// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include "DetourCommon.h" #include "DetourMath.h" #include "DetourStatus.h" #include "DetourAssert.h" #include "DetourTileCacheBuilder.h" #include dtTileCacheAlloc::~dtTileCacheAlloc() { // Defined out of line to fix the weak v-tables warning } dtTileCacheCompressor::~dtTileCacheCompressor() { // Defined out of line to fix the weak v-tables warning } template class dtFixedArray { dtTileCacheAlloc* m_alloc; T* m_ptr; const int m_size; inline void operator=(dtFixedArray& p); public: inline dtFixedArray(dtTileCacheAlloc* a, const int s) : m_alloc(a), m_ptr((T*)a->alloc(sizeof(T)*s)), m_size(s) {} inline ~dtFixedArray() { if (m_alloc) m_alloc->free(m_ptr); } inline operator T*() { return m_ptr; } inline int size() const { return m_size; } }; inline int getDirOffsetX(int dir) { const int offset[4] = { -1, 0, 1, 0, }; return offset[dir&0x03]; } inline int getDirOffsetY(int dir) { const int offset[4] = { 0, 1, 0, -1 }; return offset[dir&0x03]; } static const int MAX_VERTS_PER_POLY = 6; // TODO: use the DT_VERTS_PER_POLYGON static const int MAX_REM_EDGES = 48; // TODO: make this an expression. dtTileCacheContourSet* dtAllocTileCacheContourSet(dtTileCacheAlloc* alloc) { dtAssert(alloc); dtTileCacheContourSet* cset = (dtTileCacheContourSet*)alloc->alloc(sizeof(dtTileCacheContourSet)); memset(cset, 0, sizeof(dtTileCacheContourSet)); return cset; } void dtFreeTileCacheContourSet(dtTileCacheAlloc* alloc, dtTileCacheContourSet* cset) { dtAssert(alloc); if (!cset) return; for (int i = 0; i < cset->nconts; ++i) alloc->free(cset->conts[i].verts); alloc->free(cset->conts); alloc->free(cset); } dtTileCachePolyMesh* dtAllocTileCachePolyMesh(dtTileCacheAlloc* alloc) { dtAssert(alloc); dtTileCachePolyMesh* lmesh = (dtTileCachePolyMesh*)alloc->alloc(sizeof(dtTileCachePolyMesh)); memset(lmesh, 0, sizeof(dtTileCachePolyMesh)); return lmesh; } void dtFreeTileCachePolyMesh(dtTileCacheAlloc* alloc, dtTileCachePolyMesh* lmesh) { dtAssert(alloc); if (!lmesh) return; alloc->free(lmesh->verts); alloc->free(lmesh->polys); alloc->free(lmesh->flags); alloc->free(lmesh->areas); alloc->free(lmesh); } struct dtLayerSweepSpan { unsigned short ns; // number samples unsigned char id; // region id unsigned char nei; // neighbour id }; static const int DT_LAYER_MAX_NEIS = 16; struct dtLayerMonotoneRegion { int area; unsigned char neis[DT_LAYER_MAX_NEIS]; unsigned char nneis; unsigned char regId; unsigned char areaId; }; struct dtTempContour { inline dtTempContour(unsigned char* vbuf, const int nvbuf, unsigned short* pbuf, const int npbuf) : verts(vbuf), nverts(0), cverts(nvbuf), poly(pbuf), npoly(0), cpoly(npbuf) { } unsigned char* verts; int nverts; int cverts; unsigned short* poly; int npoly; int cpoly; }; inline bool overlapRangeExl(const unsigned short amin, const unsigned short amax, const unsigned short bmin, const unsigned short bmax) { return (amin >= bmax || amax <= bmin) ? false : true; } static void addUniqueLast(unsigned char* a, unsigned char& an, unsigned char v) { const int n = (int)an; if (n > 0 && a[n-1] == v) return; a[an] = v; an++; } inline bool isConnected(const dtTileCacheLayer& layer, const int ia, const int ib, const int walkableClimb) { if (layer.areas[ia] != layer.areas[ib]) return false; if (dtAbs((int)layer.heights[ia] - (int)layer.heights[ib]) > walkableClimb) return false; return true; } static bool canMerge(unsigned char oldRegId, unsigned char newRegId, const dtLayerMonotoneRegion* regs, const int nregs) { int count = 0; for (int i = 0; i < nregs; ++i) { const dtLayerMonotoneRegion& reg = regs[i]; if (reg.regId != oldRegId) continue; const int nnei = (int)reg.nneis; for (int j = 0; j < nnei; ++j) { if (regs[reg.neis[j]].regId == newRegId) count++; } } return count == 1; } dtStatus dtBuildTileCacheRegions(dtTileCacheAlloc* alloc, dtTileCacheLayer& layer, const int walkableClimb) { dtAssert(alloc); const int w = (int)layer.header->width; const int h = (int)layer.header->height; memset(layer.regs,0xff,sizeof(unsigned char)*w*h); const int nsweeps = w; dtFixedArray sweeps(alloc, nsweeps); if (!sweeps) return DT_FAILURE | DT_OUT_OF_MEMORY; memset(sweeps,0,sizeof(dtLayerSweepSpan)*nsweeps); // Partition walkable area into monotone regions. unsigned char prevCount[256]; unsigned char regId = 0; for (int y = 0; y < h; ++y) { if (regId > 0) memset(prevCount,0,sizeof(unsigned char)*regId); unsigned char sweepId = 0; for (int x = 0; x < w; ++x) { const int idx = x + y*w; if (layer.areas[idx] == DT_TILECACHE_NULL_AREA) continue; unsigned char sid = 0xff; // -x const int xidx = (x-1)+y*w; if (x > 0 && isConnected(layer, idx, xidx, walkableClimb)) { if (layer.regs[xidx] != 0xff) sid = layer.regs[xidx]; } if (sid == 0xff) { sid = sweepId++; sweeps[sid].nei = 0xff; sweeps[sid].ns = 0; } // -y const int yidx = x+(y-1)*w; if (y > 0 && isConnected(layer, idx, yidx, walkableClimb)) { const unsigned char nr = layer.regs[yidx]; if (nr != 0xff) { // Set neighbour when first valid neighbour is encoutered. if (sweeps[sid].ns == 0) sweeps[sid].nei = nr; if (sweeps[sid].nei == nr) { // Update existing neighbour sweeps[sid].ns++; prevCount[nr]++; } else { // This is hit if there is nore than one neighbour. // Invalidate the neighbour. sweeps[sid].nei = 0xff; } } } layer.regs[idx] = sid; } // Create unique ID. for (int i = 0; i < sweepId; ++i) { // If the neighbour is set and there is only one continuous connection to it, // the sweep will be merged with the previous one, else new region is created. if (sweeps[i].nei != 0xff && (unsigned short)prevCount[sweeps[i].nei] == sweeps[i].ns) { sweeps[i].id = sweeps[i].nei; } else { if (regId == 255) { // Region ID's overflow. return DT_FAILURE | DT_BUFFER_TOO_SMALL; } sweeps[i].id = regId++; } } // Remap local sweep ids to region ids. for (int x = 0; x < w; ++x) { const int idx = x+y*w; if (layer.regs[idx] != 0xff) layer.regs[idx] = sweeps[layer.regs[idx]].id; } } // Allocate and init layer regions. const int nregs = (int)regId; dtFixedArray regs(alloc, nregs); if (!regs) return DT_FAILURE | DT_OUT_OF_MEMORY; memset(regs, 0, sizeof(dtLayerMonotoneRegion)*nregs); for (int i = 0; i < nregs; ++i) regs[i].regId = 0xff; // Find region neighbours. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int idx = x+y*w; const unsigned char ri = layer.regs[idx]; if (ri == 0xff) continue; // Update area. regs[ri].area++; regs[ri].areaId = layer.areas[idx]; // Update neighbours const int ymi = x+(y-1)*w; if (y > 0 && isConnected(layer, idx, ymi, walkableClimb)) { const unsigned char rai = layer.regs[ymi]; if (rai != 0xff && rai != ri) { addUniqueLast(regs[ri].neis, regs[ri].nneis, rai); addUniqueLast(regs[rai].neis, regs[rai].nneis, ri); } } } } for (int i = 0; i < nregs; ++i) regs[i].regId = (unsigned char)i; for (int i = 0; i < nregs; ++i) { dtLayerMonotoneRegion& reg = regs[i]; int merge = -1; int mergea = 0; for (int j = 0; j < (int)reg.nneis; ++j) { const unsigned char nei = reg.neis[j]; dtLayerMonotoneRegion& regn = regs[nei]; if (reg.regId == regn.regId) continue; if (reg.areaId != regn.areaId) continue; if (regn.area > mergea) { if (canMerge(reg.regId, regn.regId, regs, nregs)) { mergea = regn.area; merge = (int)nei; } } } if (merge != -1) { const unsigned char oldId = reg.regId; const unsigned char newId = regs[merge].regId; for (int j = 0; j < nregs; ++j) if (regs[j].regId == oldId) regs[j].regId = newId; } } // Compact ids. unsigned char remap[256]; memset(remap, 0, 256); // Find number of unique regions. regId = 0; for (int i = 0; i < nregs; ++i) remap[regs[i].regId] = 1; for (int i = 0; i < 256; ++i) if (remap[i]) remap[i] = regId++; // Remap ids. for (int i = 0; i < nregs; ++i) regs[i].regId = remap[regs[i].regId]; layer.regCount = regId; for (int i = 0; i < w*h; ++i) { if (layer.regs[i] != 0xff) layer.regs[i] = regs[layer.regs[i]].regId; } return DT_SUCCESS; } static bool appendVertex(dtTempContour& cont, const int x, const int y, const int z, const int r) { // Try to merge with existing segments. if (cont.nverts > 1) { unsigned char* pa = &cont.verts[(cont.nverts-2)*4]; unsigned char* pb = &cont.verts[(cont.nverts-1)*4]; if ((int)pb[3] == r) { if (pa[0] == pb[0] && (int)pb[0] == x) { // The verts are aligned aling x-axis, update z. pb[1] = (unsigned char)y; pb[2] = (unsigned char)z; return true; } else if (pa[2] == pb[2] && (int)pb[2] == z) { // The verts are aligned aling z-axis, update x. pb[0] = (unsigned char)x; pb[1] = (unsigned char)y; return true; } } } // Add new point. if (cont.nverts+1 > cont.cverts) return false; unsigned char* v = &cont.verts[cont.nverts*4]; v[0] = (unsigned char)x; v[1] = (unsigned char)y; v[2] = (unsigned char)z; v[3] = (unsigned char)r; cont.nverts++; return true; } static unsigned char getNeighbourReg(dtTileCacheLayer& layer, const int ax, const int ay, const int dir) { const int w = (int)layer.header->width; const int ia = ax + ay*w; const unsigned char con = layer.cons[ia] & 0xf; const unsigned char portal = layer.cons[ia] >> 4; const unsigned char mask = (unsigned char)(1<width; const int h = (int)layer.header->height; cont.nverts = 0; int startX = x; int startY = y; int startDir = -1; for (int i = 0; i < 4; ++i) { const int dir = (i+3)&3; unsigned char rn = getNeighbourReg(layer, x, y, dir); if (rn != layer.regs[x+y*w]) { startDir = dir; break; } } if (startDir == -1) return true; int dir = startDir; const int maxIter = w*h; int iter = 0; while (iter < maxIter) { unsigned char rn = getNeighbourReg(layer, x, y, dir); int nx = x; int ny = y; int ndir = dir; if (rn != layer.regs[x+y*w]) { // Solid edge. int px = x; int pz = y; switch(dir) { case 0: pz++; break; case 1: px++; pz++; break; case 2: px++; break; } // Try to merge with previous vertex. if (!appendVertex(cont, px, (int)layer.heights[x+y*w], pz,rn)) return false; ndir = (dir+1) & 0x3; // Rotate CW } else { // Move to next. nx = x + getDirOffsetX(dir); ny = y + getDirOffsetY(dir); ndir = (dir+3) & 0x3; // Rotate CCW } if (iter > 0 && x == startX && y == startY && dir == startDir) break; x = nx; y = ny; dir = ndir; iter++; } // Remove last vertex if it is duplicate of the first one. unsigned char* pa = &cont.verts[(cont.nverts-1)*4]; unsigned char* pb = &cont.verts[0]; if (pa[0] == pb[0] && pa[2] == pb[2]) cont.nverts--; return true; } static float distancePtSeg(const int x, const int z, const int px, const int pz, const int qx, const int qz) { float pqx = (float)(qx - px); float pqz = (float)(qz - pz); float dx = (float)(x - px); float dz = (float)(z - pz); float d = pqx*pqx + pqz*pqz; float t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = px + t*pqx - x; dz = pz + t*pqz - z; return dx*dx + dz*dz; } static void simplifyContour(dtTempContour& cont, const float maxError) { cont.npoly = 0; for (int i = 0; i < cont.nverts; ++i) { int j = (i+1) % cont.nverts; // Check for start of a wall segment. unsigned char ra = cont.verts[j*4+3]; unsigned char rb = cont.verts[i*4+3]; if (ra != rb) cont.poly[cont.npoly++] = (unsigned short)i; } if (cont.npoly < 2) { // If there is no transitions at all, // create some initial points for the simplification process. // Find lower-left and upper-right vertices of the contour. int llx = cont.verts[0]; int llz = cont.verts[2]; int lli = 0; int urx = cont.verts[0]; int urz = cont.verts[2]; int uri = 0; for (int i = 1; i < cont.nverts; ++i) { int x = cont.verts[i*4+0]; int z = cont.verts[i*4+2]; if (x < llx || (x == llx && z < llz)) { llx = x; llz = z; lli = i; } if (x > urx || (x == urx && z > urz)) { urx = x; urz = z; uri = i; } } cont.npoly = 0; cont.poly[cont.npoly++] = (unsigned short)lli; cont.poly[cont.npoly++] = (unsigned short)uri; } // Add points until all raw points are within // error tolerance to the simplified shape. for (int i = 0; i < cont.npoly; ) { int ii = (i+1) % cont.npoly; const int ai = (int)cont.poly[i]; const int ax = (int)cont.verts[ai*4+0]; const int az = (int)cont.verts[ai*4+2]; const int bi = (int)cont.poly[ii]; const int bx = (int)cont.verts[bi*4+0]; const int bz = (int)cont.verts[bi*4+2]; // Find maximum deviation from the segment. float maxd = 0; int maxi = -1; int ci, cinc, endi; // Traverse the segment in lexilogical order so that the // max deviation is calculated similarly when traversing // opposite segments. if (bx > ax || (bx == ax && bz > az)) { cinc = 1; ci = (ai+cinc) % cont.nverts; endi = bi; } else { cinc = cont.nverts-1; ci = (bi+cinc) % cont.nverts; endi = ai; } // Tessellate only outer edges or edges between areas. while (ci != endi) { float d = distancePtSeg(cont.verts[ci*4+0], cont.verts[ci*4+2], ax, az, bx, bz); if (d > maxd) { maxd = d; maxi = ci; } ci = (ci+cinc) % cont.nverts; } // If the max deviation is larger than accepted error, // add new point, else continue to next segment. if (maxi != -1 && maxd > (maxError*maxError)) { cont.npoly++; for (int j = cont.npoly-1; j > i; --j) cont.poly[j] = cont.poly[j-1]; cont.poly[i+1] = (unsigned short)maxi; } else { ++i; } } // Remap vertices int start = 0; for (int i = 1; i < cont.npoly; ++i) if (cont.poly[i] < cont.poly[start]) start = i; cont.nverts = 0; for (int i = 0; i < cont.npoly; ++i) { const int j = (start+i) % cont.npoly; unsigned char* src = &cont.verts[cont.poly[j]*4]; unsigned char* dst = &cont.verts[cont.nverts*4]; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; cont.nverts++; } } static unsigned char getCornerHeight(dtTileCacheLayer& layer, const int x, const int y, const int z, const int walkableClimb, bool& shouldRemove) { const int w = (int)layer.header->width; const int h = (int)layer.header->height; int n = 0; unsigned char portal = 0xf; unsigned char height = 0; unsigned char preg = 0xff; bool allSameReg = true; for (int dz = -1; dz <= 0; ++dz) { for (int dx = -1; dx <= 0; ++dx) { const int px = x+dx; const int pz = z+dz; if (px >= 0 && pz >= 0 && px < w && pz < h) { const int idx = px + pz*w; const int lh = (int)layer.heights[idx]; if (dtAbs(lh-y) <= walkableClimb && layer.areas[idx] != DT_TILECACHE_NULL_AREA) { height = dtMax(height, (unsigned char)lh); portal &= (layer.cons[idx] >> 4); if (preg != 0xff && preg != layer.regs[idx]) allSameReg = false; preg = layer.regs[idx]; n++; } } } } int portalCount = 0; for (int dir = 0; dir < 4; ++dir) if (portal & (1< 1 && portalCount == 1 && allSameReg) { shouldRemove = true; } return height; } // TODO: move this somewhere else, once the layer meshing is done. dtStatus dtBuildTileCacheContours(dtTileCacheAlloc* alloc, dtTileCacheLayer& layer, const int walkableClimb, const float maxError, dtTileCacheContourSet& lcset) { dtAssert(alloc); const int w = (int)layer.header->width; const int h = (int)layer.header->height; lcset.nconts = layer.regCount; lcset.conts = (dtTileCacheContour*)alloc->alloc(sizeof(dtTileCacheContour)*lcset.nconts); if (!lcset.conts) return DT_FAILURE | DT_OUT_OF_MEMORY; memset(lcset.conts, 0, sizeof(dtTileCacheContour)*lcset.nconts); // Allocate temp buffer for contour tracing. const int maxTempVerts = (w+h)*2 * 2; // Twice around the layer. dtFixedArray tempVerts(alloc, maxTempVerts*4); if (!tempVerts) return DT_FAILURE | DT_OUT_OF_MEMORY; dtFixedArray tempPoly(alloc, maxTempVerts); if (!tempPoly) return DT_FAILURE | DT_OUT_OF_MEMORY; dtTempContour temp(tempVerts, maxTempVerts, tempPoly, maxTempVerts); // Find contours. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int idx = x+y*w; const unsigned char ri = layer.regs[idx]; if (ri == 0xff) continue; dtTileCacheContour& cont = lcset.conts[ri]; if (cont.nverts > 0) continue; cont.reg = ri; cont.area = layer.areas[idx]; if (!walkContour(layer, x, y, temp)) { // Too complex contour. // Note: If you hit here ofte, try increasing 'maxTempVerts'. return DT_FAILURE | DT_BUFFER_TOO_SMALL; } simplifyContour(temp, maxError); // Store contour. cont.nverts = temp.nverts; if (cont.nverts > 0) { cont.verts = (unsigned char*)alloc->alloc(sizeof(unsigned char)*4*temp.nverts); if (!cont.verts) return DT_FAILURE | DT_OUT_OF_MEMORY; for (int i = 0, j = temp.nverts-1; i < temp.nverts; j=i++) { unsigned char* dst = &cont.verts[j*4]; unsigned char* v = &temp.verts[j*4]; unsigned char* vn = &temp.verts[i*4]; unsigned char nei = vn[3]; // The neighbour reg is stored at segment vertex of a segment. bool shouldRemove = false; unsigned char lh = getCornerHeight(layer, (int)v[0], (int)v[1], (int)v[2], walkableClimb, shouldRemove); dst[0] = v[0]; dst[1] = lh; dst[2] = v[2]; // Store portal direction and remove status to the fourth component. dst[3] = 0x0f; if (nei != 0xff && nei >= 0xf8) dst[3] = nei - 0xf8; if (shouldRemove) dst[3] |= 0x80; } } } } return DT_SUCCESS; } static const int VERTEX_BUCKET_COUNT2 = (1<<8); inline int computeVertexHash2(int x, int y, int z) { const unsigned int h1 = 0x8da6b343; // Large multiplicative constants; const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes const unsigned int h3 = 0xcb1ab31f; unsigned int n = h1 * x + h2 * y + h3 * z; return (int)(n & (VERTEX_BUCKET_COUNT2-1)); } static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z, unsigned short* verts, unsigned short* firstVert, unsigned short* nextVert, int& nv) { int bucket = computeVertexHash2(x, 0, z); unsigned short i = firstVert[bucket]; while (i != DT_TILECACHE_NULL_IDX) { const unsigned short* v = &verts[i*3]; if (v[0] == x && v[2] == z && (dtAbs(v[1] - y) <= 2)) return i; i = nextVert[i]; // next } // Could not find, create new. i = (unsigned short)nv; nv++; unsigned short* v = &verts[i*3]; v[0] = x; v[1] = y; v[2] = z; nextVert[i] = firstVert[bucket]; firstVert[bucket] = i; return (unsigned short)i; } struct rcEdge { unsigned short vert[2]; unsigned short polyEdge[2]; unsigned short poly[2]; }; static bool buildMeshAdjacency(dtTileCacheAlloc* alloc, unsigned short* polys, const int npolys, const unsigned short* verts, const int nverts, const dtTileCacheContourSet& lcset) { // Based on code by Eric Lengyel from: // https://web.archive.org/web/20080704083314/http://www.terathon.com/code/edges.php const int maxEdgeCount = npolys*MAX_VERTS_PER_POLY; dtFixedArray firstEdge(alloc, nverts + maxEdgeCount); if (!firstEdge) return false; unsigned short* nextEdge = firstEdge + nverts; int edgeCount = 0; dtFixedArray edges(alloc, maxEdgeCount); if (!edges) return false; for (int i = 0; i < nverts; i++) firstEdge[i] = DT_TILECACHE_NULL_IDX; for (int i = 0; i < npolys; ++i) { unsigned short* t = &polys[i*MAX_VERTS_PER_POLY*2]; for (int j = 0; j < MAX_VERTS_PER_POLY; ++j) { if (t[j] == DT_TILECACHE_NULL_IDX) break; unsigned short v0 = t[j]; unsigned short v1 = (j+1 >= MAX_VERTS_PER_POLY || t[j+1] == DT_TILECACHE_NULL_IDX) ? t[0] : t[j+1]; if (v0 < v1) { rcEdge& edge = edges[edgeCount]; edge.vert[0] = v0; edge.vert[1] = v1; edge.poly[0] = (unsigned short)i; edge.polyEdge[0] = (unsigned short)j; edge.poly[1] = (unsigned short)i; edge.polyEdge[1] = 0xff; // Insert edge nextEdge[edgeCount] = firstEdge[v0]; firstEdge[v0] = (unsigned short)edgeCount; edgeCount++; } } } for (int i = 0; i < npolys; ++i) { unsigned short* t = &polys[i*MAX_VERTS_PER_POLY*2]; for (int j = 0; j < MAX_VERTS_PER_POLY; ++j) { if (t[j] == DT_TILECACHE_NULL_IDX) break; unsigned short v0 = t[j]; unsigned short v1 = (j+1 >= MAX_VERTS_PER_POLY || t[j+1] == DT_TILECACHE_NULL_IDX) ? t[0] : t[j+1]; if (v0 > v1) { bool found = false; for (unsigned short e = firstEdge[v1]; e != DT_TILECACHE_NULL_IDX; e = nextEdge[e]) { rcEdge& edge = edges[e]; if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1]) { edge.poly[1] = (unsigned short)i; edge.polyEdge[1] = (unsigned short)j; found = true; break; } } if (!found) { // Matching edge not found, it is an open edge, add it. rcEdge& edge = edges[edgeCount]; edge.vert[0] = v1; edge.vert[1] = v0; edge.poly[0] = (unsigned short)i; edge.polyEdge[0] = (unsigned short)j; edge.poly[1] = (unsigned short)i; edge.polyEdge[1] = 0xff; // Insert edge nextEdge[edgeCount] = firstEdge[v1]; firstEdge[v1] = (unsigned short)edgeCount; edgeCount++; } } } } // Mark portal edges. for (int i = 0; i < lcset.nconts; ++i) { dtTileCacheContour& cont = lcset.conts[i]; if (cont.nverts < 3) continue; for (int j = 0, k = cont.nverts-1; j < cont.nverts; k=j++) { const unsigned char* va = &cont.verts[k*4]; const unsigned char* vb = &cont.verts[j*4]; const unsigned char dir = va[3] & 0xf; if (dir == 0xf) continue; if (dir == 0 || dir == 2) { // Find matching vertical edge const unsigned short x = (unsigned short)va[0]; unsigned short zmin = (unsigned short)va[2]; unsigned short zmax = (unsigned short)vb[2]; if (zmin > zmax) dtSwap(zmin, zmax); for (int m = 0; m < edgeCount; ++m) { rcEdge& e = edges[m]; // Skip connected edges. if (e.poly[0] != e.poly[1]) continue; const unsigned short* eva = &verts[e.vert[0]*3]; const unsigned short* evb = &verts[e.vert[1]*3]; if (eva[0] == x && evb[0] == x) { unsigned short ezmin = eva[2]; unsigned short ezmax = evb[2]; if (ezmin > ezmax) dtSwap(ezmin, ezmax); if (overlapRangeExl(zmin,zmax, ezmin, ezmax)) { // Reuse the other polyedge to store dir. e.polyEdge[1] = dir; } } } } else { // Find matching vertical edge const unsigned short z = (unsigned short)va[2]; unsigned short xmin = (unsigned short)va[0]; unsigned short xmax = (unsigned short)vb[0]; if (xmin > xmax) dtSwap(xmin, xmax); for (int m = 0; m < edgeCount; ++m) { rcEdge& e = edges[m]; // Skip connected edges. if (e.poly[0] != e.poly[1]) continue; const unsigned short* eva = &verts[e.vert[0]*3]; const unsigned short* evb = &verts[e.vert[1]*3]; if (eva[2] == z && evb[2] == z) { unsigned short exmin = eva[0]; unsigned short exmax = evb[0]; if (exmin > exmax) dtSwap(exmin, exmax); if (overlapRangeExl(xmin,xmax, exmin, exmax)) { // Reuse the other polyedge to store dir. e.polyEdge[1] = dir; } } } } } } // Store adjacency for (int i = 0; i < edgeCount; ++i) { const rcEdge& e = edges[i]; if (e.poly[0] != e.poly[1]) { unsigned short* p0 = &polys[e.poly[0]*MAX_VERTS_PER_POLY*2]; unsigned short* p1 = &polys[e.poly[1]*MAX_VERTS_PER_POLY*2]; p0[MAX_VERTS_PER_POLY + e.polyEdge[0]] = e.poly[1]; p1[MAX_VERTS_PER_POLY + e.polyEdge[1]] = e.poly[0]; } else if (e.polyEdge[1] != 0xff) { unsigned short* p0 = &polys[e.poly[0]*MAX_VERTS_PER_POLY*2]; p0[MAX_VERTS_PER_POLY + e.polyEdge[0]] = 0x8000 | (unsigned short)e.polyEdge[1]; } } return true; } // Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv). inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } inline int area2(const unsigned char* a, const unsigned char* b, const unsigned char* c) { return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) - ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]); } // Exclusive or: true iff exactly one argument is true. // The arguments are negated to ensure that they are 0/1 // values. Then the bitwise Xor operator may apply. // (This idea is due to Michael Baldwin.) inline bool xorb(bool x, bool y) { return !x ^ !y; } // Returns true iff c is strictly to the left of the directed // line through a to b. inline bool left(const unsigned char* a, const unsigned char* b, const unsigned char* c) { return area2(a, b, c) < 0; } inline bool leftOn(const unsigned char* a, const unsigned char* b, const unsigned char* c) { return area2(a, b, c) <= 0; } inline bool collinear(const unsigned char* a, const unsigned char* b, const unsigned char* c) { return area2(a, b, c) == 0; } // Returns true iff ab properly intersects cd: they share // a point interior to both segments. The properness of the // intersection is ensured by using strict leftness. static bool intersectProp(const unsigned char* a, const unsigned char* b, const unsigned char* c, const unsigned char* d) { // Eliminate improper cases. if (collinear(a,b,c) || collinear(a,b,d) || collinear(c,d,a) || collinear(c,d,b)) return false; return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b)); } // Returns T iff (a,b,c) are collinear and point c lies // on the closed segement ab. static bool between(const unsigned char* a, const unsigned char* b, const unsigned char* c) { if (!collinear(a, b, c)) return false; // If ab not vertical, check betweenness on x; else on y. if (a[0] != b[0]) return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0])); else return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2])); } // Returns true iff segments ab and cd intersect, properly or improperly. static bool intersect(const unsigned char* a, const unsigned char* b, const unsigned char* c, const unsigned char* d) { if (intersectProp(a, b, c, d)) return true; else if (between(a, b, c) || between(a, b, d) || between(c, d, a) || between(c, d, b)) return true; else return false; } static bool vequal(const unsigned char* a, const unsigned char* b) { return a[0] == b[0] && a[2] == b[2]; } // Returns T iff (v_i, v_j) is a proper internal *or* external // diagonal of P, *ignoring edges incident to v_i and v_j*. static bool diagonalie(int i, int j, int n, const unsigned char* verts, const unsigned short* indices) { const unsigned char* d0 = &verts[(indices[i] & 0x7fff) * 4]; const unsigned char* d1 = &verts[(indices[j] & 0x7fff) * 4]; // For each edge (k,k+1) of P for (int k = 0; k < n; k++) { int k1 = next(k, n); // Skip edges incident to i or j if (!((k == i) || (k1 == i) || (k == j) || (k1 == j))) { const unsigned char* p0 = &verts[(indices[k] & 0x7fff) * 4]; const unsigned char* p1 = &verts[(indices[k1] & 0x7fff) * 4]; if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) continue; if (intersect(d0, d1, p0, p1)) return false; } } return true; } // Returns true iff the diagonal (i,j) is strictly internal to the // polygon P in the neighborhood of the i endpoint. static bool inCone(int i, int j, int n, const unsigned char* verts, const unsigned short* indices) { const unsigned char* pi = &verts[(indices[i] & 0x7fff) * 4]; const unsigned char* pj = &verts[(indices[j] & 0x7fff) * 4]; const unsigned char* pi1 = &verts[(indices[next(i, n)] & 0x7fff) * 4]; const unsigned char* pin1 = &verts[(indices[prev(i, n)] & 0x7fff) * 4]; // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. if (leftOn(pin1, pi, pi1)) return left(pi, pj, pin1) && left(pj, pi, pi1); // Assume (i-1,i,i+1) not collinear. // else P[i] is reflex. return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); } // Returns T iff (v_i, v_j) is a proper internal // diagonal of P. static bool diagonal(int i, int j, int n, const unsigned char* verts, const unsigned short* indices) { return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices); } static int triangulate(int n, const unsigned char* verts, unsigned short* indices, unsigned short* tris) { int ntris = 0; unsigned short* dst = tris; // The last bit of the index is used to indicate if the vertex can be removed. for (int i = 0; i < n; i++) { int i1 = next(i, n); int i2 = next(i1, n); if (diagonal(i, i2, n, verts, indices)) indices[i1] |= 0x8000; } while (n > 3) { int minLen = -1; int mini = -1; for (int i = 0; i < n; i++) { int i1 = next(i, n); if (indices[i1] & 0x8000) { const unsigned char* p0 = &verts[(indices[i] & 0x7fff) * 4]; const unsigned char* p2 = &verts[(indices[next(i1, n)] & 0x7fff) * 4]; const int dx = (int)p2[0] - (int)p0[0]; const int dz = (int)p2[2] - (int)p0[2]; const int len = dx*dx + dz*dz; if (minLen < 0 || len < minLen) { minLen = len; mini = i; } } } if (mini == -1) { // Should not happen. /* printf("mini == -1 ntris=%d n=%d\n", ntris, n); for (int i = 0; i < n; i++) { printf("%d ", indices[i] & 0x0fffffff); } printf("\n");*/ return -ntris; } int i = mini; int i1 = next(i, n); int i2 = next(i1, n); *dst++ = indices[i] & 0x7fff; *dst++ = indices[i1] & 0x7fff; *dst++ = indices[i2] & 0x7fff; ntris++; // Removes P[i1] by copying P[i+1]...P[n-1] left one index. n--; for (int k = i1; k < n; k++) indices[k] = indices[k+1]; if (i1 >= n) i1 = 0; i = prev(i1,n); // Update diagonal flags. if (diagonal(prev(i, n), i1, n, verts, indices)) indices[i] |= 0x8000; else indices[i] &= 0x7fff; if (diagonal(i, next(i1, n), n, verts, indices)) indices[i1] |= 0x8000; else indices[i1] &= 0x7fff; } // Append the remaining triangle. *dst++ = indices[0] & 0x7fff; *dst++ = indices[1] & 0x7fff; *dst++ = indices[2] & 0x7fff; ntris++; return ntris; } static int countPolyVerts(const unsigned short* p) { for (int i = 0; i < MAX_VERTS_PER_POLY; ++i) if (p[i] == DT_TILECACHE_NULL_IDX) return i; return MAX_VERTS_PER_POLY; } inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c) { return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) - ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0; } static int getPolyMergeValue(unsigned short* pa, unsigned short* pb, const unsigned short* verts, int& ea, int& eb) { const int na = countPolyVerts(pa); const int nb = countPolyVerts(pb); // If the merged polygon would be too big, do not merge. if (na+nb-2 > MAX_VERTS_PER_POLY) return -1; // Check if the polygons share an edge. ea = -1; eb = -1; for (int i = 0; i < na; ++i) { unsigned short va0 = pa[i]; unsigned short va1 = pa[(i+1) % na]; if (va0 > va1) dtSwap(va0, va1); for (int j = 0; j < nb; ++j) { unsigned short vb0 = pb[j]; unsigned short vb1 = pb[(j+1) % nb]; if (vb0 > vb1) dtSwap(vb0, vb1); if (va0 == vb0 && va1 == vb1) { ea = i; eb = j; break; } } } // No common edge, cannot merge. if (ea == -1 || eb == -1) return -1; // Check to see if the merged polygon would be convex. unsigned short va, vb, vc; va = pa[(ea+na-1) % na]; vb = pa[ea]; vc = pb[(eb+2) % nb]; if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3])) return -1; va = pb[(eb+nb-1) % nb]; vb = pb[eb]; vc = pa[(ea+2) % na]; if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3])) return -1; va = pa[ea]; vb = pa[(ea+1)%na]; int dx = (int)verts[va*3+0] - (int)verts[vb*3+0]; int dy = (int)verts[va*3+2] - (int)verts[vb*3+2]; return dx*dx + dy*dy; } static void mergePolys(unsigned short* pa, unsigned short* pb, int ea, int eb) { unsigned short tmp[MAX_VERTS_PER_POLY*2]; const int na = countPolyVerts(pa); const int nb = countPolyVerts(pb); // Merge polygons. memset(tmp, 0xff, sizeof(unsigned short)*MAX_VERTS_PER_POLY*2); int n = 0; // Add pa for (int i = 0; i < na-1; ++i) tmp[n++] = pa[(ea+1+i) % na]; // Add pb for (int i = 0; i < nb-1; ++i) tmp[n++] = pb[(eb+1+i) % nb]; memcpy(pa, tmp, sizeof(unsigned short)*MAX_VERTS_PER_POLY); } static void pushFront(unsigned short v, unsigned short* arr, int& an) { an++; for (int i = an-1; i > 0; --i) arr[i] = arr[i-1]; arr[0] = v; } static void pushBack(unsigned short v, unsigned short* arr, int& an) { arr[an] = v; an++; } static bool canRemoveVertex(dtTileCachePolyMesh& mesh, const unsigned short rem) { // Count number of polygons to remove. int numTouchedVerts = 0; int numRemainingEdges = 0; for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2]; const int nv = countPolyVerts(p); int numRemoved = 0; int numVerts = 0; for (int j = 0; j < nv; ++j) { if (p[j] == rem) { numTouchedVerts++; numRemoved++; } numVerts++; } if (numRemoved) { numRemainingEdges += numVerts-(numRemoved+1); } } // There would be too few edges remaining to create a polygon. // This can happen for example when a tip of a triangle is marked // as deletion, but there are no other polys that share the vertex. // In this case, the vertex should not be removed. if (numRemainingEdges <= 2) return false; // Check that there is enough memory for the test. const int maxEdges = numTouchedVerts*2; if (maxEdges > MAX_REM_EDGES) return false; // Find edges which share the removed vertex. unsigned short edges[MAX_REM_EDGES]; int nedges = 0; for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2]; const int nv = countPolyVerts(p); // Collect edges which touches the removed vertex. for (int j = 0, k = nv-1; j < nv; k = j++) { if (p[j] == rem || p[k] == rem) { // Arrange edge so that a=rem. int a = p[j], b = p[k]; if (b == rem) dtSwap(a,b); // Check if the edge exists bool exists = false; for (int m = 0; m < nedges; ++m) { unsigned short* e = &edges[m*3]; if (e[1] == b) { // Exists, increment vertex share count. e[2]++; exists = true; } } // Add new edge. if (!exists) { unsigned short* e = &edges[nedges*3]; e[0] = (unsigned short)a; e[1] = (unsigned short)b; e[2] = 1; nedges++; } } } } // There should be no more than 2 open edges. // This catches the case that two non-adjacent polygons // share the removed vertex. In that case, do not remove the vertex. int numOpenEdges = 0; for (int i = 0; i < nedges; ++i) { if (edges[i*3+2] < 2) numOpenEdges++; } if (numOpenEdges > 2) return false; return true; } static dtStatus removeVertex(dtTileCachePolyMesh& mesh, const unsigned short rem, const int maxTris) { // Count number of polygons to remove. int numRemovedVerts = 0; for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2]; const int nv = countPolyVerts(p); for (int j = 0; j < nv; ++j) { if (p[j] == rem) numRemovedVerts++; } } int nedges = 0; unsigned short edges[MAX_REM_EDGES*3]; int nhole = 0; unsigned short hole[MAX_REM_EDGES]; int nharea = 0; unsigned short harea[MAX_REM_EDGES]; for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2]; const int nv = countPolyVerts(p); bool hasRem = false; for (int j = 0; j < nv; ++j) if (p[j] == rem) hasRem = true; if (hasRem) { // Collect edges which does not touch the removed vertex. for (int j = 0, k = nv-1; j < nv; k = j++) { if (p[j] != rem && p[k] != rem) { if (nedges >= MAX_REM_EDGES) return DT_FAILURE | DT_BUFFER_TOO_SMALL; unsigned short* e = &edges[nedges*3]; e[0] = p[k]; e[1] = p[j]; e[2] = mesh.areas[i]; nedges++; } } // Remove the polygon. unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*MAX_VERTS_PER_POLY*2]; memcpy(p,p2,sizeof(unsigned short)*MAX_VERTS_PER_POLY); memset(p+MAX_VERTS_PER_POLY,0xff,sizeof(unsigned short)*MAX_VERTS_PER_POLY); mesh.areas[i] = mesh.areas[mesh.npolys-1]; mesh.npolys--; --i; } } // Remove vertex. for (int i = (int)rem; i < mesh.nverts - 1; ++i) { mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0]; mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1]; mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2]; } mesh.nverts--; // Adjust indices to match the removed vertex layout. for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2]; const int nv = countPolyVerts(p); for (int j = 0; j < nv; ++j) if (p[j] > rem) p[j]--; } for (int i = 0; i < nedges; ++i) { if (edges[i*3+0] > rem) edges[i*3+0]--; if (edges[i*3+1] > rem) edges[i*3+1]--; } if (nedges == 0) return DT_SUCCESS; // Start with one vertex, keep appending connected // segments to the start and end of the hole. pushBack(edges[0], hole, nhole); pushBack(edges[2], harea, nharea); while (nedges) { bool match = false; for (int i = 0; i < nedges; ++i) { const unsigned short ea = edges[i*3+0]; const unsigned short eb = edges[i*3+1]; const unsigned short a = edges[i*3+2]; bool add = false; if (hole[0] == eb) { // The segment matches the beginning of the hole boundary. if (nhole >= MAX_REM_EDGES) return DT_FAILURE | DT_BUFFER_TOO_SMALL; pushFront(ea, hole, nhole); pushFront(a, harea, nharea); add = true; } else if (hole[nhole-1] == ea) { // The segment matches the end of the hole boundary. if (nhole >= MAX_REM_EDGES) return DT_FAILURE | DT_BUFFER_TOO_SMALL; pushBack(eb, hole, nhole); pushBack(a, harea, nharea); add = true; } if (add) { // The edge segment was added, remove it. edges[i*3+0] = edges[(nedges-1)*3+0]; edges[i*3+1] = edges[(nedges-1)*3+1]; edges[i*3+2] = edges[(nedges-1)*3+2]; --nedges; match = true; --i; } } if (!match) break; } unsigned short tris[MAX_REM_EDGES*3]; unsigned char tverts[MAX_REM_EDGES*3]; unsigned short tpoly[MAX_REM_EDGES*3]; // Generate temp vertex array for triangulation. for (int i = 0; i < nhole; ++i) { const unsigned short pi = hole[i]; tverts[i*4+0] = (unsigned char)mesh.verts[pi*3+0]; tverts[i*4+1] = (unsigned char)mesh.verts[pi*3+1]; tverts[i*4+2] = (unsigned char)mesh.verts[pi*3+2]; tverts[i*4+3] = 0; tpoly[i] = (unsigned short)i; } // Triangulate the hole. int ntris = triangulate(nhole, tverts, tpoly, tris); if (ntris < 0) { // TODO: issue warning! ntris = -ntris; } if (ntris > MAX_REM_EDGES) return DT_FAILURE | DT_BUFFER_TOO_SMALL; unsigned short polys[MAX_REM_EDGES*MAX_VERTS_PER_POLY]; unsigned char pareas[MAX_REM_EDGES]; // Build initial polygons. int npolys = 0; memset(polys, 0xff, ntris*MAX_VERTS_PER_POLY*sizeof(unsigned short)); for (int j = 0; j < ntris; ++j) { unsigned short* t = &tris[j*3]; if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) { polys[npolys*MAX_VERTS_PER_POLY+0] = hole[t[0]]; polys[npolys*MAX_VERTS_PER_POLY+1] = hole[t[1]]; polys[npolys*MAX_VERTS_PER_POLY+2] = hole[t[2]]; pareas[npolys] = (unsigned char)harea[t[0]]; npolys++; } } if (!npolys) return DT_SUCCESS; // Merge polygons. int maxVertsPerPoly = MAX_VERTS_PER_POLY; if (maxVertsPerPoly > 3) { for (;;) { // Find best polygons to merge. int bestMergeVal = 0; int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0; for (int j = 0; j < npolys-1; ++j) { unsigned short* pj = &polys[j*MAX_VERTS_PER_POLY]; for (int k = j+1; k < npolys; ++k) { unsigned short* pk = &polys[k*MAX_VERTS_PER_POLY]; int ea, eb; int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb); if (v > bestMergeVal) { bestMergeVal = v; bestPa = j; bestPb = k; bestEa = ea; bestEb = eb; } } } if (bestMergeVal > 0) { // Found best, merge. unsigned short* pa = &polys[bestPa*MAX_VERTS_PER_POLY]; unsigned short* pb = &polys[bestPb*MAX_VERTS_PER_POLY]; mergePolys(pa, pb, bestEa, bestEb); memcpy(pb, &polys[(npolys-1)*MAX_VERTS_PER_POLY], sizeof(unsigned short)*MAX_VERTS_PER_POLY); pareas[bestPb] = pareas[npolys-1]; npolys--; } else { // Could not merge any polygons, stop. break; } } } // Store polygons. for (int i = 0; i < npolys; ++i) { if (mesh.npolys >= maxTris) break; unsigned short* p = &mesh.polys[mesh.npolys*MAX_VERTS_PER_POLY*2]; memset(p,0xff,sizeof(unsigned short)*MAX_VERTS_PER_POLY*2); for (int j = 0; j < MAX_VERTS_PER_POLY; ++j) p[j] = polys[i*MAX_VERTS_PER_POLY+j]; mesh.areas[mesh.npolys] = pareas[i]; mesh.npolys++; if (mesh.npolys > maxTris) return DT_FAILURE | DT_BUFFER_TOO_SMALL; } return DT_SUCCESS; } dtStatus dtBuildTileCachePolyMesh(dtTileCacheAlloc* alloc, dtTileCacheContourSet& lcset, dtTileCachePolyMesh& mesh) { dtAssert(alloc); int maxVertices = 0; int maxTris = 0; int maxVertsPerCont = 0; for (int i = 0; i < lcset.nconts; ++i) { // Skip null contours. if (lcset.conts[i].nverts < 3) continue; maxVertices += lcset.conts[i].nverts; maxTris += lcset.conts[i].nverts - 2; maxVertsPerCont = dtMax(maxVertsPerCont, lcset.conts[i].nverts); } // TODO: warn about too many vertices? mesh.nvp = MAX_VERTS_PER_POLY; dtFixedArray vflags(alloc, maxVertices); if (!vflags) return DT_FAILURE | DT_OUT_OF_MEMORY; memset(vflags, 0, maxVertices); mesh.verts = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxVertices*3); if (!mesh.verts) return DT_FAILURE | DT_OUT_OF_MEMORY; mesh.polys = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris*MAX_VERTS_PER_POLY*2); if (!mesh.polys) return DT_FAILURE | DT_OUT_OF_MEMORY; mesh.areas = (unsigned char*)alloc->alloc(sizeof(unsigned char)*maxTris); if (!mesh.areas) return DT_FAILURE | DT_OUT_OF_MEMORY; mesh.flags = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris); if (!mesh.flags) return DT_FAILURE | DT_OUT_OF_MEMORY; // Just allocate and clean the mesh flags array. The user is resposible for filling it. memset(mesh.flags, 0, sizeof(unsigned short) * maxTris); mesh.nverts = 0; mesh.npolys = 0; memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3); memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*MAX_VERTS_PER_POLY*2); memset(mesh.areas, 0, sizeof(unsigned char)*maxTris); unsigned short firstVert[VERTEX_BUCKET_COUNT2]; for (int i = 0; i < VERTEX_BUCKET_COUNT2; ++i) firstVert[i] = DT_TILECACHE_NULL_IDX; dtFixedArray nextVert(alloc, maxVertices); if (!nextVert) return DT_FAILURE | DT_OUT_OF_MEMORY; memset(nextVert, 0, sizeof(unsigned short)*maxVertices); dtFixedArray indices(alloc, maxVertsPerCont); if (!indices) return DT_FAILURE | DT_OUT_OF_MEMORY; dtFixedArray tris(alloc, maxVertsPerCont*3); if (!tris) return DT_FAILURE | DT_OUT_OF_MEMORY; dtFixedArray polys(alloc, maxVertsPerCont*MAX_VERTS_PER_POLY); if (!polys) return DT_FAILURE | DT_OUT_OF_MEMORY; for (int i = 0; i < lcset.nconts; ++i) { dtTileCacheContour& cont = lcset.conts[i]; // Skip null contours. if (cont.nverts < 3) continue; // Triangulate contour for (int j = 0; j < cont.nverts; ++j) indices[j] = (unsigned short)j; int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]); if (ntris <= 0) { // TODO: issue warning! ntris = -ntris; } // Add and merge vertices. for (int j = 0; j < cont.nverts; ++j) { const unsigned char* v = &cont.verts[j*4]; indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2], mesh.verts, firstVert, nextVert, mesh.nverts); if (v[3] & 0x80) { // This vertex should be removed. vflags[indices[j]] = 1; } } // Build initial polygons. int npolys = 0; memset(polys, 0xff, sizeof(unsigned short) * maxVertsPerCont * MAX_VERTS_PER_POLY); for (int j = 0; j < ntris; ++j) { const unsigned short* t = &tris[j*3]; if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) { polys[npolys*MAX_VERTS_PER_POLY+0] = indices[t[0]]; polys[npolys*MAX_VERTS_PER_POLY+1] = indices[t[1]]; polys[npolys*MAX_VERTS_PER_POLY+2] = indices[t[2]]; npolys++; } } if (!npolys) continue; // Merge polygons. int maxVertsPerPoly =MAX_VERTS_PER_POLY ; if (maxVertsPerPoly > 3) { for(;;) { // Find best polygons to merge. int bestMergeVal = 0; int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0; for (int j = 0; j < npolys-1; ++j) { unsigned short* pj = &polys[j*MAX_VERTS_PER_POLY]; for (int k = j+1; k < npolys; ++k) { unsigned short* pk = &polys[k*MAX_VERTS_PER_POLY]; int ea, eb; int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb); if (v > bestMergeVal) { bestMergeVal = v; bestPa = j; bestPb = k; bestEa = ea; bestEb = eb; } } } if (bestMergeVal > 0) { // Found best, merge. unsigned short* pa = &polys[bestPa*MAX_VERTS_PER_POLY]; unsigned short* pb = &polys[bestPb*MAX_VERTS_PER_POLY]; mergePolys(pa, pb, bestEa, bestEb); memcpy(pb, &polys[(npolys-1)*MAX_VERTS_PER_POLY], sizeof(unsigned short)*MAX_VERTS_PER_POLY); npolys--; } else { // Could not merge any polygons, stop. break; } } } // Store polygons. for (int j = 0; j < npolys; ++j) { unsigned short* p = &mesh.polys[mesh.npolys*MAX_VERTS_PER_POLY*2]; unsigned short* q = &polys[j*MAX_VERTS_PER_POLY]; for (int k = 0; k < MAX_VERTS_PER_POLY; ++k) p[k] = q[k]; mesh.areas[mesh.npolys] = cont.area; mesh.npolys++; if (mesh.npolys > maxTris) return DT_FAILURE | DT_BUFFER_TOO_SMALL; } } // Remove edge vertices. for (int i = 0; i < mesh.nverts; ++i) { if (vflags[i]) { if (!canRemoveVertex(mesh, (unsigned short)i)) continue; dtStatus status = removeVertex(mesh, (unsigned short)i, maxTris); if (dtStatusFailed(status)) return status; // Remove vertex // Note: mesh.nverts is already decremented inside removeVertex()! for (int j = i; j < mesh.nverts; ++j) vflags[j] = vflags[j+1]; --i; } } // Calculate adjacency. if (!buildMeshAdjacency(alloc, mesh.polys, mesh.npolys, mesh.verts, mesh.nverts, lcset)) return DT_FAILURE | DT_OUT_OF_MEMORY; return DT_SUCCESS; } dtStatus dtMarkCylinderArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch, const float* pos, const float radius, const float height, const unsigned char areaId) { float bmin[3], bmax[3]; bmin[0] = pos[0] - radius; bmin[1] = pos[1]; bmin[2] = pos[2] - radius; bmax[0] = pos[0] + radius; bmax[1] = pos[1] + height; bmax[2] = pos[2] + radius; const float r2 = dtSqr(radius/cs + 0.5f); const int w = (int)layer.header->width; const int h = (int)layer.header->height; const float ics = 1.0f/cs; const float ich = 1.0f/ch; const float px = (pos[0]-orig[0])*ics; const float pz = (pos[2]-orig[2])*ics; int minx = (int)dtMathFloorf((bmin[0]-orig[0])*ics); int miny = (int)dtMathFloorf((bmin[1]-orig[1])*ich); int minz = (int)dtMathFloorf((bmin[2]-orig[2])*ics); int maxx = (int)dtMathFloorf((bmax[0]-orig[0])*ics); int maxy = (int)dtMathFloorf((bmax[1]-orig[1])*ich); int maxz = (int)dtMathFloorf((bmax[2]-orig[2])*ics); if (maxx < 0) return DT_SUCCESS; if (minx >= w) return DT_SUCCESS; if (maxz < 0) return DT_SUCCESS; if (minz >= h) return DT_SUCCESS; if (minx < 0) minx = 0; if (maxx >= w) maxx = w-1; if (minz < 0) minz = 0; if (maxz >= h) maxz = h-1; for (int z = minz; z <= maxz; ++z) { for (int x = minx; x <= maxx; ++x) { const float dx = (float)(x+0.5f) - px; const float dz = (float)(z+0.5f) - pz; if (dx*dx + dz*dz > r2) continue; const int y = layer.heights[x+z*w]; if (y < miny || y > maxy) continue; layer.areas[x+z*w] = areaId; } } return DT_SUCCESS; } dtStatus dtMarkBoxArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch, const float* bmin, const float* bmax, const unsigned char areaId) { const int w = (int)layer.header->width; const int h = (int)layer.header->height; const float ics = 1.0f/cs; const float ich = 1.0f/ch; int minx = (int)floorf((bmin[0]-orig[0])*ics); int miny = (int)floorf((bmin[1]-orig[1])*ich); int minz = (int)floorf((bmin[2]-orig[2])*ics); int maxx = (int)floorf((bmax[0]-orig[0])*ics); int maxy = (int)floorf((bmax[1]-orig[1])*ich); int maxz = (int)floorf((bmax[2]-orig[2])*ics); if (maxx < 0) return DT_SUCCESS; if (minx >= w) return DT_SUCCESS; if (maxz < 0) return DT_SUCCESS; if (minz >= h) return DT_SUCCESS; if (minx < 0) minx = 0; if (maxx >= w) maxx = w-1; if (minz < 0) minz = 0; if (maxz >= h) maxz = h-1; for (int z = minz; z <= maxz; ++z) { for (int x = minx; x <= maxx; ++x) { const int y = layer.heights[x+z*w]; if (y < miny || y > maxy) continue; layer.areas[x+z*w] = areaId; } } return DT_SUCCESS; } dtStatus dtMarkBoxArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch, const float* center, const float* halfExtents, const float* rotAux, const unsigned char areaId) { const int w = (int)layer.header->width; const int h = (int)layer.header->height; const float ics = 1.0f/cs; const float ich = 1.0f/ch; float cx = (center[0] - orig[0])*ics; float cz = (center[2] - orig[2])*ics; float maxr = 1.41f*dtMax(halfExtents[0], halfExtents[2]); int minx = (int)floorf(cx - maxr*ics); int maxx = (int)floorf(cx + maxr*ics); int minz = (int)floorf(cz - maxr*ics); int maxz = (int)floorf(cz + maxr*ics); int miny = (int)floorf((center[1]-halfExtents[1]-orig[1])*ich); int maxy = (int)floorf((center[1]+halfExtents[1]-orig[1])*ich); if (maxx < 0) return DT_SUCCESS; if (minx >= w) return DT_SUCCESS; if (maxz < 0) return DT_SUCCESS; if (minz >= h) return DT_SUCCESS; if (minx < 0) minx = 0; if (maxx >= w) maxx = w-1; if (minz < 0) minz = 0; if (maxz >= h) maxz = h-1; float xhalf = halfExtents[0]*ics + 0.5f; float zhalf = halfExtents[2]*ics + 0.5f; for (int z = minz; z <= maxz; ++z) { for (int x = minx; x <= maxx; ++x) { float x2 = 2.0f*(float(x) - cx); float z2 = 2.0f*(float(z) - cz); float xrot = rotAux[1]*x2 + rotAux[0]*z2; if (xrot > xhalf || xrot < -xhalf) continue; float zrot = rotAux[1]*z2 - rotAux[0]*x2; if (zrot > zhalf || zrot < -zhalf) continue; const int y = layer.heights[x+z*w]; if (y < miny || y > maxy) continue; layer.areas[x+z*w] = areaId; } } return DT_SUCCESS; } dtStatus dtBuildTileCacheLayer(dtTileCacheCompressor* comp, dtTileCacheLayerHeader* header, const unsigned char* heights, const unsigned char* areas, const unsigned char* cons, unsigned char** outData, int* outDataSize) { const int headerSize = dtAlign4(sizeof(dtTileCacheLayerHeader)); const int gridSize = (int)header->width * (int)header->height; const int maxDataSize = headerSize + comp->maxCompressedSize(gridSize*3); unsigned char* data = (unsigned char*)dtAlloc(maxDataSize, DT_ALLOC_PERM); if (!data) return DT_FAILURE | DT_OUT_OF_MEMORY; memset(data, 0, maxDataSize); // Store header memcpy(data, header, sizeof(dtTileCacheLayerHeader)); // Concatenate grid data for compression. const int bufferSize = gridSize*3; unsigned char* buffer = (unsigned char*)dtAlloc(bufferSize, DT_ALLOC_TEMP); if (!buffer) { dtFree(data); return DT_FAILURE | DT_OUT_OF_MEMORY; } memcpy(buffer, heights, gridSize); memcpy(buffer+gridSize, areas, gridSize); memcpy(buffer+gridSize*2, cons, gridSize); // Compress unsigned char* compressed = data + headerSize; const int maxCompressedSize = maxDataSize - headerSize; int compressedSize = 0; dtStatus status = comp->compress(buffer, bufferSize, compressed, maxCompressedSize, &compressedSize); if (dtStatusFailed(status)) { dtFree(buffer); dtFree(data); return status; } *outData = data; *outDataSize = headerSize + compressedSize; dtFree(buffer); return DT_SUCCESS; } void dtFreeTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheLayer* layer) { dtAssert(alloc); // The layer is allocated as one conitguous blob of data. alloc->free(layer); } dtStatus dtDecompressTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheCompressor* comp, unsigned char* compressed, const int compressedSize, dtTileCacheLayer** layerOut) { dtAssert(alloc); dtAssert(comp); if (!layerOut) return DT_FAILURE | DT_INVALID_PARAM; if (!compressed) return DT_FAILURE | DT_INVALID_PARAM; *layerOut = 0; dtTileCacheLayerHeader* compressedHeader = (dtTileCacheLayerHeader*)compressed; if (compressedHeader->magic != DT_TILECACHE_MAGIC) return DT_FAILURE | DT_WRONG_MAGIC; if (compressedHeader->version != DT_TILECACHE_VERSION) return DT_FAILURE | DT_WRONG_VERSION; const int layerSize = dtAlign4(sizeof(dtTileCacheLayer)); const int headerSize = dtAlign4(sizeof(dtTileCacheLayerHeader)); const int gridSize = (int)compressedHeader->width * (int)compressedHeader->height; const int bufferSize = layerSize + headerSize + gridSize*4; unsigned char* buffer = (unsigned char*)alloc->alloc(bufferSize); if (!buffer) return DT_FAILURE | DT_OUT_OF_MEMORY; memset(buffer, 0, bufferSize); dtTileCacheLayer* layer = (dtTileCacheLayer*)buffer; dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)(buffer + layerSize); unsigned char* grids = buffer + layerSize + headerSize; const int gridsSize = bufferSize - (layerSize + headerSize); // Copy header memcpy(header, compressedHeader, headerSize); // Decompress grid. int size = 0; dtStatus status = comp->decompress(compressed+headerSize, compressedSize-headerSize, grids, gridsSize, &size); if (dtStatusFailed(status)) { alloc->free(buffer); return status; } layer->header = header; layer->heights = grids; layer->areas = grids + gridSize; layer->cons = grids + gridSize*2; layer->regs = grids + gridSize*3; *layerOut = layer; return DT_SUCCESS; } bool dtTileCacheHeaderSwapEndian(unsigned char* data, const int dataSize) { dtIgnoreUnused(dataSize); dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)data; int swappedMagic = DT_TILECACHE_MAGIC; int swappedVersion = DT_TILECACHE_VERSION; dtSwapEndian(&swappedMagic); dtSwapEndian(&swappedVersion); if ((header->magic != DT_TILECACHE_MAGIC || header->version != DT_TILECACHE_VERSION) && (header->magic != swappedMagic || header->version != swappedVersion)) { return false; } dtSwapEndian(&header->magic); dtSwapEndian(&header->version); dtSwapEndian(&header->tx); dtSwapEndian(&header->ty); dtSwapEndian(&header->tlayer); dtSwapEndian(&header->bmin[0]); dtSwapEndian(&header->bmin[1]); dtSwapEndian(&header->bmin[2]); dtSwapEndian(&header->bmax[0]); dtSwapEndian(&header->bmax[1]); dtSwapEndian(&header->bmax[2]); dtSwapEndian(&header->hmin); dtSwapEndian(&header->hmax); // width, height, minx, maxx, miny, maxy are unsigned char, no need to swap. return true; }