many pixel formats, cocos2d-x-v2~v4 and axis only support pvrtc and etc1 * see: https://cdn.imgtec.com/sdk-documentation/PVR+File+Format.Specification.pdf */ static backend::PixelFormat getDevicePVRPixelFormat(backend::PixelFormat format) { switch (format) { case backend::PixelFormat::PVRTC4: case backend::PixelFormat::PVRTC4A: case backend::PixelFormat::PVRTC2: case backend::PixelFormat::PVRTC2A: if (Configuration::getInstance()->supportsPVRTC()) return format; else return backend::PixelFormat::RGBA8; case backend::PixelFormat::ETC1: if (Configuration::getInstance()->supportsETC1()) return format; else if (Configuration::getInstance()->supportsETC2()) return backend::PixelFormat::ETC2_RGB; else return backend::PixelFormat::RGBA8; default: return format; } } namespace { bool testFormatForPvr2TCSupport(PVR2TexturePixelFormat /*format*/) { return true; } bool testFormatForPvr3TCSupport(PVR3TexturePixelFormat format) { switch (format) { case PVR3TexturePixelFormat::DXT1: case PVR3TexturePixelFormat::DXT3: case PVR3TexturePixelFormat::DXT5: return Configuration::getInstance()->supportsS3TC(); case PVR3TexturePixelFormat::BGRA8888: return Configuration::getInstance()->supportsBGRA8888(); case PVR3TexturePixelFormat::PVRTC2BPP_RGB: case PVR3TexturePixelFormat::PVRTC2BPP_RGBA: case PVR3TexturePixelFormat::PVRTC4BPP_RGB: case PVR3TexturePixelFormat::PVRTC4BPP_RGBA: case PVR3TexturePixelFormat::ETC1: case PVR3TexturePixelFormat::RGBA8888: case PVR3TexturePixelFormat::RGBA4444: case PVR3TexturePixelFormat::RGBA5551: case PVR3TexturePixelFormat::RGB565: case PVR3TexturePixelFormat::RGB888: case PVR3TexturePixelFormat::A8: case PVR3TexturePixelFormat::L8: case PVR3TexturePixelFormat::LA88: return true; default: return false; } } } // namespace namespace { static uint32_t makeFourCC(char ch0, char ch1, char ch2, char ch3) { const uint32_t fourCC = ((uint32_t)(char)(ch0) | ((uint32_t)(char)(ch1) << 8) | ((uint32_t)(char)(ch2) << 16) | ((uint32_t)(char)(ch3) << 24)); return fourCC; } } // namespace ////////////////////////////////////////////////////////////////////////// // Implement Image ////////////////////////////////////////////////////////////////////////// bool Image::PNG_PREMULTIPLIED_ALPHA_ENABLED = true; uint32_t Image::COMPRESSED_IMAGE_PMA_FLAGS = Image::CompressedImagePMAFlag::DUAL_SAMPLER; void Image::setCompressedImagesHavePMA(uint32_t targets, bool havePMA) { if (havePMA) COMPRESSED_IMAGE_PMA_FLAGS |= targets; else COMPRESSED_IMAGE_PMA_FLAGS &= ~targets; } bool Image::isCompressedImageHavePMA(uint32_t target) { return target & COMPRESSED_IMAGE_PMA_FLAGS; } Image::Image() : _data(nullptr) , _dataLen(0) , _offset(0) , _width(0) , _height(0) , _unpack(false) , _fileType(Format::UNKNOWN) , _pixelFormat(backend::PixelFormat::NONE) , _numberOfMipmaps(0) , _hasPremultipliedAlpha(false) {} Image::~Image() { if (!_unpack) { AX_SAFE_FREE(_data); } else { for (int i = 0; i < _numberOfMipmaps; ++i) AX_SAFE_FREE(_mipmaps[i].address); } } bool Image::initWithImageFile(std::string_view path) { bool ret = false; _filePath = FileUtils::getInstance()->fullPathForFilename(path); Data data = FileUtils::getInstance()->getDataFromFile(_filePath); if (!data.isNull()) { ssize_t n = 0; auto buf = data.takeBuffer(&n); ret = initWithImageData(buf, n, true); } return ret; } bool Image::initWithImageFileThreadSafe(std::string_view fullpath) { bool ret = false; _filePath = fullpath; Data data = FileUtils::getInstance()->getDataFromFile(_filePath); if (!data.isNull()) { ssize_t n = 0; auto buf = data.takeBuffer(&n); ret = initWithImageData(buf, n, true); } return ret; } bool Image::initWithImageData(const uint8_t* data, ssize_t dataLen) { return initWithImageData(const_cast(data), dataLen, false); } bool Image::initWithImageData(uint8_t* data, ssize_t dataLen, bool ownData) { bool ret = false; do { AX_BREAK_IF(!data || dataLen == 0); uint8_t* unpackedData = nullptr; ssize_t unpackedLen = 0; // detect and unzip the compress file if (ZipUtils::isCCZBuffer(data, dataLen)) { unpackedLen = ZipUtils::inflateCCZBuffer(data, dataLen, &unpackedData); } else if (ZipUtils::isGZipBuffer(data, dataLen)) { unpackedLen = ZipUtils::inflateMemory(const_cast(data), dataLen, &unpackedData); } else { unpackedData = const_cast(data); unpackedLen = dataLen; } if (unpackedData != data) { // free old data and own the unpackedData if (ownData) free((void*)data); ownData = true; } _fileType = detectFormat(unpackedData, unpackedLen); switch (_fileType) { case Format::PNG: ret = initWithPngData(unpackedData, unpackedLen); break; case Format::JPG: ret = initWithJpgData(unpackedData, unpackedLen); break; case Format::WEBP: ret = initWithWebpData(unpackedData, unpackedLen); break; case Format::PVR: ret = initWithPVRData(unpackedData, unpackedLen, ownData); break; case Format::ETC1: ret = initWithETCData(unpackedData, unpackedLen, ownData); break; case Format::ETC2: ret = initWithETC2Data(unpackedData, unpackedLen, ownData); break; case Format::S3TC: ret = initWithS3TCData(unpackedData, unpackedLen, ownData); break; case Format::ATITC: ret = initWithATITCData(unpackedData, unpackedLen, ownData); break; case Format::ASTC: ret = initWithASTCData(unpackedData, unpackedLen, ownData); break; case Format::BMP: ret = initWithBmpData(unpackedData, unpackedLen); break; default: { // load and detect image format tImageTGA* tgaData = tgaLoadBuffer(unpackedData, unpackedLen); if (tgaData != nullptr && tgaData->status == TGA_OK) { ret = initWithTGAData(tgaData); } else { AXLOG("axmol: unsupported image format!"); } free(tgaData); break; } } if (_data != unpackedData && ownData) free(unpackedData); // else, the hardware texture decoder used, the compressed data was stored directly } while (0); return ret; } bool Image::initWithRawData(const uint8_t* data, ssize_t /*dataLen*/, int width, int height, int /*bitsPerComponent*/, bool preMulti) { bool ret = false; do { AX_BREAK_IF(0 == width || 0 == height); _height = height; _width = width; _hasPremultipliedAlpha = preMulti; _pixelFormat = backend::PixelFormat::RGBA8; // only RGBA8888 supported int bytesPerComponent = 4; _dataLen = height * width * bytesPerComponent; _data = static_cast(malloc(_dataLen)); AX_BREAK_IF(!_data); memcpy(_data, data, _dataLen); ret = true; } while (0); return ret; } bool Image::isPng(const uint8_t* data, ssize_t dataLen) { if (dataLen <= 8) { return false; } static const uint8_t PNG_SIGNATURE[] = {0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a}; return memcmp(PNG_SIGNATURE, data, sizeof(PNG_SIGNATURE)) == 0; } bool Image::isBmp(const uint8_t* data, ssize_t dataLen) { return dataLen > 54 && data[0] == 'B' && data[1] == 'M'; } bool Image::isEtc1(const uint8_t* data, ssize_t /*dataLen*/) { return !!etc1_pkm_is_valid((etc1_byte*)data); } bool Image::isEtc2(const uint8_t* data, ssize_t dataLen) { return !!etc2_pkm_is_valid((etc2_byte*)data); } bool Image::isS3TC(const uint8_t* data, ssize_t /*dataLen*/) { S3TCTexHeader* header = (S3TCTexHeader*)data; return (strncmp(header->fileCode, "DDS", 3) == 0); } bool Image::isASTC(const uint8_t* data, ssize_t /*dataLen*/) { astc_header* hdr = (astc_header*)data; uint32_t magicval = astc_unpack_bytes(hdr->magic[0], hdr->magic[1], hdr->magic[2], hdr->magic[3]); return (magicval == ASTC_MAGIC_ID); } bool Image::isJpg(const uint8_t* data, ssize_t dataLen) { if (dataLen <= 4) { return false; } static const uint8_t JPG_SOI[] = {0xFF, 0xD8}; return memcmp(data, JPG_SOI, 2) == 0; } bool Image::isWebp(const uint8_t* data, ssize_t dataLen) { if (dataLen <= 12) { return false; } static const char* WEBP_RIFF = "RIFF"; static const char* WEBP_WEBP = "WEBP"; return memcmp(data, WEBP_RIFF, 4) == 0 && memcmp(static_cast(data) + 8, WEBP_WEBP, 4) == 0; } bool Image::isPvr(const uint8_t* data, ssize_t dataLen) { if (static_cast(dataLen) < sizeof(PVRv2TexHeader) || static_cast(dataLen) < sizeof(PVRv3TexHeader)) { return false; } const PVRv2TexHeader* headerv2 = static_cast(static_cast(data)); const PVRv3TexHeader* headerv3 = static_cast(static_cast(data)); return memcmp(&headerv2->pvrTag, gPVRTexIdentifier, strlen(gPVRTexIdentifier)) == 0 || AX_SWAP_INT32_BIG_TO_HOST(headerv3->version) == 0x50565203; } Image::Format Image::detectFormat(const uint8_t* data, ssize_t dataLen) { if (isPng(data, dataLen)) { return Format::PNG; } else if (isJpg(data, dataLen)) { return Format::JPG; } else if (isBmp(data, dataLen)) { return Format::BMP; } else if (isWebp(data, dataLen)) { return Format::WEBP; } else if (isPvr(data, dataLen)) { return Format::PVR; } else if (isEtc1(data, dataLen)) { return Format::ETC1; } else if (isEtc2(data, dataLen)) { return Format::ETC2; } else if (isS3TC(data, dataLen)) { return Format::S3TC; } else if (isASTC(data, dataLen)) { return Format::ASTC; } else if (dataLen >= KTX_V1_HEADER_SIZE) { // Check whether ktxspec v1.1 file format auto header = (KTXv1Header*)data; if (memcmp(&header->identifier[1], KTX_V1_MAGIC, sizeof(KTX_V1_MAGIC) - 1) == 0) { switch (header->glInternalFormat) { case KTXv1Header::InternalFormat::ATC_RGB_AMD: case KTXv1Header::InternalFormat::ATC_RGBA_INTERPOLATED_ALPHA_AMD: case KTXv1Header::InternalFormat::ATC_RGBA_EXPLICIT_ALPHA_AMD: return Format::ATITC; case KTXv1Header::InternalFormat::ETC2_RGB8: case KTXv1Header::InternalFormat::ETC2_RGBA8: return Format::ETC2; case KTXv1Header::InternalFormat::ETC1_RGB8: return Format::ETC1; default:; } } } return Format::UNKNOWN; } int Image::getBitPerPixel() { return backend::PixelFormatUtils::getFormatDescriptor(_pixelFormat).bpp; } bool Image::hasAlpha() { return backend::PixelFormatUtils::getFormatDescriptor(_pixelFormat).alpha; } bool Image::isCompressed() { return backend::PixelFormatUtils::isCompressed(_pixelFormat); } namespace { /* * ERROR HANDLING: * * The JPEG library's standard error handler (jerror.c) is divided into * several "methods" which you can override individually. This lets you * adjust the behavior without duplicating a lot of code, which you might * have to update with each future release. * * We override the "error_exit" method so that control is returned to the * library's caller when a fatal error occurs, rather than calling exit() * as the standard error_exit method does. * * We use C's setjmp/longjmp facility to return control. This means that the * routine which calls the JPEG library must first execute a setjmp() call to * establish the return point. We want the replacement error_exit to do a * longjmp(). But we need to make the setjmp buffer accessible to the * error_exit routine. To do this, we make a private extension of the * standard JPEG error handler object. (If we were using C++, we'd say we * were making a subclass of the regular error handler.) * * Here's the extended error handler struct: */ #if AX_USE_JPEG struct MyErrorMgr { struct jpeg_error_mgr pub; /* "public" fields */ jmp_buf setjmp_buffer; /* for return to caller */ }; typedef struct MyErrorMgr* MyErrorPtr; /* * Here's the routine that will replace the standard error_exit method: */ METHODDEF(void) myErrorExit(j_common_ptr cinfo) { /* cinfo->err really points to a MyErrorMgr struct, so coerce pointer */ MyErrorPtr myerr = (MyErrorPtr)cinfo->err; /* Always display the message. */ /* We could postpone this until after returning, if we chose. */ /* internal message function can't show error message in some platforms, so we rewrite it here. * edit it if has version conflict. */ //(*cinfo->err->output_message) (cinfo); char buffer[JMSG_LENGTH_MAX]; (*cinfo->err->format_message)(cinfo, buffer); AXLOG("jpeg error: %s", buffer); /* Return control to the setjmp point */ longjmp(myerr->setjmp_buffer, 1); } #endif // AX_USE_JPEG } // namespace bool Image::initWithJpgData(uint8_t* data, ssize_t dataLen) { #if AX_USE_JPEG /* these are standard libjpeg structures for reading(decompression) */ struct jpeg_decompress_struct cinfo; /* We use our private extension JPEG error handler. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct MyErrorMgr jerr; /* libjpeg data structure for storing one row, that is, scanline of an image */ JSAMPROW row_pointer[1] = {0}; uint32_t location = 0; bool ret = false; do { /* We set up the normal JPEG error routines, then override error_exit. */ cinfo.err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = myErrorExit; /* Establish the setjmp return context for MyErrorExit to use. */ if (setjmp(jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. * We need to clean up the JPEG object, close the input file, and return. */ jpeg_destroy_decompress(&cinfo); break; } /* setup decompression process and source, then read JPEG header */ jpeg_create_decompress(&cinfo); # ifndef AX_TARGET_QT5 jpeg_mem_src(&cinfo, const_cast(data), dataLen); # endif /* AX_TARGET_QT5 */ /* reading the image header which contains image information */ # if (JPEG_LIB_VERSION >= 90) // libjpeg 0.9 adds stricter types. jpeg_read_header(&cinfo, TRUE); # else jpeg_read_header(&cinfo, TRUE); # endif //(JPEG_LIB_VERSION >= 90) // we only support RGB or grayscale if (cinfo.jpeg_color_space == JCS_GRAYSCALE) { _pixelFormat = backend::PixelFormat::L8; } else { cinfo.out_color_space = JCS_RGB; _pixelFormat = backend::PixelFormat::RGB8; } /* Start decompression jpeg here */ jpeg_start_decompress(&cinfo); /* init image info */ _width = cinfo.output_width; _height = cinfo.output_height; _dataLen = cinfo.output_width * cinfo.output_height * cinfo.output_components; _data = static_cast(malloc(_dataLen)); AX_BREAK_IF(!_data); /* now actually read the jpeg into the raw buffer */ /* read one scan line at a time */ while (cinfo.output_scanline < cinfo.output_height) { row_pointer[0] = _data + location; location += cinfo.output_width * cinfo.output_components; jpeg_read_scanlines(&cinfo, row_pointer, 1); } /* When read image file with broken data, jpeg_finish_decompress() may cause error. * Besides, jpeg_destroy_decompress() shall deallocate and release all memory associated * with the decompression object. * So it doesn't need to call jpeg_finish_decompress(). */ // jpeg_finish_decompress( &cinfo ); jpeg_destroy_decompress(&cinfo); /* wrap up decompression, destroy objects, free pointers and close open files */ ret = true; } while (0); return ret; #else AXLOG("jpeg is not enabled, please enable it in ccConfig.h"); return false; #endif // AX_USE_JPEG } bool Image::initWithPngData(uint8_t* data, ssize_t dataLen) { #if AX_USE_PNG // length of bytes to check if it is a valid png file # define PNGSIGSIZE 8 bool ret = false; png_byte header[PNGSIGSIZE] = {0}; png_structp png_ptr = 0; png_infop info_ptr = 0; do { // png header len is 8 bytes AX_BREAK_IF(dataLen < PNGSIGSIZE); // check the data is png or not memcpy(header, data, PNGSIGSIZE); AX_BREAK_IF(png_sig_cmp(header, 0, PNGSIGSIZE)); // init png_struct png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, 0, 0); AX_BREAK_IF(!png_ptr); // init png_info info_ptr = png_create_info_struct(png_ptr); AX_BREAK_IF(!info_ptr); AX_BREAK_IF(setjmp(png_jmpbuf(png_ptr))); // set the read call back function tImageSource imageSource; imageSource.data = (uint8_t*)data; imageSource.size = dataLen; imageSource.offset = 0; png_set_read_fn(png_ptr, &imageSource, pngReadCallback); // read png header info // read png file info png_read_info(png_ptr, info_ptr); _width = png_get_image_width(png_ptr, info_ptr); _height = png_get_image_height(png_ptr, info_ptr); png_byte bit_depth = png_get_bit_depth(png_ptr, info_ptr); png_uint_32 color_type = png_get_color_type(png_ptr, info_ptr); // AXLOG("color type %u", color_type); // force palette images to be expanded to 24-bit RGB // it may include alpha channel if (color_type == PNG_COLOR_TYPE_PALETTE) { png_set_palette_to_rgb(png_ptr); } // low-bit-depth grayscale images are to be expanded to 8 bits if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) { bit_depth = 8; png_set_expand_gray_1_2_4_to_8(png_ptr); } // expand any tRNS chunk data into a full alpha channel if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) { png_set_tRNS_to_alpha(png_ptr); } // reduce images with 16-bit samples to 8 bits if (bit_depth == 16) { png_set_strip_16(png_ptr); } // Expanded earlier for grayscale, now take care of palette and rgb if (bit_depth < 8) { png_set_packing(png_ptr); } // update info png_read_update_info(png_ptr, info_ptr); color_type = png_get_color_type(png_ptr, info_ptr); switch (color_type) { case PNG_COLOR_TYPE_GRAY: _pixelFormat = backend::PixelFormat::L8; break; case PNG_COLOR_TYPE_GRAY_ALPHA: _pixelFormat = backend::PixelFormat::LA8; break; case PNG_COLOR_TYPE_RGB: _pixelFormat = backend::PixelFormat::RGB8; break; case PNG_COLOR_TYPE_RGB_ALPHA: _pixelFormat = backend::PixelFormat::RGBA8; break; default: break; } // read png data png_size_t rowbytes; png_bytep* row_pointers = (png_bytep*)malloc(sizeof(png_bytep) * _height); rowbytes = png_get_rowbytes(png_ptr, info_ptr); _dataLen = rowbytes * _height; _data = static_cast(malloc(_dataLen)); if (!_data) { if (row_pointers != nullptr) { free(row_pointers); } break; } for (unsigned short i = 0; i < _height; ++i) { row_pointers[i] = _data + i * rowbytes; } png_read_image(png_ptr, row_pointers); png_read_end(png_ptr, nullptr); // premultiplied alpha for RGBA8888 if (color_type == PNG_COLOR_TYPE_RGB_ALPHA) { if (PNG_PREMULTIPLIED_ALPHA_ENABLED) { premultiplyAlpha(); } else { // if PNG_PREMULTIPLIED_ALPHA_ENABLED == false && AX_ENABLE_PREMULTIPLIED_ALPHA != 0, // you must do PMA at shader, such as modify positionTextureColor.frag _hasPremultipliedAlpha = !!AX_ENABLE_PREMULTIPLIED_ALPHA; } } if (row_pointers != nullptr) { free(row_pointers); } ret = true; } while (0); if (png_ptr) { png_destroy_read_struct(&png_ptr, (info_ptr) ? &info_ptr : 0, 0); } return ret; #else AXLOG("png is not enabled, please enable it in ccConfig.h"); return false; #endif // AX_USE_PNG } bool Image::initWithBmpData(uint8_t* data, ssize_t dataLen) { const int nrChannels = 4; _data = stbi_load_from_memory(data, dataLen, &_width, &_height, nullptr, nrChannels); if (_data) { _dataLen = _width * _height * nrChannels; _fileType = Format::BMP; _pixelFormat = backend::PixelFormat::RGBA8; return true; } return false; } bool Image::initWithWebpData(uint8_t* data, ssize_t dataLen) { #if AX_USE_WEBP bool ret = false; do { WebPDecoderConfig config; if (WebPInitDecoderConfig(&config) == 0) break; if (WebPGetFeatures(static_cast(data), dataLen, &config.input) != VP8_STATUS_OK) break; if (config.input.width == 0 || config.input.height == 0) break; config.output.colorspace = config.input.has_alpha ? MODE_rgbA : MODE_RGB; _pixelFormat = config.input.has_alpha ? backend::PixelFormat::RGBA8 : backend::PixelFormat::RGB8; _width = config.input.width; _height = config.input.height; // we ask webp to give data with premultiplied alpha _hasPremultipliedAlpha = (config.input.has_alpha != 0); _dataLen = _width * _height * (config.input.has_alpha ? 4 : 3); _data = static_cast(malloc(_dataLen)); config.output.u.RGBA.rgba = static_cast(_data); config.output.u.RGBA.stride = _width * (config.input.has_alpha ? 4 : 3); config.output.u.RGBA.size = _dataLen; config.output.is_external_memory = 1; if (WebPDecode(static_cast(data), dataLen, &config) != VP8_STATUS_OK) { free(_data); _data = nullptr; break; } ret = true; } while (0); return ret; #else AXLOG("webp is not enabled, please enable it in ccConfig.h"); return false; #endif // AX_USE_WEBP } bool Image::initWithTGAData(tImageTGA* tgaData) { bool ret = false; do { AX_BREAK_IF(tgaData == nullptr); // tgaLoadBuffer only support type 2, 3, 10 if (2 == tgaData->type || 10 == tgaData->type) { // true color // unsupported RGB555 if (tgaData->pixelDepth == 16) { _pixelFormat = backend::PixelFormat::RGB5A1; } else if (tgaData->pixelDepth == 24) { _pixelFormat = backend::PixelFormat::RGB8; } else if (tgaData->pixelDepth == 32) { _pixelFormat = backend::PixelFormat::RGBA8; } else { AXLOG("Image WARNING: unsupported true color tga data pixel format. FILE: %s", _filePath.c_str()); break; } } else if (3 == tgaData->type) { // gray if (8 == tgaData->pixelDepth) { _pixelFormat = backend::PixelFormat::L8; } else { // actually this won't happen, if it happens, maybe the image file is not a tga AXLOG("Image WARNING: unsupported gray tga data pixel format. FILE: %s", _filePath.c_str()); break; } } _width = tgaData->width; _height = tgaData->height; _data = tgaData->imageData; _dataLen = _width * _height * tgaData->pixelDepth / 8; _fileType = Format::TGA; ret = true; } while (false); if (ret) { if (FileUtils::getInstance()->getFileExtension(_filePath) != ".tga") { AXLOG("Image WARNING: the image file suffix is not tga, but parsed as a tga image file. FILE: %s", _filePath.c_str()); } } else { if (tgaData && tgaData->imageData != nullptr) { free(tgaData->imageData); _data = nullptr; } } return ret; } bool Image::initWithPVRv2Data(uint8_t* data, ssize_t dataLen, bool ownData) { int blockSize = 0, widthBlocks = 0, heightBlocks = 0; int width = 0, height = 0; // Cast first sizeof(PVRTexHeader) bytes of data stream as PVRTexHeader const PVRv2TexHeader* header = static_cast(static_cast(data)); // Make sure that tag is in correct formatting if (memcmp(&header->pvrTag, gPVRTexIdentifier, strlen(gPVRTexIdentifier)) != 0) { return false; } Configuration* configuration = Configuration::getInstance(); // can not detect the premultiplied alpha from pvr file, use _PVRHaveAlphaPremultiplied instead. _hasPremultipliedAlpha = isCompressedImageHavePMA(CompressedImagePMAFlag::PVR); unsigned int flags = AX_SWAP_INT32_LITTLE_TO_HOST(header->flags); PVR2TexturePixelFormat formatFlags = static_cast(flags & PVR_TEXTURE_FLAG_TYPE_MASK); bool flipped = (flags & (unsigned int)PVR2TextureFlag::VerticalFlip) ? true : false; if (flipped) { AXLOG("axmol: WARNING: Image is flipped. Regenerate it using PVRTexTool"); } if (!configuration->supportsNPOT() && (static_cast(header->width) != ccNextPOT(header->width) || static_cast(header->height) != ccNextPOT(header->height))) { AXLOG("axmol: ERROR: Loading an NPOT texture (%dx%d) but is not supported on this device", header->width, header->height); return false; } if (!testFormatForPvr2TCSupport(formatFlags)) { AXLOG("axmol: WARNING: Unsupported PVR Pixel Format: 0x%02X. Re-encode it with a OpenGL pixel format variant", (int)formatFlags); return false; } if (v2_pixel_formathash.find(formatFlags) == v2_pixel_formathash.end()) { AXLOG("axmol: WARNING: Unsupported PVR Pixel Format: 0x%02X. Re-encode it with a OpenGL pixel format variant", (int)formatFlags); return false; } auto pixelFormat = getDevicePVRPixelFormat(v2_pixel_formathash.at(formatFlags)); auto& info = backend::PixelFormatUtils::getFormatDescriptor(pixelFormat); int bpp = info.bpp; if (!bpp) { AXLOG("axmol: WARNING: Unsupported PVR Pixel Format: 0x%02X. Re-encode it with a OpenGL pixel format variant", (int)formatFlags); return false; } _pixelFormat = pixelFormat; // Reset num of mipmaps _numberOfMipmaps = 0; // Get size of mipmap _width = width = AX_SWAP_INT32_LITTLE_TO_HOST(header->width); _height = height = AX_SWAP_INT32_LITTLE_TO_HOST(header->height); // Move by size of header const int pixelOffset = sizeof(PVRv2TexHeader); uint8_t* pixelData = data + pixelOffset; int dataOffset = 0, dataSize = 0; // Get ptr to where data starts.. int dataLength = AX_SWAP_INT32_LITTLE_TO_HOST(header->dataLength); // Calculate the data size for each texture level and respect the minimum number of blocks while (dataOffset < dataLength) { switch (formatFlags) { case PVR2TexturePixelFormat::PVRTC2BPP_RGBA: if (!Configuration::getInstance()->supportsPVRTC()) { AXLOG("axmol: Hardware PVR decoder not present. Using software decoder"); _unpack = true; _mipmaps[_numberOfMipmaps].len = width * height * 4; _mipmaps[_numberOfMipmaps].address = (uint8_t*)malloc(width * height * 4); PVRTDecompressPVRTC(pixelData + dataOffset, width, height, _mipmaps[_numberOfMipmaps].address, true); bpp = 2; } blockSize = 8 * 4; // Pixel by pixel block size for 2bpp widthBlocks = width / 8; heightBlocks = height / 4; break; case PVR2TexturePixelFormat::PVRTC4BPP_RGBA: if (!Configuration::getInstance()->supportsPVRTC()) { AXLOG("axmol: Hardware PVR decoder not present. Using software decoder"); _unpack = true; _mipmaps[_numberOfMipmaps].len = width * height * 4; _mipmaps[_numberOfMipmaps].address = (uint8_t*)malloc(width * height * 4); PVRTDecompressPVRTC(pixelData + dataOffset, width, height, _mipmaps[_numberOfMipmaps].address, false); bpp = 4; } blockSize = 4 * 4; // Pixel by pixel block size for 4bpp widthBlocks = width / 4; heightBlocks = height / 4; break; case PVR2TexturePixelFormat::BGRA8888: if (!Configuration::getInstance()->supportsBGRA8888()) { AXLOG("axmol: Image. BGRA8888 not supported on this device"); return false; } default: blockSize = 1; widthBlocks = width; heightBlocks = height; break; } // Clamp to minimum number of blocks if (widthBlocks < 2) { widthBlocks = 2; } if (heightBlocks < 2) { heightBlocks = 2; } dataSize = widthBlocks * heightBlocks * ((blockSize * bpp) / 8); int packetLength = (dataLength - dataOffset); packetLength = packetLength > dataSize ? dataSize : packetLength; // Make record to the mipmaps array and increment counter if (!_unpack) { _mipmaps[_numberOfMipmaps].address = pixelData + dataOffset; _mipmaps[_numberOfMipmaps].len = packetLength; } _numberOfMipmaps++; dataOffset += packetLength; // Update width and height to the next lower power of two width = MAX(width >> 1, 1); height = MAX(height >> 1, 1); } if (!_unpack) { // hardware decoder, hold data directly forwardPixels(data, dataLen, pixelOffset, ownData); } else { _data = _mipmaps[0].address; _dataLen = _mipmaps[0].len; } return true; } bool Image::initWithPVRv3Data(uint8_t* data, ssize_t dataLen, bool ownData) { if (static_cast(dataLen) < sizeof(PVRv3TexHeader)) { return false; } const PVRv3TexHeader* header = static_cast(static_cast(data)); // validate version if (AX_SWAP_INT32_BIG_TO_HOST(header->version) != 0x50565203) { AXLOG("axmol: WARNING: pvr file version mismatch"); return false; } // parse pixel format PVR3TexturePixelFormat pixelFormat = static_cast(header->pixelFormat); if (!testFormatForPvr3TCSupport(pixelFormat)) { AXLOG( "cocos2d: WARNING: Unsupported PVR Pixel Format: 0x%016llX. Re-encode it with a OpenGL pixel format " "variant", static_cast(pixelFormat)); return false; } if (v3_pixel_formathash.find(pixelFormat) == v3_pixel_formathash.end()) { AXLOG( "cocos2d: WARNING: Unsupported PVR Pixel Format: 0x%016llX. Re-encode it with a OpenGL pixel format " "variant", static_cast(pixelFormat)); return false; } auto finalPixelFormat = getDevicePVRPixelFormat(v3_pixel_formathash.at(pixelFormat)); auto& info = backend::PixelFormatUtils::getFormatDescriptor(finalPixelFormat); int bpp = info.bpp; if (!info.bpp) { AXLOG( "cocos2d: WARNING: Unsupported PVR Pixel Format: 0x%016llX. Re-encode it with a OpenGL pixel format " "variant", static_cast(pixelFormat)); return false; } _pixelFormat = finalPixelFormat; // flags int flags = AX_SWAP_INT32_LITTLE_TO_HOST(header->flags); // PVRv3 specifies premultiply alpha in a flag -- should always respect this in PVRv3 files if (flags & (unsigned int)PVR3TextureFlag::PremultipliedAlpha) { _hasPremultipliedAlpha = true; } // sizing int width = AX_SWAP_INT32_LITTLE_TO_HOST(header->width); int height = AX_SWAP_INT32_LITTLE_TO_HOST(header->height); _width = width; _height = height; const int pixelOffset = (sizeof(PVRv3TexHeader) + header->metadataLength); uint8_t* pixelData = data + pixelOffset; int pixelLen = dataLen - pixelOffset; int dataOffset = 0, dataSize = 0; int blockSize = 0, widthBlocks = 0, heightBlocks = 0; _numberOfMipmaps = header->numberOfMipmaps; AXASSERT(_numberOfMipmaps < MIPMAP_MAX, "Image: Maximum number of mimpaps reached. Increase the AX_MIPMAP_MAX value"); for (int i = 0; i < _numberOfMipmaps; i++) { switch ((PVR3TexturePixelFormat)pixelFormat) { case PVR3TexturePixelFormat::PVRTC2BPP_RGB: case PVR3TexturePixelFormat::PVRTC2BPP_RGBA: if (!Configuration::getInstance()->supportsPVRTC()) { AXLOG("axmol: Hardware PVR decoder not present. Using software decoder"); _unpack = true; _mipmaps[i].len = width * height * 4; _mipmaps[i].address = (uint8_t*)malloc(width * height * 4); PVRTDecompressPVRTC(pixelData + dataOffset, width, height, _mipmaps[i].address, true); bpp = 2; } blockSize = 8 * 4; // Pixel by pixel block size for 2bpp widthBlocks = width / 8; heightBlocks = height / 4; break; case PVR3TexturePixelFormat::PVRTC4BPP_RGB: case PVR3TexturePixelFormat::PVRTC4BPP_RGBA: if (!Configuration::getInstance()->supportsPVRTC()) { AXLOG("axmol: Hardware PVR decoder not present. Using software decoder"); _unpack = true; _mipmaps[i].len = width * height * 4; _mipmaps[i].address = (uint8_t*)malloc(width * height * 4); PVRTDecompressPVRTC(pixelData + dataOffset, width, height, _mipmaps[i].address, false); bpp = 4; } blockSize = 4 * 4; // Pixel by pixel block size for 4bpp widthBlocks = width / 4; heightBlocks = height / 4; break; case PVR3TexturePixelFormat::ETC1: if (!Configuration::getInstance()->supportsETC1()) { AXLOG("axmol: Hardware ETC1 decoder not present. Using software decoder"); const int bytePerPixel = 4; _unpack = true; _mipmaps[i].len = width * height * bytePerPixel; _mipmaps[i].address = (uint8_t*)malloc(width * height * bytePerPixel); if (etc2_decode_image(ETC2_RGB_NO_MIPMAPS, pixelData + dataOffset, static_cast(_mipmaps[i].address), width, height) != 0) { return false; } } blockSize = 4 * 4; // Pixel by pixel block size for 4bpp widthBlocks = width / 4; heightBlocks = height / 4; break; case PVR3TexturePixelFormat::BGRA8888: if (!Configuration::getInstance()->supportsBGRA8888()) { AXLOG("axmol: Image. BGRA8888 not supported on this device"); return false; } default: blockSize = 1; widthBlocks = width; heightBlocks = height; break; } // Clamp to minimum number of blocks if (widthBlocks < 2) { widthBlocks = 2; } if (heightBlocks < 2) { heightBlocks = 2; } dataSize = widthBlocks * heightBlocks * ((blockSize * bpp) / 8); auto packetLength = pixelLen - dataOffset; packetLength = packetLength > dataSize ? dataSize : packetLength; if (!_unpack) { _mipmaps[i].address = pixelData + dataOffset; _mipmaps[i].len = static_cast(packetLength); } dataOffset += packetLength; AXASSERT(dataOffset <= pixelLen, "Image: Invalid length"); width = MAX(width >> 1, 1); height = MAX(height >> 1, 1); } if (!_unpack) { forwardPixels(data, dataLen, pixelOffset, ownData); } else { _data = _mipmaps[0].address; _dataLen = _mipmaps[0].len; } return true; } bool Image::initWithETCData(uint8_t* data, ssize_t dataLen, bool ownData) { const etc1_byte* header = static_cast(data); uint32_t pixelOffset; // check the data if (etc1_pkm_is_valid(header)) { _width = etc1_pkm_get_width(header); _height = etc1_pkm_get_height(header); if (0 == _width || 0 == _height) return false; pixelOffset = ETC_PKM_HEADER_SIZE; } else { // we can safe trait as KTX v1 header auto header = (KTXv1Header*)data; _width = header->pixelWidth; _height = header->pixelHeight; if (0 == _width || 0 == _height) return false; pixelOffset = KTX_V1_HEADER_SIZE + header->bytesOfKeyValueData + 4; } // GL_ETC1_RGB8_OES is not available in any desktop GL extension but the compression // format is forwards compatible so just use the ETC2 format. backend::PixelFormat compressedFormat; if (Configuration::getInstance()->supportsETC1()) compressedFormat = backend::PixelFormat::ETC1; else if (Configuration::getInstance()->supportsETC2()) compressedFormat = backend::PixelFormat::ETC2_RGB; else compressedFormat = backend::PixelFormat::NONE; if (compressedFormat != backend::PixelFormat::NONE) { _pixelFormat = compressedFormat; forwardPixels(data, dataLen, pixelOffset, ownData); return true; } else { AXLOG("axmol: Hardware ETC1 decoder not present. Using software decoder"); _dataLen = _width * _height * 4; _data = static_cast(malloc(_dataLen)); if (etc2_decode_image(ETC2_RGB_NO_MIPMAPS, static_cast(data) + pixelOffset, static_cast(_data), _width, _height) == 0) { // if it is not gles or device do not support ETC1, decode texture by software // directly decode ETC1_RGB to RGBA8888 _pixelFormat = backend::PixelFormat::RGBA8; return true; } // software decode fail, release pixels data AX_SAFE_FREE(_data); _dataLen = 0; return false; } } bool Image::initWithETC2Data(uint8_t* data, ssize_t dataLen, bool ownData) { const etc2_byte* header = static_cast(data); do { uint32_t format, pixelOffset; // check the data if (etc2_pkm_is_valid(header)) { _width = etc2_pkm_get_width(header); _height = etc2_pkm_get_height(header); if (0 == _width || 0 == _height) break; format = etc2_pkm_get_format(header); pixelOffset = ETC2_PKM_HEADER_SIZE; } else { // we can safe trait as KTX v1 header auto header = (KTXv1Header*)data; _width = header->pixelWidth; _height = header->pixelHeight; if (0 == _width || 0 == _height) break; format = header->glInternalFormat == KTXv1Header::InternalFormat::ETC2_RGBA8 ? ETC2_RGBA_NO_MIPMAPS : ETC2_RGB_NO_MIPMAPS; pixelOffset = KTX_V1_HEADER_SIZE + header->bytesOfKeyValueData + 4; } // We only support ETC2_RGBA_NO_MIPMAPS and ETC2_RGB_NO_MIPMAPS assert(format == ETC2_RGBA_NO_MIPMAPS || format == ETC2_RGB_NO_MIPMAPS); if (Configuration::getInstance()->supportsETC2()) { _pixelFormat = format == ETC2_RGBA_NO_MIPMAPS ? backend::PixelFormat::ETC2_RGBA : backend::PixelFormat::ETC2_RGB; forwardPixels(data, dataLen, pixelOffset, ownData); } else { AXLOG("axmol: Hardware ETC2 decoder not present. Using software decoder"); // if device do not support ETC2, decode texture by software // etc2_decode_image always decode to RGBA8888 _dataLen = _width * _height * 4; _data = static_cast(malloc(_dataLen)); if (UTILS_UNLIKELY(etc2_decode_image(format, static_cast(data) + pixelOffset, static_cast(_data), _width, _height) != 0)) { // software decode fail, release pixels data AX_SAFE_FREE(_data); _dataLen = 0; break; } _pixelFormat = backend::PixelFormat::RGBA8; } _hasPremultipliedAlpha = isCompressedImageHavePMA(CompressedImagePMAFlag::ETC2); return true; } while (false); return false; } bool Image::initWithASTCData(uint8_t* data, ssize_t dataLen, bool ownData) { astc_header* hdr = (astc_header*)data; do { // Ensure these are not zero to avoid div by zero unsigned int block_x = (std::max)((unsigned int)hdr->block_x, 1u); unsigned int block_y = (std::max)((unsigned int)hdr->block_y, 1u); // unsigned int block_z = std::max((unsigned int) hdr->block_z, 1u); unsigned int dim_x = astc_unpack_bytes(hdr->dim_x[0], hdr->dim_x[1], hdr->dim_x[2], 0); unsigned int dim_y = astc_unpack_bytes(hdr->dim_y[0], hdr->dim_y[1], hdr->dim_y[2], 0); // unsigned int dim_z = astc_unpack_bytes(hdr->dim_z[0], hdr->dim_z[1], hdr->dim_z[2], 0); if (dim_x == 0 || dim_y == 0) break; _width = dim_x; _height = dim_y; if (block_x < 4 || block_y < 4) { AXLOG("axmol: The ASTC block with and height should be >= 4"); break; } if (Configuration::getInstance()->supportsASTC()) { if (block_x == 4 && block_y == 4) { _pixelFormat = backend::PixelFormat::ASTC4x4; } else if (block_x == 5 && block_y == 5) { _pixelFormat = backend::PixelFormat::ASTC5x5; } else if (block_x == 6 && block_y == 6) { _pixelFormat = backend::PixelFormat::ASTC6x6; } else if (block_x == 8 && block_y == 5) { _pixelFormat = backend::PixelFormat::ASTC8x5; } else if (block_x == 8 && block_y == 6) { _pixelFormat = backend::PixelFormat::ASTC8x6; } else if (block_x == 8 && block_y == 8) { _pixelFormat = backend::PixelFormat::ASTC8x8; } else if (block_x == 10 && block_y == 5) { _pixelFormat = backend::PixelFormat::ASTC10x5; } forwardPixels(data, dataLen, ASTC_HEAD_SIZE, ownData); } else { AXLOG("axmol: Hardware ASTC decoder not present. Using software decoder"); _dataLen = _width * _height * 4; _data = static_cast(malloc(_dataLen)); if (UTILS_UNLIKELY(astc_decompress_image(static_cast(data) + ASTC_HEAD_SIZE, dataLen - ASTC_HEAD_SIZE, _data, _width, _height, block_x, block_y) != 0)) { AX_SAFE_FREE(_data); _dataLen = 0; break; } _pixelFormat = backend::PixelFormat::RGBA8; } _hasPremultipliedAlpha = isCompressedImageHavePMA(CompressedImagePMAFlag::ASTC); return true; } while (false); return false; } bool Image::initWithS3TCData(uint8_t* data, ssize_t dataLen, bool ownData) { const uint32_t FOURCC_DXT1 = makeFourCC('D', 'X', 'T', '1'); const uint32_t FOURCC_DXT3 = makeFourCC('D', 'X', 'T', '3'); const uint32_t FOURCC_DXT5 = makeFourCC('D', 'X', 'T', '5'); /* load the .dds file */ S3TCTexHeader* header = (S3TCTexHeader*)data; _width = header->ddsd.width; _height = header->ddsd.height; _numberOfMipmaps = MAX( 1, header->ddsd.DUMMYUNIONNAMEN2 .mipMapCount); // if dds header reports 0 mipmaps, set to 1 to force correct software decoding (if needed). _dataLen = 0; int blockSize = (FOURCC_DXT1 == header->ddsd.DUMMYUNIONNAMEN4.ddpfPixelFormat.fourCC) ? 8 : 16; /* calculate the dataLen */ int width = _width; int height = _height; const int pixelOffset = sizeof(S3TCTexHeader); uint8_t* pixelData = data + pixelOffset; bool hardware = Configuration::getInstance()->supportsS3TC(); /* if hardware supports s3tc, set pixelformat before loading mipmaps, to support non-mipmapped textures */ if (hardware) { // decode texture through hardware if (FOURCC_DXT1 == header->ddsd.DUMMYUNIONNAMEN4.ddpfPixelFormat.fourCC) { _pixelFormat = backend::PixelFormat::S3TC_DXT1; } else if (FOURCC_DXT3 == header->ddsd.DUMMYUNIONNAMEN4.ddpfPixelFormat.fourCC) { _pixelFormat = backend::PixelFormat::S3TC_DXT3; } else if (FOURCC_DXT5 == header->ddsd.DUMMYUNIONNAMEN4.ddpfPixelFormat.fourCC) { _pixelFormat = backend::PixelFormat::S3TC_DXT5; } } else { // will software decode _pixelFormat = backend::PixelFormat::RGBA8; // prepare data for software decompress for (int i = 0; i < _numberOfMipmaps && (width || height); ++i) { if (width == 0) width = 1; if (height == 0) height = 1; _dataLen += (height * width * 4); width >>= 1; height >>= 1; } _data = static_cast(malloc(_dataLen)); } /* load the mipmaps */ int encodeOffset = 0; int decodeOffset = 0; width = _width; height = _height; for (int i = 0; i < _numberOfMipmaps && (width || height); ++i) { if (width == 0) width = 1; if (height == 0) height = 1; int size = ((width + 3) / 4) * ((height + 3) / 4) * blockSize; if (Configuration::getInstance()->supportsS3TC()) { // decode texture through hardware _mipmaps[i].address = (uint8_t*)pixelData + encodeOffset; _mipmaps[i].len = size; } else { // if it is not gles or device do not support S3TC, decode texture by software AXLOG("axmol: Hardware S3TC decoder not present. Using software decoder"); int bytePerPixel = 4; unsigned int stride = width * bytePerPixel; std::vector decodeImageData(stride * height); if (FOURCC_DXT1 == header->ddsd.DUMMYUNIONNAMEN4.ddpfPixelFormat.fourCC) { s3tc_decode(pixelData + encodeOffset, &decodeImageData[0], width, height, S3TCDecodeFlag::DXT1); } else if (FOURCC_DXT3 == header->ddsd.DUMMYUNIONNAMEN4.ddpfPixelFormat.fourCC) { s3tc_decode(pixelData + encodeOffset, &decodeImageData[0], width, height, S3TCDecodeFlag::DXT3); } else if (FOURCC_DXT5 == header->ddsd.DUMMYUNIONNAMEN4.ddpfPixelFormat.fourCC) { s3tc_decode(pixelData + encodeOffset, &decodeImageData[0], width, height, S3TCDecodeFlag::DXT5); } _mipmaps[i].address = (uint8_t*)_data + decodeOffset; _mipmaps[i].len = (stride * height); memcpy((void*)_mipmaps[i].address, (void*)&decodeImageData[0], _mipmaps[i].len); decodeOffset += stride * height; } encodeOffset += size; width >>= 1; height >>= 1; } /* end load the mipmaps */ if (hardware) { forwardPixels(data, dataLen, pixelOffset, ownData); } return true; } bool Image::initWithATITCData(uint8_t* data, ssize_t dataLen, bool ownData) { /* load the .ktx file */ KTXv1Header* header = (KTXv1Header*)data; _width = header->pixelWidth; _height = header->pixelHeight; _numberOfMipmaps = header->numberOfMipmapLevels; int blockSize = 0; switch (header->glInternalFormat) { case KTXv1Header::InternalFormat::ATC_RGB_AMD: blockSize = 8; break; case KTXv1Header::InternalFormat::ATC_RGBA_EXPLICIT_ALPHA_AMD: blockSize = 16; break; case KTXv1Header::InternalFormat::ATC_RGBA_INTERPOLATED_ALPHA_AMD: blockSize = 16; break; default: break; } /* pixelData point to the compressed data address */ int pixelOffset = KTX_V1_HEADER_SIZE + header->bytesOfKeyValueData + 4; uint8_t* pixelData = (uint8_t*)data + pixelOffset; /* calculate the dataLen */ int width = _width; int height = _height; bool hardware = Configuration::getInstance()->supportsATITC(); if (hardware) // compressed data length { AXLOG("this is atitc H decode"); switch (header->glInternalFormat) { case KTXv1Header::InternalFormat::ATC_RGB_AMD: _pixelFormat = backend::PixelFormat::ATC_RGB; break; case KTXv1Header::InternalFormat::ATC_RGBA_EXPLICIT_ALPHA_AMD: _pixelFormat = backend::PixelFormat::ATC_EXPLICIT_ALPHA; break; case KTXv1Header::InternalFormat::ATC_RGBA_INTERPOLATED_ALPHA_AMD: _pixelFormat = backend::PixelFormat::ATC_INTERPOLATED_ALPHA; break; default: break; } } else // decompressed data length { /* if it is not gles or device do not support ATITC, decode texture by software */ AXLOG("axmol: Hardware ATITC decoder not present. Using software decoder"); _pixelFormat = backend::PixelFormat::RGBA8; for (int i = 0; i < _numberOfMipmaps && (width || height); ++i) { if (width == 0) width = 1; if (height == 0) height = 1; _dataLen += (height * width * 4); width >>= 1; height >>= 1; } _data = static_cast(malloc(_dataLen)); } /* load the mipmaps */ int encodeOffset = 0; int decodeOffset = 0; width = _width; height = _height; for (int i = 0; i < _numberOfMipmaps && (width || height); ++i) { if (width == 0) width = 1; if (height == 0) height = 1; int size = ((width + 3) / 4) * ((height + 3) / 4) * blockSize; if (hardware) { /* decode texture through hardware */ _mipmaps[i].address = (uint8_t*)pixelData + encodeOffset; _mipmaps[i].len = size; } else { int bytePerPixel = 4; unsigned int stride = width * bytePerPixel; std::vector decodeImageData(stride * height); switch (header->glInternalFormat) { case KTXv1Header::InternalFormat::ATC_RGB_AMD: atitc_decode(pixelData + encodeOffset, &decodeImageData[0], width, height, ATITCDecodeFlag::ATC_RGB); break; case KTXv1Header::InternalFormat::ATC_RGBA_EXPLICIT_ALPHA_AMD: atitc_decode(pixelData + encodeOffset, &decodeImageData[0], width, height, ATITCDecodeFlag::ATC_EXPLICIT_ALPHA); break; case KTXv1Header::InternalFormat::ATC_RGBA_INTERPOLATED_ALPHA_AMD: atitc_decode(pixelData + encodeOffset, &decodeImageData[0], width, height, ATITCDecodeFlag::ATC_INTERPOLATED_ALPHA); break; default: break; } _mipmaps[i].address = (uint8_t*)_data + decodeOffset; _mipmaps[i].len = (stride * height); memcpy((void*)_mipmaps[i].address, (void*)&decodeImageData[0], _mipmaps[i].len); decodeOffset += stride * height; } encodeOffset += (size + 4); width >>= 1; height >>= 1; } /* end load the mipmaps */ if (hardware) { forwardPixels(data, dataLen, pixelOffset, ownData); } return true; } bool Image::initWithPVRData(uint8_t* data, ssize_t dataLen, bool ownData) { return initWithPVRv2Data(data, dataLen, ownData) || initWithPVRv3Data(data, dataLen, ownData); } void Image::forwardPixels(uint8_t* data, ssize_t dataLen, int offset, bool ownData) { if (ownData) { _data = data; _dataLen = dataLen; _offset = offset; } else { _dataLen = dataLen - offset; _data = (uint8_t*)malloc(_dataLen); memcpy(_data, data + offset, _dataLen); } } #if (AX_TARGET_PLATFORM != AX_PLATFORM_IOS) bool Image::saveToFile(std::string_view filename, bool isToRGB) { // only support for backend::PixelFormat::RGB8 or backend::PixelFormat::RGBA8 uncompressed data if (isCompressed() || (_pixelFormat != backend::PixelFormat::RGB8 && _pixelFormat != backend::PixelFormat::RGBA8)) { AXLOG( "cocos2d: Image: saveToFile is only support for backend::PixelFormat::RGB8 or backend::PixelFormat::RGBA8 " "uncompressed data for now"); return false; } std::string fileExtension = FileUtils::getInstance()->getFileExtension(filename); if (fileExtension == ".png") { return saveImageToPNG(filename, isToRGB); } else if (fileExtension == ".jpg") { return saveImageToJPG(filename); } else { AXLOG("axmol: Image: saveToFile no support file extension(only .png or .jpg) for file: %s", filename.data()); return false; } } #endif bool Image::saveImageToPNG(std::string_view filePath, bool isToRGB) { #if AX_USE_PNG bool ret = false; do { png_structp png_ptr; png_infop info_ptr; png_bytep* row_pointers; auto outStream = FileUtils::getInstance()->openFileStream(filePath, FileStream::Mode::WRITE); AX_BREAK_IF(nullptr == outStream); png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); if (nullptr == png_ptr) { outStream.reset(); break; } info_ptr = png_create_info_struct(png_ptr); if (nullptr == info_ptr) { outStream.reset(); png_destroy_write_struct(&png_ptr, nullptr); break; } if (setjmp(png_jmpbuf(png_ptr))) { outStream.reset(); png_destroy_write_struct(&png_ptr, &info_ptr); break; } // png_init_io(png_ptr, outStream); png_set_write_fn(png_ptr, outStream.get(), pngWriteCallback, nullptr); if (!isToRGB && hasAlpha()) { png_set_IHDR(png_ptr, info_ptr, _width, _height, 8, PNG_COLOR_TYPE_RGB_ALPHA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE); } else { png_set_IHDR(png_ptr, info_ptr, _width, _height, 8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE); } png_write_info(png_ptr, info_ptr); png_set_packing(png_ptr); row_pointers = (png_bytep*)malloc(_height * sizeof(png_bytep)); if (row_pointers == nullptr) { outStream.reset(); png_destroy_write_struct(&png_ptr, &info_ptr); break; } if (!hasAlpha()) { for (int i = 0; i < (int)_height; i++) { row_pointers[i] = (png_bytep)_data + i * _width * 3; } png_write_image(png_ptr, row_pointers); free(row_pointers); row_pointers = nullptr; } else { if (isToRGB) { uint8_t* tempData = static_cast(malloc(_width * _height * 3)); if (nullptr == tempData) { outStream.reset(); png_destroy_write_struct(&png_ptr, &info_ptr); free(row_pointers); row_pointers = nullptr; break; } for (int i = 0; i < _height; ++i) { for (int j = 0; j < _width; ++j) { tempData[(i * _width + j) * 3] = _data[(i * _width + j) * 4]; tempData[(i * _width + j) * 3 + 1] = _data[(i * _width + j) * 4 + 1]; tempData[(i * _width + j) * 3 + 2] = _data[(i * _width + j) * 4 + 2]; } } for (int i = 0; i < (int)_height; i++) { row_pointers[i] = (png_bytep)tempData + i * _width * 3; } png_write_image(png_ptr, row_pointers); free(row_pointers); row_pointers = nullptr; if (tempData != nullptr) { free(tempData); } } else { for (int i = 0; i < (int)_height; i++) { row_pointers[i] = (png_bytep)_data + i * _width * 4; } png_write_image(png_ptr, row_pointers); free(row_pointers); row_pointers = nullptr; } } png_write_end(png_ptr, info_ptr); png_destroy_write_struct(&png_ptr, &info_ptr); outStream.reset(); ret = true; } while (0); return ret; #else AXLOG("png is not enabled, please enable it in ccConfig.h"); return false; #endif // AX_USE_PNG } bool Image::saveImageToJPG(std::string_view filePath) { #if AX_USE_JPEG bool ret = false; do { struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; std::unique_ptr outfile; /* target file */ JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */ int row_stride; /* physical row width in image buffer */ cinfo.err = jpeg_std_error(&jerr); /* Now we can initialize the JPEG compression object. */ jpeg_create_compress(&cinfo); outfile = FileUtils::getInstance()->openFileStream(filePath, FileStream::Mode::WRITE); AX_BREAK_IF(nullptr == outfile); unsigned char* outputBuffer = nullptr; unsigned long outputSize = 0; jpeg_mem_dest(&cinfo, &outputBuffer, &outputSize); cinfo.image_width = _width; /* image width and height, in pixels */ cinfo.image_height = _height; cinfo.input_components = 3; /* # of color components per pixel */ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */ jpeg_set_defaults(&cinfo); jpeg_set_quality(&cinfo, 90, TRUE); jpeg_start_compress(&cinfo, TRUE); row_stride = _width * 3; /* JSAMPLEs per row in image_buffer */ if (hasAlpha()) { uint8_t* tempData = static_cast(malloc(_width * _height * 3)); if (nullptr == tempData) { jpeg_finish_compress(&cinfo); jpeg_destroy_compress(&cinfo); outfile.reset(); if (outputBuffer) { free(outputBuffer); outputBuffer = nullptr; } break; } for (int i = 0; i < _height; ++i) { for (int j = 0; j < _width; ++j) { tempData[(i * _width + j) * 3] = _data[(i * _width + j) * 4]; tempData[(i * _width + j) * 3 + 1] = _data[(i * _width + j) * 4 + 1]; tempData[(i * _width + j) * 3 + 2] = _data[(i * _width + j) * 4 + 2]; } } while (cinfo.next_scanline < cinfo.image_height) { row_pointer[0] = &tempData[cinfo.next_scanline * row_stride]; (void)jpeg_write_scanlines(&cinfo, row_pointer, 1); } if (tempData != nullptr) { free(tempData); } } else { while (cinfo.next_scanline < cinfo.image_height) { row_pointer[0] = &_data[cinfo.next_scanline * row_stride]; (void)jpeg_write_scanlines(&cinfo, row_pointer, 1); } } jpeg_finish_compress(&cinfo); outfile->write(outputBuffer, outputSize); outfile.reset(); if (outputBuffer) { free(outputBuffer); outputBuffer = nullptr; } jpeg_destroy_compress(&cinfo); ret = true; } while (0); return ret; #else AXLOG("jpeg is not enabled, please enable it in ccConfig.h"); return false; #endif // AX_USE_JPEG } void Image::premultiplyAlpha() { #if AX_ENABLE_PREMULTIPLIED_ALPHA AXASSERT(_pixelFormat == backend::PixelFormat::RGBA8, "The pixel format should be RGBA8888!"); unsigned int* fourBytes = (unsigned int*)_data; for (int i = 0; i < _width * _height; i++) { uint8_t* p = _data + i * 4; fourBytes[i] = AX_RGB_PREMULTIPLY_ALPHA(p[0], p[1], p[2], p[3]); } _hasPremultipliedAlpha = true; #else _hasPremultipliedAlpha = false; #endif } static inline uint8_t clamp(int x) { return (uint8_t)(x >= 0 ? (x < 255 ? x : 255) : 0); } void Image::reversePremultipliedAlpha() { AXASSERT(_pixelFormat == backend::PixelFormat::RGBA8, "The pixel format should be RGBA8888!"); unsigned int* fourBytes = (unsigned int*)_data; for (int i = 0; i < _width * _height; i++) { uint8_t* p = _data + i * 4; if (p[3] > 0) { fourBytes[i] = clamp(int(std::ceil((p[0] * 255.0f) / p[3]))) | clamp(int(std::ceil((p[1] * 255.0f) / p[3]))) << 8 | clamp(int(std::ceil((p[2] * 255.0f) / p[3]))) << 16 | p[3] << 24; } } _hasPremultipliedAlpha = false; } NS_AX_END