/* Copyright (c) 2007 Scott Lembcke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include "chipmunk_private.h" void cpMessage(const char *condition, const char *file, int line, cpBool isError, cpBool isHardError, const char *message, ...) { fprintf(stderr, (isError ? "Aborting due to Chipmunk error: " : "Chipmunk warning: ")); va_list vargs; va_start(vargs, message); { vfprintf(stderr, message, vargs); fprintf(stderr, "\n"); } va_end(vargs); fprintf(stderr, "\tFailed condition: %s\n", condition); fprintf(stderr, "\tSource:%s:%d\n", file, line); if(isError) abort(); } #define STR(s) #s #define XSTR(s) STR(s) const char *cpVersionString = XSTR(CP_VERSION_MAJOR)"."XSTR(CP_VERSION_MINOR)"."XSTR(CP_VERSION_RELEASE); void cpInitChipmunk(void) { cpAssertWarn(cpFalse, "cpInitChipmunk is deprecated and no longer required. It will be removed in the future."); } //MARK: Misc Functions cpFloat cpMomentForCircle(cpFloat m, cpFloat r1, cpFloat r2, cpVect offset) { return m*(0.5f*(r1*r1 + r2*r2) + cpvlengthsq(offset)); } cpFloat cpAreaForCircle(cpFloat r1, cpFloat r2) { return (cpFloat)M_PI*cpfabs(r1*r1 - r2*r2); } cpFloat cpMomentForSegment(cpFloat m, cpVect a, cpVect b) { cpVect offset = cpvmult(cpvadd(a, b), 0.5f); return m*(cpvdistsq(b, a)/12.0f + cpvlengthsq(offset)); } cpFloat cpAreaForSegment(cpVect a, cpVect b, cpFloat r) { return r*((cpFloat)M_PI*r + 2.0f*cpvdist(a, b)); } cpFloat cpMomentForPoly(cpFloat m, const int numVerts, const cpVect *verts, cpVect offset) { cpFloat sum1 = 0.0f; cpFloat sum2 = 0.0f; for(int i=0; i max.x || (v.x == max.x && v.y > max.y)){ max = v; (*end) = i; } } } #define SWAP(__A__, __B__) {cpVect __TMP__ = __A__; __A__ = __B__; __B__ = __TMP__;} static int QHullPartition(cpVect *verts, int count, cpVect a, cpVect b, cpFloat tol) { if(count == 0) return 0; cpFloat max = 0; int pivot = 0; cpVect delta = cpvsub(b, a); cpFloat valueTol = tol*cpvlength(delta); int head = 0; for(int tail = count-1; head <= tail;){ cpFloat value = cpvcross(delta, cpvsub(verts[head], a)); if(value > valueTol){ if(value > max){ max = value; pivot = head; } head++; } else { SWAP(verts[head], verts[tail]); tail--; } } // move the new pivot to the front if it's not already there. if(pivot != 0) SWAP(verts[0], verts[pivot]); return head; } static int QHullReduce(cpFloat tol, cpVect *verts, int count, cpVect a, cpVect pivot, cpVect b, cpVect *result) { if(count < 0){ return 0; } else if(count == 0) { result[0] = pivot; return 1; } else { int left_count = QHullPartition(verts, count, a, pivot, tol); int index = QHullReduce(tol, verts + 1, left_count - 1, a, verts[0], pivot, result); result[index++] = pivot; int right_count = QHullPartition(verts + left_count, count - left_count, pivot, b, tol); return index + QHullReduce(tol, verts + left_count + 1, right_count - 1, pivot, verts[left_count], b, result + index); } } // QuickHull seemed like a neat algorithm, and efficient-ish for large input sets. // My implementation performs an in place reduction using the result array as scratch space. int cpConvexHull(int count, cpVect *verts, cpVect *result, int *first, cpFloat tol) { if(result){ // Copy the line vertexes into the empty part of the result polyline to use as a scratch buffer. memcpy(result, verts, count*sizeof(cpVect)); } else { // If a result array was not specified, reduce the input instead. result = verts; } // Degenerate case, all poins are the same. int start, end; cpLoopIndexes(verts, count, &start, &end); if(start == end){ if(first) (*first) = 0; return 1; } SWAP(result[0], result[start]); SWAP(result[1], result[end == 0 ? start : end]); cpVect a = result[0]; cpVect b = result[1]; if(first) (*first) = start; int resultCount = QHullReduce(tol, result + 2, count - 2, a, b, a, result + 1) + 1; cpAssertSoft(cpPolyValidate(result, resultCount), "Internal error: cpConvexHull() and cpPolyValidate() did not agree." "Please report this error with as much info as you can."); return resultCount; } //MARK: Alternate Block Iterators #if defined(__has_extension) #if __has_extension(blocks) static void IteratorFunc(void *ptr, void (^block)(void *ptr)){block(ptr);} void cpSpaceEachBody_b(cpSpace *space, void (^block)(cpBody *body)){ cpSpaceEachBody(space, (cpSpaceBodyIteratorFunc)IteratorFunc, block); } void cpSpaceEachShape_b(cpSpace *space, void (^block)(cpShape *shape)){ cpSpaceEachShape(space, (cpSpaceShapeIteratorFunc)IteratorFunc, block); } void cpSpaceEachConstraint_b(cpSpace *space, void (^block)(cpConstraint *constraint)){ cpSpaceEachConstraint(space, (cpSpaceConstraintIteratorFunc)IteratorFunc, block); } static void BodyIteratorFunc(cpBody *body, void *ptr, void (^block)(void *ptr)){block(ptr);} void cpBodyEachShape_b(cpBody *body, void (^block)(cpShape *shape)){ cpBodyEachShape(body, (cpBodyShapeIteratorFunc)BodyIteratorFunc, block); } void cpBodyEachConstraint_b(cpBody *body, void (^block)(cpConstraint *constraint)){ cpBodyEachConstraint(body, (cpBodyConstraintIteratorFunc)BodyIteratorFunc, block); } void cpBodyEachArbiter_b(cpBody *body, void (^block)(cpArbiter *arbiter)){ cpBodyEachArbiter(body, (cpBodyArbiterIteratorFunc)BodyIteratorFunc, block); } static void NearestPointQueryIteratorFunc(cpShape *shape, cpFloat distance, cpVect point, cpSpaceNearestPointQueryBlock block){block(shape, distance, point);} void cpSpaceNearestPointQuery_b(cpSpace *space, cpVect point, cpFloat maxDistance, cpLayers layers, cpGroup group, cpSpaceNearestPointQueryBlock block){ cpSpaceNearestPointQuery(space, point, maxDistance, layers, group, (cpSpaceNearestPointQueryFunc)NearestPointQueryIteratorFunc, block); } static void SegmentQueryIteratorFunc(cpShape *shape, cpFloat t, cpVect n, cpSpaceSegmentQueryBlock block){block(shape, t, n);} void cpSpaceSegmentQuery_b(cpSpace *space, cpVect start, cpVect end, cpLayers layers, cpGroup group, cpSpaceSegmentQueryBlock block){ cpSpaceSegmentQuery(space, start, end, layers, group, (cpSpaceSegmentQueryFunc)SegmentQueryIteratorFunc, block); } void cpSpaceBBQuery_b(cpSpace *space, cpBB bb, cpLayers layers, cpGroup group, cpSpaceBBQueryBlock block){ cpSpaceBBQuery(space, bb, layers, group, (cpSpaceBBQueryFunc)IteratorFunc, block); } static void ShapeQueryIteratorFunc(cpShape *shape, cpContactPointSet *points, cpSpaceShapeQueryBlock block){block(shape, points);} cpBool cpSpaceShapeQuery_b(cpSpace *space, cpShape *shape, cpSpaceShapeQueryBlock block){ return cpSpaceShapeQuery(space, shape, (cpSpaceShapeQueryFunc)ShapeQueryIteratorFunc, block); } #endif #endif #include "chipmunk_ffi.h"