/* * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include #include #include b2ChainShape::~b2ChainShape() { b2Free(m_vertices); m_vertices = NULL; m_count = 0; } void b2ChainShape::CreateLoop(const b2Vec2* vertices, int32 count) { b2Assert(m_vertices == NULL && m_count == 0); b2Assert(count >= 3); for (int32 i = 1; i < count; ++i) { b2Vec2 v1 = vertices[i-1]; b2Vec2 v2 = vertices[i]; // If the code crashes here, it means your vertices are too close together. b2Assert(b2DistanceSquared(v1, v2) > b2_linearSlop * b2_linearSlop); } m_count = count + 1; m_vertices = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2)); memcpy(m_vertices, vertices, count * sizeof(b2Vec2)); m_vertices[count] = m_vertices[0]; m_prevVertex = m_vertices[m_count - 2]; m_nextVertex = m_vertices[1]; m_hasPrevVertex = true; m_hasNextVertex = true; } void b2ChainShape::CreateChain(const b2Vec2* vertices, int32 count) { b2Assert(m_vertices == NULL && m_count == 0); b2Assert(count >= 2); for (int32 i = 1; i < count; ++i) { b2Vec2 v1 = vertices[i-1]; b2Vec2 v2 = vertices[i]; // If the code crashes here, it means your vertices are too close together. b2Assert(b2DistanceSquared(v1, v2) > b2_linearSlop * b2_linearSlop); } m_count = count; m_vertices = (b2Vec2*)b2Alloc(count * sizeof(b2Vec2)); memcpy(m_vertices, vertices, m_count * sizeof(b2Vec2)); m_hasPrevVertex = false; m_hasNextVertex = false; m_prevVertex.SetZero(); m_nextVertex.SetZero(); } void b2ChainShape::SetPrevVertex(const b2Vec2& prevVertex) { m_prevVertex = prevVertex; m_hasPrevVertex = true; } void b2ChainShape::SetNextVertex(const b2Vec2& nextVertex) { m_nextVertex = nextVertex; m_hasNextVertex = true; } b2Shape* b2ChainShape::Clone(b2BlockAllocator* allocator) const { void* mem = allocator->Allocate(sizeof(b2ChainShape)); b2ChainShape* clone = new (mem) b2ChainShape; clone->CreateChain(m_vertices, m_count); clone->m_prevVertex = m_prevVertex; clone->m_nextVertex = m_nextVertex; clone->m_hasPrevVertex = m_hasPrevVertex; clone->m_hasNextVertex = m_hasNextVertex; return clone; } int32 b2ChainShape::GetChildCount() const { // edge count = vertex count - 1 return m_count - 1; } void b2ChainShape::GetChildEdge(b2EdgeShape* edge, int32 index) const { b2Assert(0 <= index && index < m_count - 1); edge->m_type = b2Shape::e_edge; edge->m_radius = m_radius; edge->m_vertex1 = m_vertices[index + 0]; edge->m_vertex2 = m_vertices[index + 1]; if (index > 0) { edge->m_vertex0 = m_vertices[index - 1]; edge->m_hasVertex0 = true; } else { edge->m_vertex0 = m_prevVertex; edge->m_hasVertex0 = m_hasPrevVertex; } if (index < m_count - 2) { edge->m_vertex3 = m_vertices[index + 2]; edge->m_hasVertex3 = true; } else { edge->m_vertex3 = m_nextVertex; edge->m_hasVertex3 = m_hasNextVertex; } } bool b2ChainShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const { B2_NOT_USED(xf); B2_NOT_USED(p); return false; } bool b2ChainShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, const b2Transform& xf, int32 childIndex) const { b2Assert(childIndex < m_count); b2EdgeShape edgeShape; int32 i1 = childIndex; int32 i2 = childIndex + 1; if (i2 == m_count) { i2 = 0; } edgeShape.m_vertex1 = m_vertices[i1]; edgeShape.m_vertex2 = m_vertices[i2]; return edgeShape.RayCast(output, input, xf, 0); } void b2ChainShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const { b2Assert(childIndex < m_count); int32 i1 = childIndex; int32 i2 = childIndex + 1; if (i2 == m_count) { i2 = 0; } b2Vec2 v1 = b2Mul(xf, m_vertices[i1]); b2Vec2 v2 = b2Mul(xf, m_vertices[i2]); aabb->lowerBound = b2Min(v1, v2); aabb->upperBound = b2Max(v1, v2); } void b2ChainShape::ComputeMass(b2MassData* massData, float32 density) const { B2_NOT_USED(density); massData->mass = 0.0f; massData->center.SetZero(); massData->I = 0.0f; }