/**************************************************************************** Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2009 On-Core http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "CCActionGrid3D.h" #include "support/CCPointExtension.h" #include "CCDirector.h" #include NS_CC_BEGIN // implementation of Waves3D Waves3D* Waves3D::create(float duration, const Size& gridSize, unsigned int waves, float amplitude) { Waves3D *pAction = new Waves3D(); if (pAction) { if (pAction->initWithDuration(duration, gridSize, waves, amplitude)) { pAction->autorelease(); } else { CC_SAFE_RELEASE_NULL(pAction); } } return pAction; } bool Waves3D::initWithDuration(float duration, const Size& gridSize, unsigned int waves, float amplitude) { if (Grid3DAction::initWithDuration(duration, gridSize)) { _waves = waves; _amplitude = amplitude; _amplitudeRate = 1.0f; return true; } return false; } Waves3D* Waves3D::clone() const { // no copy constructor auto a = new Waves3D(); a->initWithDuration(_duration, _gridSize, _waves, _amplitude); a->autorelease(); return a; } void Waves3D::update(float time) { int i, j; for (i = 0; i < _gridSize.width + 1; ++i) { for (j = 0; j < _gridSize.height + 1; ++j) { Vertex3F v = getOriginalVertex(ccp(i ,j)); v.z += (sinf((float)M_PI * time * _waves * 2 + (v.y+v.x) * 0.01f) * _amplitude * _amplitudeRate); //CCLOG("v.z offset is %f\n", (sinf((float)M_PI * time * _waves * 2 + (v.y+v.x) * .01f) * _amplitude * _amplitudeRate)); setVertex(ccp(i, j), v); } } } // implementation of FlipX3D FlipX3D* FlipX3D::create(float duration) { FlipX3D *pAction = new FlipX3D(); if (pAction) { if (pAction->initWithDuration(duration)) { pAction->autorelease(); } else { CC_SAFE_RELEASE_NULL(pAction); } } return pAction; } bool FlipX3D::initWithDuration(float duration) { return Grid3DAction::initWithDuration(duration, CCSizeMake(1, 1)); } bool FlipX3D::initWithSize(const Size& gridSize, float duration) { if (gridSize.width != 1 || gridSize.height != 1) { // Grid size must be (1,1) CCAssert(0, "Grid size must be (1,1)"); return false; } return Grid3DAction::initWithDuration(duration, gridSize); } FlipX3D* FlipX3D::clone() const { // no copy constructor auto a = new FlipX3D(); a->initWithSize(_gridSize, _duration); a->autorelease(); return a; } void FlipX3D::update(float time) { float angle = (float)M_PI * time; // 180 degrees float mz = sinf(angle); angle = angle / 2.0f; // x calculates degrees from 0 to 90 float mx = cosf(angle); Vertex3F v0, v1, v, diff; v0 = getOriginalVertex(ccp(1, 1)); v1 = getOriginalVertex(ccp(0, 0)); float x0 = v0.x; float x1 = v1.x; float x; Point a, b, c, d; if ( x0 > x1 ) { // Normal Grid a = ccp(0,0); b = ccp(0,1); c = ccp(1,0); d = ccp(1,1); x = x0; } else { // Reversed Grid c = ccp(0,0); d = ccp(0,1); a = ccp(1,0); b = ccp(1,1); x = x1; } diff.x = ( x - x * mx ); diff.z = fabsf( floorf( (x * mz) / 4.0f ) ); // bottom-left v = getOriginalVertex(a); v.x = diff.x; v.z += diff.z; setVertex(a, v); // upper-left v = getOriginalVertex(b); v.x = diff.x; v.z += diff.z; setVertex(b, v); // bottom-right v = getOriginalVertex(c); v.x -= diff.x; v.z -= diff.z; setVertex(c, v); // upper-right v = getOriginalVertex(d); v.x -= diff.x; v.z -= diff.z; setVertex(d, v); } // implementation of FlipY3D FlipY3D* FlipY3D::clone() const { // no copy constructor auto a = new FlipY3D(); a->initWithSize(_gridSize, _duration); a->autorelease(); return a; } FlipY3D* FlipY3D::create(float duration) { FlipY3D *pAction = new FlipY3D(); if (pAction) { if (pAction->initWithDuration(duration)) { pAction->autorelease(); } else { CC_SAFE_RELEASE_NULL(pAction); } } return pAction; } void FlipY3D::update(float time) { float angle = (float)M_PI * time; // 180 degrees float mz = sinf( angle ); angle = angle / 2.0f; // x calculates degrees from 0 to 90 float my = cosf(angle); Vertex3F v0, v1, v, diff; v0 = getOriginalVertex(ccp(1, 1)); v1 = getOriginalVertex(ccp(0, 0)); float y0 = v0.y; float y1 = v1.y; float y; Point a, b, c, d; if (y0 > y1) { // Normal Grid a = ccp(0,0); b = ccp(0,1); c = ccp(1,0); d = ccp(1,1); y = y0; } else { // Reversed Grid b = ccp(0,0); a = ccp(0,1); d = ccp(1,0); c = ccp(1,1); y = y1; } diff.y = y - y * my; diff.z = fabsf(floorf((y * mz) / 4.0f)); // bottom-left v = getOriginalVertex(a); v.y = diff.y; v.z += diff.z; setVertex(a, v); // upper-left v = getOriginalVertex(b); v.y -= diff.y; v.z -= diff.z; setVertex(b, v); // bottom-right v = getOriginalVertex(c); v.y = diff.y; v.z += diff.z; setVertex(c, v); // upper-right v = getOriginalVertex(d); v.y -= diff.y; v.z -= diff.z; setVertex(d, v); } // implementation of Lens3D Lens3D* Lens3D::create(float duration, const Size& gridSize, const Point& position, float radius) { Lens3D *pAction = new Lens3D(); if (pAction) { if (pAction->initWithDuration(duration, gridSize, position, radius)) { pAction->autorelease(); } else { CC_SAFE_RELEASE_NULL(pAction); } } return pAction; } bool Lens3D::initWithDuration(float duration, const Size& gridSize, const Point& position, float radius) { if (Grid3DAction::initWithDuration(duration, gridSize)) { _position = ccp(-1, -1); setPosition(position); _radius = radius; _lensEffect = 0.7f; _concave = false; _dirty = true; return true; } return false; } Lens3D* Lens3D::clone() const { // no copy constructor auto a = new Lens3D(); a->initWithDuration(_duration, _gridSize, _position, _radius); a->autorelease(); return a; } void Lens3D::setPosition(const Point& pos) { if( !pos.equals(_position)) { _position = pos; _dirty = true; } } void Lens3D::update(float time) { CC_UNUSED_PARAM(time); if (_dirty) { int i, j; for (i = 0; i < _gridSize.width + 1; ++i) { for (j = 0; j < _gridSize.height + 1; ++j) { Vertex3F v = getOriginalVertex(ccp(i, j)); Point vect = _position - ccp(v.x, v.y); float r = vect.getLength(); if (r < _radius) { r = _radius - r; float pre_log = r / _radius; if ( pre_log == 0 ) { pre_log = 0.001f; } float l = logf(pre_log) * _lensEffect; float new_r = expf( l ) * _radius; if (vect.getLength() > 0) { vect = vect.normalize(); Point new_vect = vect * new_r; v.z += (_concave ? -1.0f : 1.0f) * new_vect.getLength() * _lensEffect; } } setVertex(ccp(i, j), v); } } _dirty = false; } } // implementation of Ripple3D Ripple3D* Ripple3D::create(float duration, const Size& gridSize, const Point& position, float radius, unsigned int waves, float amplitude) { Ripple3D *pAction = new Ripple3D(); if (pAction) { if (pAction->initWithDuration(duration, gridSize, position, radius, waves, amplitude)) { pAction->autorelease(); } else { CC_SAFE_RELEASE_NULL(pAction); } } return pAction; } bool Ripple3D::initWithDuration(float duration, const Size& gridSize, const Point& position, float radius, unsigned int waves, float amplitude) { if (Grid3DAction::initWithDuration(duration, gridSize)) { setPosition(position); _radius = radius; _waves = waves; _amplitude = amplitude; _amplitudeRate = 1.0f; return true; } return false; } void Ripple3D::setPosition(const Point& position) { _position = position; } Ripple3D* Ripple3D::clone() const { // no copy constructor auto a = new Ripple3D(); a->initWithDuration(_duration, _gridSize, _position, _radius, _waves, _amplitude); a->autorelease(); return a; } void Ripple3D::update(float time) { int i, j; for (i = 0; i < (_gridSize.width+1); ++i) { for (j = 0; j < (_gridSize.height+1); ++j) { Vertex3F v = getOriginalVertex(ccp(i, j)); Point vect = _position - ccp(v.x,v.y); float r = vect.getLength(); if (r < _radius) { r = _radius - r; float rate = powf(r / _radius, 2); v.z += (sinf( time*(float)M_PI * _waves * 2 + r * 0.1f) * _amplitude * _amplitudeRate * rate); } setVertex(ccp(i, j), v); } } } // implementation of Shaky3D Shaky3D* Shaky3D::create(float duration, const Size& gridSize, int range, bool shakeZ) { Shaky3D *pAction = new Shaky3D(); if (pAction) { if (pAction->initWithDuration(duration, gridSize, range, shakeZ)) { pAction->autorelease(); } else { CC_SAFE_RELEASE_NULL(pAction); } } return pAction; } bool Shaky3D::initWithDuration(float duration, const Size& gridSize, int range, bool shakeZ) { if (Grid3DAction::initWithDuration(duration, gridSize)) { _randrange = range; _shakeZ = shakeZ; return true; } return false; } Shaky3D* Shaky3D::clone() const { // no copy constructor auto a = new Shaky3D(); a->initWithDuration(_duration, _gridSize, _randrange, _shakeZ); a->autorelease(); return a; } void Shaky3D::update(float time) { CC_UNUSED_PARAM(time); int i, j; for (i = 0; i < (_gridSize.width+1); ++i) { for (j = 0; j < (_gridSize.height+1); ++j) { Vertex3F v = getOriginalVertex(ccp(i ,j)); v.x += (rand() % (_randrange*2)) - _randrange; v.y += (rand() % (_randrange*2)) - _randrange; if (_shakeZ) { v.z += (rand() % (_randrange*2)) - _randrange; } setVertex(ccp(i, j), v); } } } // implementation of Liquid Liquid* Liquid::create(float duration, const Size& gridSize, unsigned int waves, float amplitude) { Liquid *pAction = new Liquid(); if (pAction) { if (pAction->initWithDuration(duration, gridSize, waves, amplitude)) { pAction->autorelease(); } else { CC_SAFE_RELEASE_NULL(pAction); } } return pAction; } bool Liquid::initWithDuration(float duration, const Size& gridSize, unsigned int waves, float amplitude) { if (Grid3DAction::initWithDuration(duration, gridSize)) { _waves = waves; _amplitude = amplitude; _amplitudeRate = 1.0f; return true; } return false; } Liquid* Liquid::clone() const { // no copy constructor auto a = new Liquid(); a->initWithDuration(_duration, _gridSize, _waves, _amplitude); a->autorelease(); return a; } void Liquid::update(float time) { int i, j; for (i = 1; i < _gridSize.width; ++i) { for (j = 1; j < _gridSize.height; ++j) { Vertex3F v = getOriginalVertex(ccp(i, j)); v.x = (v.x + (sinf(time * (float)M_PI * _waves * 2 + v.x * .01f) * _amplitude * _amplitudeRate)); v.y = (v.y + (sinf(time * (float)M_PI * _waves * 2 + v.y * .01f) * _amplitude * _amplitudeRate)); setVertex(ccp(i, j), v); } } } // implementation of Waves Waves* Waves::create(float duration, const Size& gridSize, unsigned int waves, float amplitude, bool horizontal, bool vertical) { Waves *pAction = new Waves(); if (pAction) { if (pAction->initWithDuration(duration, gridSize, waves, amplitude, horizontal, vertical)) { pAction->autorelease(); } else { CC_SAFE_RELEASE_NULL(pAction); } } return pAction; } bool Waves::initWithDuration(float duration, const Size& gridSize, unsigned int waves, float amplitude, bool horizontal, bool vertical) { if (Grid3DAction::initWithDuration(duration, gridSize)) { _waves = waves; _amplitude = amplitude; _amplitudeRate = 1.0f; _horizontal = horizontal; _vertical = vertical; return true; } return false; } Waves* Waves::clone() const { // no copy constructor auto a = new Waves(); a->initWithDuration(_duration, _gridSize, _waves, _amplitude, _horizontal, _vertical); a->autorelease(); return a; } void Waves::update(float time) { int i, j; for (i = 0; i < _gridSize.width + 1; ++i) { for (j = 0; j < _gridSize.height + 1; ++j) { Vertex3F v = getOriginalVertex(ccp(i, j)); if (_vertical) { v.x = (v.x + (sinf(time * (float)M_PI * _waves * 2 + v.y * .01f) * _amplitude * _amplitudeRate)); } if (_horizontal) { v.y = (v.y + (sinf(time * (float)M_PI * _waves * 2 + v.x * .01f) * _amplitude * _amplitudeRate)); } setVertex(ccp(i, j), v); } } } // implementation of Twirl Twirl* Twirl::create(float duration, const Size& gridSize, Point position, unsigned int twirls, float amplitude) { Twirl *pAction = new Twirl(); if (pAction) { if (pAction->initWithDuration(duration, gridSize, position, twirls, amplitude)) { pAction->autorelease(); } else { CC_SAFE_RELEASE_NULL(pAction); } } return pAction; } bool Twirl::initWithDuration(float duration, const Size& gridSize, Point position, unsigned int twirls, float amplitude) { if (Grid3DAction::initWithDuration(duration, gridSize)) { setPosition(position); _twirls = twirls; _amplitude = amplitude; _amplitudeRate = 1.0f; return true; } return false; } void Twirl::setPosition(const Point& position) { _position = position; } Twirl *Twirl::clone() const { // no copy constructor auto a = new Twirl(); a->initWithDuration(_duration, _gridSize, _position, _twirls, _amplitude); a->autorelease(); return a; } void Twirl::update(float time) { int i, j; Point c = _position; for (i = 0; i < (_gridSize.width+1); ++i) { for (j = 0; j < (_gridSize.height+1); ++j) { Vertex3F v = getOriginalVertex(ccp(i ,j)); Point avg = ccp(i-(_gridSize.width/2.0f), j-(_gridSize.height/2.0f)); float r = avg.getLength(); float amp = 0.1f * _amplitude * _amplitudeRate; float a = r * cosf( (float)M_PI/2.0f + time * (float)M_PI * _twirls * 2 ) * amp; Point d = ccp( sinf(a) * (v.y-c.y) + cosf(a) * (v.x-c.x), cosf(a) * (v.y-c.y) - sinf(a) * (v.x-c.x)); v.x = c.x + d.x; v.y = c.y + d.y; setVertex(ccp(i ,j), v); } } } NS_CC_END