// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2011-2022 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- /** * @brief Functions for creating in-memory ASTC image structures. */ #include #include #include "astcenc_internal.h" /** * @brief Loader pipeline function type for data fetch from memory. */ using pixel_loader = vfloat4(*)(const void*, int); /** * @brief Loader pipeline function type for swizzling data in a vector. */ using pixel_swizzler = vfloat4(*)(vfloat4, const astcenc_swizzle&); /** * @brief Loader pipeline function type for converting data in a vector to LNS. */ using pixel_converter = vfloat4(*)(vfloat4, vmask4); /** * @brief Load a 8-bit UNORM texel from a data array. * * @param data The data pointer. * @param base_offset The index offset to the start of the pixel. */ static vfloat4 load_texel_u8( const void* data, int base_offset ) { const uint8_t* data8 = static_cast(data); return int_to_float(vint4(data8 + base_offset)) / 255.0f; } /** * @brief Load a 16-bit fp16 texel from a data array. * * @param data The data pointer. * @param base_offset The index offset to the start of the pixel. */ static vfloat4 load_texel_f16( const void* data, int base_offset ) { const uint16_t* data16 = static_cast(data); int r = data16[base_offset ]; int g = data16[base_offset + 1]; int b = data16[base_offset + 2]; int a = data16[base_offset + 3]; return float16_to_float(vint4(r, g, b, a)); } /** * @brief Load a 32-bit float texel from a data array. * * @param data The data pointer. * @param base_offset The index offset to the start of the pixel. */ static vfloat4 load_texel_f32( const void* data, int base_offset ) { const float* data32 = static_cast(data); return vfloat4(data32 + base_offset); } /** * @brief Dummy no-op swizzle function. * * @param data The source RGBA vector to swizzle. * @param swz The swizzle to use. */ static vfloat4 swz_texel_skip( vfloat4 data, const astcenc_swizzle& swz ) { (void)swz; return data; } /** * @brief Swizzle a texel into a new arrangement. * * @param data The source RGBA vector to swizzle. * @param swz The swizzle to use. */ static vfloat4 swz_texel( vfloat4 data, const astcenc_swizzle& swz ) { alignas(16) float datas[6]; storea(data, datas); datas[ASTCENC_SWZ_0] = 0.0f; datas[ASTCENC_SWZ_1] = 1.0f; return vfloat4(datas[swz.r], datas[swz.g], datas[swz.b], datas[swz.a]); } /** * @brief Encode a texel that is entirely LDR linear. * * @param data The RGBA data to encode. * @param lns_mask The mask for the HDR channels than need LNS encoding. */ static vfloat4 encode_texel_unorm( vfloat4 data, vmask4 lns_mask ) { (void)lns_mask; return data * 65535.0f; } /** * @brief Encode a texel that includes at least some HDR LNS texels. * * @param data The RGBA data to encode. * @param lns_mask The mask for the HDR channels than need LNS encoding. */ static vfloat4 encode_texel_lns( vfloat4 data, vmask4 lns_mask ) { vfloat4 datav_unorm = data * 65535.0f; vfloat4 datav_lns = float_to_lns(data); return select(datav_unorm, datav_lns, lns_mask); } /* See header for documentation. */ void load_image_block( astcenc_profile decode_mode, const astcenc_image& img, image_block& blk, const block_size_descriptor& bsd, unsigned int xpos, unsigned int ypos, unsigned int zpos, const astcenc_swizzle& swz ) { unsigned int xsize = img.dim_x; unsigned int ysize = img.dim_y; unsigned int zsize = img.dim_z; blk.xpos = xpos; blk.ypos = ypos; blk.zpos = zpos; // True if any non-identity swizzle bool needs_swz = (swz.r != ASTCENC_SWZ_R) || (swz.g != ASTCENC_SWZ_G) || (swz.b != ASTCENC_SWZ_B) || (swz.a != ASTCENC_SWZ_A); int idx = 0; vfloat4 data_min(1e38f); vfloat4 data_mean(0.0f); vfloat4 data_mean_scale(1.0f / static_cast(bsd.texel_count)); vfloat4 data_max(-1e38f); vmask4 grayscalev(true); // This works because we impose the same choice everywhere during encode uint8_t rgb_lns = (decode_mode == ASTCENC_PRF_HDR) || (decode_mode == ASTCENC_PRF_HDR_RGB_LDR_A) ? 1 : 0; uint8_t a_lns = decode_mode == ASTCENC_PRF_HDR ? 1 : 0; vint4 use_lns(rgb_lns, rgb_lns, rgb_lns, a_lns); vmask4 lns_mask = use_lns != vint4::zero(); // Set up the function pointers for loading pipeline as needed pixel_loader loader = load_texel_u8; if (img.data_type == ASTCENC_TYPE_F16) { loader = load_texel_f16; } else if (img.data_type == ASTCENC_TYPE_F32) { loader = load_texel_f32; } pixel_swizzler swizzler = swz_texel_skip; if (needs_swz) { swizzler = swz_texel; } pixel_converter converter = encode_texel_unorm; if (any(lns_mask)) { converter = encode_texel_lns; } for (unsigned int z = 0; z < bsd.zdim; z++) { unsigned int zi = astc::min(zpos + z, zsize - 1); void* plane = img.data[zi]; for (unsigned int y = 0; y < bsd.ydim; y++) { unsigned int yi = astc::min(ypos + y, ysize - 1); for (unsigned int x = 0; x < bsd.xdim; x++) { unsigned int xi = astc::min(xpos + x, xsize - 1); vfloat4 datav = loader(plane, (4 * xsize * yi) + (4 * xi)); datav = swizzler(datav, swz); datav = converter(datav, lns_mask); // Compute block metadata data_min = min(data_min, datav); data_mean += datav * data_mean_scale; data_max = max(data_max, datav); grayscalev = grayscalev & (datav.swz<0,0,0,0>() == datav.swz<1,1,2,2>()); blk.data_r[idx] = datav.lane<0>(); blk.data_g[idx] = datav.lane<1>(); blk.data_b[idx] = datav.lane<2>(); blk.data_a[idx] = datav.lane<3>(); blk.rgb_lns[idx] = rgb_lns; blk.alpha_lns[idx] = a_lns; idx++; } } } // Reverse the encoding so we store origin block in the original format vfloat4 data_enc = blk.texel(0); vfloat4 data_enc_unorm = data_enc / 65535.0f; vfloat4 data_enc_lns = vfloat4::zero(); if (rgb_lns || a_lns) { data_enc_lns = float16_to_float(lns_to_sf16(float_to_int(data_enc))); } blk.origin_texel = select(data_enc_unorm, data_enc_lns, lns_mask); // Store block metadata blk.data_min = data_min; blk.data_mean = data_mean; blk.data_max = data_max; blk.grayscale = all(grayscalev); } /* See header for documentation. */ void load_image_block_fast_ldr( astcenc_profile decode_mode, const astcenc_image& img, image_block& blk, const block_size_descriptor& bsd, unsigned int xpos, unsigned int ypos, unsigned int zpos, const astcenc_swizzle& swz ) { (void)swz; (void)decode_mode; unsigned int xsize = img.dim_x; unsigned int ysize = img.dim_y; blk.xpos = xpos; blk.ypos = ypos; blk.zpos = zpos; vfloat4 data_min(1e38f); vfloat4 data_mean = vfloat4::zero(); vfloat4 data_max(-1e38f); vmask4 grayscalev(true); int idx = 0; const uint8_t* plane = static_cast(img.data[0]); for (unsigned int y = ypos; y < ypos + bsd.ydim; y++) { unsigned int yi = astc::min(y, ysize - 1); for (unsigned int x = xpos; x < xpos + bsd.xdim; x++) { unsigned int xi = astc::min(x, xsize - 1); vint4 datavi = vint4(plane + (4 * xsize * yi) + (4 * xi)); vfloat4 datav = int_to_float(datavi) * (65535.0f / 255.0f); // Compute block metadata data_min = min(data_min, datav); data_mean += datav; data_max = max(data_max, datav); grayscalev = grayscalev & (datav.swz<0,0,0,0>() == datav.swz<1,1,2,2>()); blk.data_r[idx] = datav.lane<0>(); blk.data_g[idx] = datav.lane<1>(); blk.data_b[idx] = datav.lane<2>(); blk.data_a[idx] = datav.lane<3>(); idx++; } } // Reverse the encoding so we store origin block in the original format blk.origin_texel = blk.texel(0) / 65535.0f; // Store block metadata blk.rgb_lns[0] = 0; blk.alpha_lns[0] = 0; blk.data_min = data_min; blk.data_mean = data_mean / static_cast(bsd.texel_count); blk.data_max = data_max; blk.grayscale = all(grayscalev); } /* See header for documentation. */ void store_image_block( astcenc_image& img, const image_block& blk, const block_size_descriptor& bsd, unsigned int xpos, unsigned int ypos, unsigned int zpos, const astcenc_swizzle& swz ) { unsigned int x_size = img.dim_x; unsigned int x_start = xpos; unsigned int x_end = astc::min(x_size, xpos + bsd.xdim); unsigned int x_count = x_end - x_start; unsigned int x_nudge = bsd.xdim - x_count; unsigned int y_size = img.dim_y; unsigned int y_start = ypos; unsigned int y_end = astc::min(y_size, ypos + bsd.ydim); unsigned int y_count = y_end - y_start; unsigned int y_nudge = (bsd.ydim - y_count) * bsd.xdim; unsigned int z_size = img.dim_z; unsigned int z_start = zpos; unsigned int z_end = astc::min(z_size, zpos + bsd.zdim); // True if any non-identity swizzle bool needs_swz = (swz.r != ASTCENC_SWZ_R) || (swz.g != ASTCENC_SWZ_G) || (swz.b != ASTCENC_SWZ_B) || (swz.a != ASTCENC_SWZ_A); // True if any swizzle uses Z reconstruct bool needs_z = (swz.r == ASTCENC_SWZ_Z) || (swz.g == ASTCENC_SWZ_Z) || (swz.b == ASTCENC_SWZ_Z) || (swz.a == ASTCENC_SWZ_Z); int idx = 0; if (img.data_type == ASTCENC_TYPE_U8) { for (unsigned int z = z_start; z < z_end; z++) { // Fetch the image plane uint8_t* data8 = static_cast(img.data[z]); for (unsigned int y = y_start; y < y_end; y++) { uint8_t* data8_row = data8 + (4 * x_size * y) + (4 * x_start); for (unsigned int x = 0; x < x_count; x += ASTCENC_SIMD_WIDTH) { unsigned int max_texels = ASTCENC_SIMD_WIDTH; unsigned int used_texels = astc::min(x_count - x, max_texels); // Unaligned load as rows are not always SIMD_WIDTH long vfloat data_r(blk.data_r + idx); vfloat data_g(blk.data_g + idx); vfloat data_b(blk.data_b + idx); vfloat data_a(blk.data_a + idx); vint data_ri = float_to_int_rtn(min(data_r, 1.0f) * 255.0f); vint data_gi = float_to_int_rtn(min(data_g, 1.0f) * 255.0f); vint data_bi = float_to_int_rtn(min(data_b, 1.0f) * 255.0f); vint data_ai = float_to_int_rtn(min(data_a, 1.0f) * 255.0f); if (needs_swz) { vint swizzle_table[7]; swizzle_table[ASTCENC_SWZ_0] = vint(0); swizzle_table[ASTCENC_SWZ_1] = vint(255); swizzle_table[ASTCENC_SWZ_R] = data_ri; swizzle_table[ASTCENC_SWZ_G] = data_gi; swizzle_table[ASTCENC_SWZ_B] = data_bi; swizzle_table[ASTCENC_SWZ_A] = data_ai; if (needs_z) { vfloat data_x = (data_r * vfloat(2.0f)) - vfloat(1.0f); vfloat data_y = (data_a * vfloat(2.0f)) - vfloat(1.0f); vfloat data_z = vfloat(1.0f) - (data_x * data_x) - (data_y * data_y); data_z = max(data_z, 0.0f); data_z = (sqrt(data_z) * vfloat(0.5f)) + vfloat(0.5f); swizzle_table[ASTCENC_SWZ_Z] = float_to_int_rtn(min(data_z, 1.0f) * 255.0f); } data_ri = swizzle_table[swz.r]; data_gi = swizzle_table[swz.g]; data_bi = swizzle_table[swz.b]; data_ai = swizzle_table[swz.a]; } // Errors are NaN encoded - convert to magenta error color // Branch is OK here - it is almost never true so predicts well vmask nan_mask = data_r != data_r; if (any(nan_mask)) { data_ri = select(data_ri, vint(0xFF), nan_mask); data_gi = select(data_gi, vint(0x00), nan_mask); data_bi = select(data_bi, vint(0xFF), nan_mask); data_ai = select(data_ai, vint(0xFF), nan_mask); } vint data_rgbai = interleave_rgba8(data_ri, data_gi, data_bi, data_ai); vmask store_mask = vint::lane_id() < vint(used_texels); store_lanes_masked(data8_row, data_rgbai, store_mask); data8_row += ASTCENC_SIMD_WIDTH * 4; idx += used_texels; } idx += x_nudge; } idx += y_nudge; } } else if (img.data_type == ASTCENC_TYPE_F16) { for (unsigned int z = z_start; z < z_end; z++) { // Fetch the image plane uint16_t* data16 = static_cast(img.data[z]); for (unsigned int y = y_start; y < y_end; y++) { uint16_t* data16_row = data16 + (4 * x_size * y) + (4 * x_start); for (unsigned int x = 0; x < x_count; x++) { vint4 color; // NaNs are handled inline - no need to special case if (needs_swz) { float data[7]; data[ASTCENC_SWZ_0] = 0.0f; data[ASTCENC_SWZ_1] = 1.0f; data[ASTCENC_SWZ_R] = blk.data_r[idx]; data[ASTCENC_SWZ_G] = blk.data_g[idx]; data[ASTCENC_SWZ_B] = blk.data_b[idx]; data[ASTCENC_SWZ_A] = blk.data_a[idx]; if (needs_z) { float xN = (data[0] * 2.0f) - 1.0f; float yN = (data[3] * 2.0f) - 1.0f; float zN = 1.0f - xN * xN - yN * yN; if (zN < 0.0f) { zN = 0.0f; } data[ASTCENC_SWZ_Z] = (astc::sqrt(zN) * 0.5f) + 0.5f; } vfloat4 colorf(data[swz.r], data[swz.g], data[swz.b], data[swz.a]); color = float_to_float16(colorf); } else { vfloat4 colorf = blk.texel(idx); color = float_to_float16(colorf); } // TODO: Vectorize with store N shorts? data16_row[0] = static_cast(color.lane<0>()); data16_row[1] = static_cast(color.lane<1>()); data16_row[2] = static_cast(color.lane<2>()); data16_row[3] = static_cast(color.lane<3>()); data16_row += 4; idx++; } idx += x_nudge; } idx += y_nudge; } } else // if (img.data_type == ASTCENC_TYPE_F32) { assert(img.data_type == ASTCENC_TYPE_F32); for (unsigned int z = z_start; z < z_end; z++) { // Fetch the image plane float* data32 = static_cast(img.data[z]); for (unsigned int y = y_start; y < y_end; y++) { float* data32_row = data32 + (4 * x_size * y) + (4 * x_start); for (unsigned int x = 0; x < x_count; x++) { vfloat4 color = blk.texel(idx); // NaNs are handled inline - no need to special case if (needs_swz) { float data[7]; data[ASTCENC_SWZ_0] = 0.0f; data[ASTCENC_SWZ_1] = 1.0f; data[ASTCENC_SWZ_R] = color.lane<0>(); data[ASTCENC_SWZ_G] = color.lane<1>(); data[ASTCENC_SWZ_B] = color.lane<2>(); data[ASTCENC_SWZ_A] = color.lane<3>(); if (needs_z) { float xN = (data[0] * 2.0f) - 1.0f; float yN = (data[3] * 2.0f) - 1.0f; float zN = 1.0f - xN * xN - yN * yN; if (zN < 0.0f) { zN = 0.0f; } data[ASTCENC_SWZ_Z] = (astc::sqrt(zN) * 0.5f) + 0.5f; } color = vfloat4(data[swz.r], data[swz.g], data[swz.b], data[swz.a]); } store(color, data32_row); data32_row += 4; idx++; } idx += x_nudge; } idx += y_nudge; } } }