// MIT License // Copyright (c) 2019 Erin Catto // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #ifndef B2_MATH_H #define B2_MATH_H #include #include "b2_api.h" #include "b2_settings.h" /// This function is used to ensure that a floating point number is not a NaN or infinity. inline bool b2IsValid(float x) { return isfinite(x); } /// This is a approximate yet fast inverse square-root. inline float32 b2InvSqrt(float32 x) { union { float32 x; int32 i; } convert; convert.x = x; float32 xhalf = 0.5f * x; convert.i = 0x5f3759df - (convert.i >> 1); x = convert.x; x = x * (1.5f - xhalf * x * x); return x; } #define b2Sqrt(x) sqrtf(x) #define b2Atan2(y, x) atan2f(y, x) /// A 2D column vector. struct B2_API b2Vec2 { /// Default constructor does nothing (for performance). b2Vec2() {} /// Construct using coordinates. b2Vec2(float xIn, float yIn) : x(xIn), y(yIn) {} /// Set this vector to all zeros. void SetZero() { x = 0.0f; y = 0.0f; } /// Set this vector to some specified coordinates. void Set(float x_, float y_) { x = x_; y = y_; } /// Negate this vector. b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; } /// Read from and indexed element. float operator () (int32 i) const { return (&x)[i]; } /// Write to an indexed element. float& operator () (int32 i) { return (&x)[i]; } /// Add a vector to this vector. void operator += (const b2Vec2& v) { x += v.x; y += v.y; } /// Subtract a vector from this vector. void operator -= (const b2Vec2& v) { x -= v.x; y -= v.y; } /// Multiply this vector by a scalar. void operator *= (float a) { x *= a; y *= a; } /// Divide this vector by a scalar. void operator /= (float a) { x /= a; y /= a; } /// Get the length of this vector (the norm). float Length() const { return b2Sqrt(x * x + y * y); } /// Get the length squared. For performance, use this instead of /// b2Vec2::Length (if possible). float LengthSquared() const { return x * x + y * y; } /// Convert this vector into a unit vector. Returns the length. float Normalize() { float length = Length(); if (length < b2_epsilon) { return 0.0f; } float invLength = 1.0f / length; x *= invLength; y *= invLength; return length; } /// Does this vector contain finite coordinates? bool IsValid() const { return b2IsValid(x) && b2IsValid(y); } /// Get the skew vector such that dot(skew_vec, other) == cross(vec, other) b2Vec2 Skew() const { return b2Vec2(-y, x); } float x, y; }; /// A 2D column vector with 3 elements. struct B2_API b2Vec3 { /// Default constructor does nothing (for performance). b2Vec3() {} /// Construct using coordinates. b2Vec3(float xIn, float yIn, float zIn) : x(xIn), y(yIn), z(zIn) {} /// Set this vector to all zeros. void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; } /// Set this vector to some specified coordinates. void Set(float x_, float y_, float z_) { x = x_; y = y_; z = z_; } /// Negate this vector. b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; } /// Add a vector to this vector. void operator += (const b2Vec3& v) { x += v.x; y += v.y; z += v.z; } /// Subtract a vector from this vector. void operator -= (const b2Vec3& v) { x -= v.x; y -= v.y; z -= v.z; } /// Multiply this vector by a scalar. void operator *= (float s) { x *= s; y *= s; z *= s; } float x, y, z; }; /// A 2-by-2 matrix. Stored in column-major order. struct B2_API b2Mat22 { /// The default constructor does nothing (for performance). b2Mat22() {} /// Construct this matrix using columns. b2Mat22(const b2Vec2& c1, const b2Vec2& c2) { ex = c1; ey = c2; } /// Construct this matrix using scalars. b2Mat22(float a11, float a12, float a21, float a22) { ex.x = a11; ex.y = a21; ey.x = a12; ey.y = a22; } /// Initialize this matrix using columns. void Set(const b2Vec2& c1, const b2Vec2& c2) { ex = c1; ey = c2; } /// Set this to the identity matrix. void SetIdentity() { ex.x = 1.0f; ey.x = 0.0f; ex.y = 0.0f; ey.y = 1.0f; } /// Set this matrix to all zeros. void SetZero() { ex.x = 0.0f; ey.x = 0.0f; ex.y = 0.0f; ey.y = 0.0f; } b2Mat22 GetInverse() const { float a = ex.x, b = ey.x, c = ex.y, d = ey.y; b2Mat22 B; float det = a * d - b * c; if (det != 0.0f) { det = 1.0f / det; } B.ex.x = det * d; B.ey.x = -det * b; B.ex.y = -det * c; B.ey.y = det * a; return B; } /// Solve A * x = b, where b is a column vector. This is more efficient /// than computing the inverse in one-shot cases. b2Vec2 Solve(const b2Vec2& b) const { float a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y; float det = a11 * a22 - a12 * a21; if (det != 0.0f) { det = 1.0f / det; } b2Vec2 x; x.x = det * (a22 * b.x - a12 * b.y); x.y = det * (a11 * b.y - a21 * b.x); return x; } b2Vec2 ex, ey; }; /// A 3-by-3 matrix. Stored in column-major order. struct B2_API b2Mat33 { /// The default constructor does nothing (for performance). b2Mat33() {} /// Construct this matrix using columns. b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3) { ex = c1; ey = c2; ez = c3; } /// Set this matrix to all zeros. void SetZero() { ex.SetZero(); ey.SetZero(); ez.SetZero(); } /// Solve A * x = b, where b is a column vector. This is more efficient /// than computing the inverse in one-shot cases. b2Vec3 Solve33(const b2Vec3& b) const; /// Solve A * x = b, where b is a column vector. This is more efficient /// than computing the inverse in one-shot cases. Solve only the upper /// 2-by-2 matrix equation. b2Vec2 Solve22(const b2Vec2& b) const; /// Get the inverse of this matrix as a 2-by-2. /// Returns the zero matrix if singular. void GetInverse22(b2Mat33* M) const; /// Get the symmetric inverse of this matrix as a 3-by-3. /// Returns the zero matrix if singular. void GetSymInverse33(b2Mat33* M) const; b2Vec3 ex, ey, ez; }; /// Rotation struct B2_API b2Rot { b2Rot() {} /// Initialize from an angle in radians explicit b2Rot(float angle) { /// TODO_ERIN optimize s = sinf(angle); c = cosf(angle); } /// Set using an angle in radians. void Set(float angle) { /// TODO_ERIN optimize s = sinf(angle); c = cosf(angle); } /// Set to the identity rotation void SetIdentity() { s = 0.0f; c = 1.0f; } /// Get the angle in radians float GetAngle() const { float acos = acosf(c); float angle = (s >= 0)? acos: -acos; return angle; } /// Get the x-axis b2Vec2 GetXAxis() const { return b2Vec2(c, s); } /// Get the u-axis b2Vec2 GetYAxis() const { return b2Vec2(-s, c); } /// Sine and cosine float s, c; }; /// A transform contains translation and rotation. It is used to represent /// the position and orientation of rigid frames. struct B2_API b2Transform { /// The default constructor does nothing. b2Transform() {} /// Initialize using a position vector and a rotation. b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {} /// Set this to the identity transform. void SetIdentity() { p.SetZero(); q.SetIdentity(); } /// Set this based on the position and angle. void Set(const b2Vec2& position, float angle) { p = position; q.Set(angle); } b2Vec2 p; b2Rot q; }; /// This describes the motion of a body/shape for TOI computation. /// Shapes are defined with respect to the body origin, which may /// no coincide with the center of mass. However, to support dynamics /// we must interpolate the center of mass position. struct B2_API b2Sweep { /// Get the interpolated transform at a specific time. /// @param transform the output transform /// @param beta is a factor in [0,1], where 0 indicates alpha0. void GetTransform(b2Transform* transform, float beta) const; /// Advance the sweep forward, yielding a new initial state. /// @param alpha the new initial time. void Advance(float alpha); /// Normalize the angles. void Normalize(); b2Vec2 localCenter; ///< local center of mass position b2Vec2 c0, c; ///< center world positions float a0, a; ///< world angles /// Fraction of the current time step in the range [0,1] /// c0 and a0 are the positions at alpha0. float alpha0; }; /// Useful constant extern B2_API const b2Vec2 b2Vec2_zero; /// Perform the dot product on two vectors. inline float b2Dot(const b2Vec2& a, const b2Vec2& b) { return a.x * b.x + a.y * b.y; } /// Perform the cross product on two vectors. In 2D this produces a scalar. inline float b2Cross(const b2Vec2& a, const b2Vec2& b) { return a.x * b.y - a.y * b.x; } /// Perform the cross product on a vector and a scalar. In 2D this produces /// a vector. inline b2Vec2 b2Cross(const b2Vec2& a, float s) { return b2Vec2(s * a.y, -s * a.x); } /// Perform the cross product on a scalar and a vector. In 2D this produces /// a vector. inline b2Vec2 b2Cross(float s, const b2Vec2& a) { return b2Vec2(-s * a.y, s * a.x); } /// Multiply a matrix times a vector. If a rotation matrix is provided, /// then this transforms the vector from one frame to another. inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v) { return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); } /// Multiply a matrix transpose times a vector. If a rotation matrix is provided, /// then this transforms the vector from one frame to another (inverse transform). inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v) { return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey)); } /// Add two vectors component-wise. inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b) { return b2Vec2(a.x + b.x, a.y + b.y); } /// Subtract two vectors component-wise. inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b) { return b2Vec2(a.x - b.x, a.y - b.y); } inline b2Vec2 operator * (float s, const b2Vec2& a) { return b2Vec2(s * a.x, s * a.y); } inline b2Vec2 operator / (const b2Vec2& v, float f) { return b2Vec2(v.x / f, v.y / f); } inline bool operator == (const b2Vec2& a, const b2Vec2& b) { return a.x == b.x && a.y == b.y; } inline bool operator != (const b2Vec2& a, const b2Vec2& b) { return a.x != b.x || a.y != b.y; } inline float b2Distance(const b2Vec2& a, const b2Vec2& b) { b2Vec2 c = a - b; return c.Length(); } inline float b2DistanceSquared(const b2Vec2& a, const b2Vec2& b) { b2Vec2 c = a - b; return b2Dot(c, c); } inline b2Vec3 operator * (float s, const b2Vec3& a) { return b2Vec3(s * a.x, s * a.y, s * a.z); } /// Add two vectors component-wise. inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b) { return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z); } /// Subtract two vectors component-wise. inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b) { return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z); } /// Perform the dot product on two vectors. inline float b2Dot(const b2Vec3& a, const b2Vec3& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } /// Perform the cross product on two vectors. inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b) { return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); } inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B) { return b2Mat22(A.ex + B.ex, A.ey + B.ey); } // A * B inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B) { return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey)); } // A^T * B inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B) { b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex)); b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey)); return b2Mat22(c1, c2); } /// Multiply a matrix times a vector. inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v) { return v.x * A.ex + v.y * A.ey + v.z * A.ez; } /// Multiply a matrix times a vector. inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v) { return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); } /// Multiply two rotations: q * r inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r) { // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc] // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc] // s = qs * rc + qc * rs // c = qc * rc - qs * rs b2Rot qr; qr.s = q.s * r.c + q.c * r.s; qr.c = q.c * r.c - q.s * r.s; return qr; } /// Transpose multiply two rotations: qT * r inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r) { // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc] // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc] // s = qc * rs - qs * rc // c = qc * rc + qs * rs b2Rot qr; qr.s = q.c * r.s - q.s * r.c; qr.c = q.c * r.c + q.s * r.s; return qr; } /// Rotate a vector inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v) { return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y); } /// Inverse rotate a vector inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v) { return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y); } inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v) { float x = (T.q.c * v.x - T.q.s * v.y) + T.p.x; float y = (T.q.s * v.x + T.q.c * v.y) + T.p.y; return b2Vec2(x, y); } inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v) { float px = v.x - T.p.x; float py = v.y - T.p.y; float x = (T.q.c * px + T.q.s * py); float y = (-T.q.s * px + T.q.c * py); return b2Vec2(x, y); } // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p // = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B) { b2Transform C; C.q = b2Mul(A.q, B.q); C.p = b2Mul(A.q, B.p) + A.p; return C; } // v2 = A.q' * (B.q * v1 + B.p - A.p) // = A.q' * B.q * v1 + A.q' * (B.p - A.p) inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B) { b2Transform C; C.q = b2MulT(A.q, B.q); C.p = b2MulT(A.q, B.p - A.p); return C; } template inline T b2Abs(T a) { return a > T(0) ? a : -a; } inline b2Vec2 b2Abs(const b2Vec2& a) { return b2Vec2(b2Abs(a.x), b2Abs(a.y)); } inline b2Mat22 b2Abs(const b2Mat22& A) { return b2Mat22(b2Abs(A.ex), b2Abs(A.ey)); } template inline T b2Min(T a, T b) { return a < b ? a : b; } inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b) { return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y)); } template inline T b2Max(T a, T b) { return a > b ? a : b; } inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b) { return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y)); } template inline T b2Clamp(T a, T low, T high) { return b2Max(low, b2Min(a, high)); } inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high) { return b2Max(low, b2Min(a, high)); } template inline void b2Swap(T& a, T& b) { T tmp = a; a = b; b = tmp; } /// "Next Largest Power of 2 /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next /// largest power of 2. For a 32-bit value:" inline uint32 b2NextPowerOfTwo(uint32 x) { x |= (x >> 1); x |= (x >> 2); x |= (x >> 4); x |= (x >> 8); x |= (x >> 16); return x + 1; } inline bool b2IsPowerOfTwo(uint32 x) { bool result = x > 0 && (x & (x - 1)) == 0; return result; } // https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/ inline void b2Sweep::GetTransform(b2Transform* xf, float beta) const { xf->p = (1.0f - beta) * c0 + beta * c; float angle = (1.0f - beta) * a0 + beta * a; xf->q.Set(angle); // Shift to origin xf->p -= b2Mul(xf->q, localCenter); } inline void b2Sweep::Advance(float alpha) { b2Assert(alpha0 < 1.0f); float beta = (alpha - alpha0) / (1.0f - alpha0); c0 += beta * (c - c0); a0 += beta * (a - a0); alpha0 = alpha; } /// Normalize an angle in radians to be between -pi and pi inline void b2Sweep::Normalize() { float twoPi = 2.0f * b2_pi; float d = twoPi * floorf(a0 / twoPi); a0 -= d; a -= d; } #endif