/**************************************************************************** Copyright (c) 2018-2019 Xiamen Yaji Software Co., Ltd. Copyright (c) 2021-2023 Bytedance Inc. https://axmolengine.github.io/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "renderer/backend/ProgramState.h" #include "renderer/backend/Program.h" #include "renderer/backend/Texture.h" #include "renderer/backend/Types.h" #include "base/EventDispatcher.h" #include "base/EventType.h" #include "base/Director.h" #include #include "xxhash.h" #include "glslcc/sgs-spec.h" NS_AX_BACKEND_BEGIN namespace { #define MAT3_SIZE 36 #define MAT4X3_SIZE 48 #define VEC3_SIZE 12 #define VEC4_SIZE 16 #define BVEC3_SIZE 3 #define BVEC4_SIZE 4 #define IVEC3_SIZE 12 #define IVEC4_SIZE 16 void convertbVec3TobVec4(const bool* src, bool* dst) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = false; } void convertiVec3ToiVec4(const int* src, int* dst) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = 0; } void convertVec3ToVec4(const float* src, float* dst) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = 0.0f; } void convertMat3ToMat4x3(const float* src, float* dst) { dst[3] = dst[7] = dst[11] = 0.0f; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[4] = src[3]; dst[5] = src[4]; dst[6] = src[5]; dst[8] = src[6]; dst[9] = src[7]; dst[10] = src[8]; } } // namespace // static field std::vector ProgramState::_customAutoBindingResolvers; TextureInfo::TextureInfo(std::vector&& _slots, std::vector&& _textures) : TextureInfo(std::move(_slots), std::vector(_slots.size(), 0), std::move(_textures)) {} TextureInfo::TextureInfo(std::vector&& _slots, std::vector&& _indexs, std::vector&& _textures) : slots(std::move(_slots)), indexs(std::move(_indexs)), textures(std::move(_textures)) { retainTextures(); } /* CLASS TextureInfo */ TextureInfo::TextureInfo(const TextureInfo& other) { this->assign(other); } TextureInfo::TextureInfo(TextureInfo&& other) { this->assign(std::move(other)); } TextureInfo::~TextureInfo() { releaseTextures(); } void TextureInfo::retainTextures() { for (auto&& texture : textures) AX_SAFE_RETAIN(texture); } void TextureInfo::releaseTextures() { for (auto&& texture : textures) AX_SAFE_RELEASE(texture); textures.clear(); } TextureInfo& TextureInfo::operator=(const TextureInfo& other) noexcept { this->assign(other); return *this; } TextureInfo& TextureInfo::operator=(TextureInfo&& other) noexcept { this->assign(std::move(other)); return *this; } void TextureInfo::assign(const TextureInfo& other) { if (this != &other) { releaseTextures(); indexs = other.indexs; slots = other.slots; textures = other.textures; retainTextures(); #if AX_ENABLE_CACHE_TEXTURE_DATA location = other.location; #endif } } void TextureInfo::assign(TextureInfo&& other) { if (this != &other) { releaseTextures(); indexs = std::move(other.indexs); slots = std::move(other.slots); textures = std::move(other.textures); #if AX_ENABLE_CACHE_TEXTURE_DATA location = other.location; other.location = -1; #endif } } /* CLASS ProgramState */ ProgramState::ProgramState(Program* program) { init(program); } bool ProgramState::init(Program* program) { AX_SAFE_RETAIN(program); _program = program; _vertexLayout = program->getVertexLayout(); _ownVertexLayout = false; _vertexUniformBufferSize = _program->getUniformBufferSize(ShaderStage::VERTEX); _vertexUniformBuffer = (char*)calloc(1, _vertexUniformBufferSize); #ifdef AX_USE_METAL _fragmentUniformBufferSize = _program->getUniformBufferSize(ShaderStage::FRAGMENT); _fragmentUniformBuffer = (char*)calloc(1, _fragmentUniformBufferSize); #endif #ifdef AX_USE_METAL _uniformHashState = XXH32_createState(); #endif #if AX_ENABLE_CACHE_TEXTURE_DATA _backToForegroundListener = EventListenerCustom::create(EVENT_RENDERER_RECREATED, [this](EventCustom*) { this->resetUniforms(); }); Director::getInstance()->getEventDispatcher()->addEventListenerWithFixedPriority(_backToForegroundListener, -1); #endif return true; } void ProgramState::resetUniforms() { #if AX_ENABLE_CACHE_TEXTURE_DATA if (_program == nullptr) return; const auto& uniformLocation = _program->getAllUniformsLocation(); for (const auto& uniform : uniformLocation) { auto location = uniform.second; auto mappedLocation = _program->getMappedLocation(location); // check if current location had been set before if (_vertexTextureInfos.find(location) != _vertexTextureInfos.end()) { _vertexTextureInfos[location].location = mappedLocation; } } #endif } ProgramState::~ProgramState() { #ifdef AX_USE_METAL XXH32_freeState(_uniformHashState); #endif AX_SAFE_RELEASE(_program); AX_SAFE_FREE(_vertexUniformBuffer); AX_SAFE_FREE(_fragmentUniformBuffer); #if AX_ENABLE_CACHE_TEXTURE_DATA Director::getInstance()->getEventDispatcher()->removeEventListener(_backToForegroundListener); #endif if (_ownVertexLayout) AX_SAFE_DELETE(_vertexLayout); } ProgramState* ProgramState::clone() const { ProgramState* cp = new ProgramState(_program); cp->_vertexTextureInfos = _vertexTextureInfos; cp->_fragmentTextureInfos = _fragmentTextureInfos; memcpy(cp->_vertexUniformBuffer, _vertexUniformBuffer, _vertexUniformBufferSize); cp->_ownVertexLayout = _ownVertexLayout; cp->_vertexLayout = !_ownVertexLayout ? _vertexLayout : new VertexLayout(*_vertexLayout); #ifdef AX_USE_METAL memcpy(cp->_fragmentUniformBuffer, _fragmentUniformBuffer, _fragmentUniformBufferSize); #endif cp->_uniformID = _uniformID; return cp; } backend::UniformLocation ProgramState::getUniformLocation(backend::Uniform name) const { return _program->getUniformLocation(name); } backend::UniformLocation ProgramState::getUniformLocation(std::string_view uniform) const { return _program->getUniformLocation(uniform); } void ProgramState::setCallbackUniform(const backend::UniformLocation& uniformLocation, const UniformCallback& callback) { _callbackUniforms[uniformLocation] = callback; } void ProgramState::setUniform(const backend::UniformLocation& uniformLocation, const void* data, std::size_t size) { switch (uniformLocation.shaderStage) { case backend::ShaderStage::VERTEX: setVertexUniform(uniformLocation.location[0], data, size, uniformLocation.location[1]); break; case backend::ShaderStage::FRAGMENT: setFragmentUniform(uniformLocation.location[1], data, size); break; case backend::ShaderStage::VERTEX_AND_FRAGMENT: setVertexUniform(uniformLocation.location[0], data, size, uniformLocation.location[1]); setFragmentUniform(uniformLocation.location[1], data, size); break; default: break; } } #ifdef AX_USE_METAL void ProgramState::convertAndCopyUniformData(const backend::UniformInfo& uniformInfo, const void* srcData, std::size_t srcSize, void* buffer) { // The type is glslcc FOURCC ID auto basicType = uniformInfo.type; int offset = 0; switch (basicType) { case SGS_VERTEXFORMAT_FLOAT: { if (uniformInfo.isMatrix) { float m4x3[12]; for (int i = 0; i < uniformInfo.count; i++) { if (offset >= srcSize) break; convertMat3ToMat4x3((float*)((uint8_t*)srcData + offset), m4x3); memcpy((uint8_t*)buffer + uniformInfo.location + i * sizeof(m4x3), m4x3, sizeof(m4x3)); offset += MAT3_SIZE; } } else { float f4[4]; for (int i = 0; i < uniformInfo.count; i++) { if (offset >= srcSize) break; convertVec3ToVec4((float*)((uint8_t*)srcData + offset), f4); memcpy((uint8_t*)buffer + uniformInfo.location + i * sizeof(f4), f4, sizeof(f4)); offset += VEC3_SIZE; } } break; } // case kGlslTypeBool: // { // bool b4[4]; // for (int i = 0; i < uniformInfo.count; i++) // { // if (offset >= srcSize) // break; // // convertbVec3TobVec4((bool*)((uint8_t*)srcData + offset), b4); // memcpy((uint8_t*)buffer + uniformInfo.location + i * sizeof(b4), b4, sizeof(b4)); // offset += BVEC3_SIZE; // } // break; // } case SGS_VERTEXFORMAT_INT: { int i4[4]; for (int i = 0; i < uniformInfo.count; i++) { if (offset >= srcSize) break; convertiVec3ToiVec4((int*)((uint8_t*)srcData + offset), i4); memcpy((uint8_t*)buffer + uniformInfo.location + i * sizeof(i4), i4, sizeof(i4)); offset += IVEC3_SIZE; } break; } default: AX_ASSERT(false); break; } } #endif void ProgramState::setVertexUniform(int location, const void* data, std::size_t size, std::size_t offset) { if (location < 0) return; // float3 etc in Metal has both sizeof and alignment same as float4, need convert to correct laytout #ifdef AX_USE_METAL const auto& uniformInfo = _program->getActiveUniformInfo(ShaderStage::VERTEX, location); if (uniformInfo.needConvert) { convertAndCopyUniformData(uniformInfo, data, size, _vertexUniformBuffer); } else { memcpy(_vertexUniformBuffer + location, data, size); } #else memcpy(_vertexUniformBuffer + offset, data, size); #endif } void ProgramState::setFragmentUniform(int location, const void* data, std::size_t size) { if (location < 0) return; // float3 etc in Metal has both sizeof and alignment same as float4, need convert to correct laytout #ifdef AX_USE_METAL const auto& uniformInfo = _program->getActiveUniformInfo(ShaderStage::FRAGMENT, location); if (uniformInfo.needConvert) { convertAndCopyUniformData(uniformInfo, data, size, _fragmentUniformBuffer); } else { memcpy(_fragmentUniformBuffer + location, data, size); } #endif } void ProgramState::setVertexAttrib(std::string_view name, std::size_t index, VertexFormat format, std::size_t offset, bool needToBeNormallized) { ensureVertexLayoutMutable(); _vertexLayout->setAttribute(name, index, format, offset, needToBeNormallized); } void ProgramState::setVertexStride(uint32_t stride) { ensureVertexLayoutMutable(); _vertexLayout->setStride(stride); } void ProgramState::setVertexLayout(const VertexLayout& vertexLayout) { ensureVertexLayoutMutable(); *_vertexLayout = vertexLayout; } void ProgramState::validateSharedVertexLayout(std::function fnValidate) { if (!_ownVertexLayout && !_vertexLayout->isValid()) fnValidate(_program); } void ProgramState::ensureVertexLayoutMutable() { if (!_ownVertexLayout) { _vertexLayout = new VertexLayout(); _ownVertexLayout = true; } } void ProgramState::updateUniformID(int uniformID) { if (uniformID == -1) { #ifdef AX_USE_METAL XXH32_reset(_uniformHashState, 0); XXH32_update(_uniformHashState, _vertexUniformBuffer, _vertexUniformBufferSize); XXH32_update(_uniformHashState, _fragmentUniformBuffer, _fragmentUniformBufferSize); _uniformID = XXH32_digest(_uniformHashState); #else _uniformID = XXH32(_vertexUniformBuffer, _vertexUniformBufferSize, 0); #endif } else { _uniformID = uniformID; } } void ProgramState::setTexture(backend::TextureBackend* texture) { for (int slot = 0; slot < texture->getCount() && slot < AX_META_TEXTURES; ++slot) { auto location = getUniformLocation((backend::Uniform)(backend::Uniform::TEXTURE + slot)); setTexture(location, slot, slot, texture); } } void ProgramState::setTexture(const backend::UniformLocation& uniformLocation, int slot, backend::TextureBackend* texture) { setTexture(uniformLocation, slot, 0, texture); } void ProgramState::setTexture(const backend::UniformLocation& uniformLocation, int slot, int index, backend::TextureBackend* texture) { switch (uniformLocation.shaderStage) { case backend::ShaderStage::VERTEX: setTexture(uniformLocation.location[0], slot, index, texture, _vertexTextureInfos); break; case backend::ShaderStage::FRAGMENT: setTexture(uniformLocation.location[1], slot, index, texture, _fragmentTextureInfos); break; case backend::ShaderStage::VERTEX_AND_FRAGMENT: setTexture(uniformLocation.location[0], slot, index, texture, _vertexTextureInfos); setTexture(uniformLocation.location[1], slot, index, texture, _fragmentTextureInfos); break; default: break; } } void ProgramState::setTextureArray(const backend::UniformLocation& uniformLocation, std::vector slots, std::vector textures) { switch (uniformLocation.shaderStage) { case backend::ShaderStage::VERTEX: setTextureArray(uniformLocation.location[0], std::move(slots), std::move(textures), _vertexTextureInfos); break; case backend::ShaderStage::FRAGMENT: setTextureArray(uniformLocation.location[1], std::move(slots), std::move(textures), _fragmentTextureInfos); break; case backend::ShaderStage::VERTEX_AND_FRAGMENT: setTextureArray(uniformLocation.location[0], std::move(slots), std::move(textures), _vertexTextureInfos); setTextureArray(uniformLocation.location[1], std::move(slots), std::move(textures), _fragmentTextureInfos); break; default: break; } } void ProgramState::setTexture(int location, int slot, int index, backend::TextureBackend* texture, std::unordered_map& textureInfo) { if (location < 0) return; auto& info = textureInfo[location]; info = {{slot}, {index}, {texture}}; #if AX_ENABLE_CACHE_TEXTURE_DATA info.location = location; #endif } void ProgramState::setTextureArray(int location, std::vector slots, std::vector textures, std::unordered_map& textureInfo) { assert(slots.size() == textures.size()); auto& info = textureInfo[location]; info = {std::move(slots), std::move(textures)}; #if AX_ENABLE_CACHE_TEXTURE_DATA info.location = location; #endif } void ProgramState::setParameterAutoBinding(std::string_view uniform, std::string_view autoBinding) { _autoBindings.emplace(uniform, autoBinding); applyAutoBinding(uniform, autoBinding); } void ProgramState::applyAutoBinding(std::string_view uniformName, std::string_view autoBinding) { for (const auto resolver : _customAutoBindingResolvers) { if (resolver->resolveAutoBinding(this, uniformName, autoBinding)) break; } } ProgramState::AutoBindingResolver::AutoBindingResolver() { _customAutoBindingResolvers.emplace_back(this); } ProgramState::AutoBindingResolver::~AutoBindingResolver() { auto& list = _customAutoBindingResolvers; list.erase(std::remove(list.begin(), list.end(), this), list.end()); } void ProgramState::getVertexUniformBuffer(char** buffer, std::size_t& size) const { *buffer = _vertexUniformBuffer; size = _vertexUniformBufferSize; } void ProgramState::getFragmentUniformBuffer(char** buffer, std::size_t& size) const { *buffer = _fragmentUniformBuffer; size = _fragmentUniformBufferSize; } NS_AX_BACKEND_END