// MIT License

// Copyright (c) 2019 Erin Catto

// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

#ifndef B2_DISTANCE_H
#define B2_DISTANCE_H

#include "b2_api.h"
#include "b2_math.h"

class b2Shape;

/// A distance proxy is used by the GJK algorithm.
/// It encapsulates any shape.
struct B2_API b2DistanceProxy
{
	b2DistanceProxy() : m_vertices(nullptr), m_count(0), m_radius(0.0f) {}

	/// Initialize the proxy using the given shape. The shape
	/// must remain in scope while the proxy is in use.
	void Set(const b2Shape* shape);

  /// Initialize the proxy using a vertex cloud and radius. The vertices
  /// must remain in scope while the proxy is in use.
  void Set(const b2Vec2* vertices, int32 count, float radius);

	/// Get the supporting vertex index in the given direction.
	int32 GetSupport(const b2Vec2& d) const;

	/// Get the supporting vertex in the given direction.
	const b2Vec2& GetSupportVertex(const b2Vec2& d) const;

	/// Get the vertex count.
	int32 GetVertexCount() const;

	/// Get a vertex by index. Used by b2Distance.
	const b2Vec2& GetVertex(int32 index) const;

	b2Vec2 m_buffer[2];
	const b2Vec2* m_vertices;
	int32 m_count;
	float m_radius;
};

/// Used to warm start b2Distance.
/// Set count to zero on first call.
struct B2_API b2SimplexCache
{
	float metric;		///< length or area
	uint16 count;
	uint8 indexA[3];	///< vertices on shape A
	uint8 indexB[3];	///< vertices on shape B
};

/// Input for b2Distance.
/// You have to option to use the shape radii
/// in the computation. Even
struct B2_API b2DistanceInput
{
	b2DistanceProxy proxyA;
	b2DistanceProxy proxyB;
	b2Transform transformA;
	b2Transform transformB;
	bool useRadii;
};

/// Output for b2Distance.
struct B2_API b2DistanceOutput
{
	b2Vec2 pointA;		///< closest point on shapeA
	b2Vec2 pointB;		///< closest point on shapeB
	float distance;
	int32 iterations;	///< number of GJK iterations used
};

/// Compute the closest points between two shapes. Supports any combination of:
/// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output.
/// On the first call set b2SimplexCache.count to zero.
B2_API void b2Distance(b2DistanceOutput* output,
				b2SimplexCache* cache,
				const b2DistanceInput* input);

/// Input parameters for b2ShapeCast
struct B2_API b2ShapeCastInput
{
	b2DistanceProxy proxyA;
	b2DistanceProxy proxyB;
	b2Transform transformA;
	b2Transform transformB;
	b2Vec2 translationB;
};

/// Output results for b2ShapeCast
struct B2_API b2ShapeCastOutput
{
	b2Vec2 point;
	b2Vec2 normal;
	float lambda;
	int32 iterations;
};

/// Perform a linear shape cast of shape B moving and shape A fixed. Determines the hit point, normal, and translation fraction.
/// @returns true if hit, false if there is no hit or an initial overlap
B2_API bool b2ShapeCast(b2ShapeCastOutput* output, const b2ShapeCastInput* input);

//////////////////////////////////////////////////////////////////////////

inline int32 b2DistanceProxy::GetVertexCount() const
{
	return m_count;
}

inline const b2Vec2& b2DistanceProxy::GetVertex(int32 index) const
{
	b2Assert(0 <= index && index < m_count);
	return m_vertices[index];
}

inline int32 b2DistanceProxy::GetSupport(const b2Vec2& d) const
{
	int32 bestIndex = 0;
	float bestValue = b2Dot(m_vertices[0], d);
	for (int32 i = 1; i < m_count; ++i)
	{
		float value = b2Dot(m_vertices[i], d);
		if (value > bestValue)
		{
			bestIndex = i;
			bestValue = value;
		}
	}

	return bestIndex;
}

inline const b2Vec2& b2DistanceProxy::GetSupportVertex(const b2Vec2& d) const
{
	int32 bestIndex = 0;
	float bestValue = b2Dot(m_vertices[0], d);
	for (int32 i = 1; i < m_count; ++i)
	{
		float value = b2Dot(m_vertices[i], d);
		if (value > bestValue)
		{
			bestIndex = i;
			bestValue = value;
		}
	}

	return m_vertices[bestIndex];
}

#endif