// ---------------------------------------------------------------------------- // This confidential and proprietary software may be used only as authorised // by a licensing agreement from Arm Limited. // (C) COPYRIGHT 2011-2020 Arm Limited, ALL RIGHTS RESERVED // The entire notice above must be reproduced on all authorised copies and // copies may only be made to the extent permitted by a licensing agreement // from Arm Limited. // ---------------------------------------------------------------------------- /** * @brief Functions to pick best ASTC endpoint for a block. */ #include "astc_codec_internals.h" #ifdef DEBUG_PRINT_DIAGNOSTICS #include #endif /* functions to determine, for a given partitioning, which color endpoint formats are the best to use. */ // for a given partition, compute for every (integer-component-count, quantization-level) // the color error. static void compute_color_error_for_every_integer_count_and_quantization_level(int encode_hdr_rgb, // 1 = perform HDR encoding, 0 = perform LDR encoding. int encode_hdr_alpha, int partition_index, const partition_info * pi, const encoding_choice_errors * eci, // pointer to the structure for the CURRENT partition. const endpoints * ep, float4 error_weightings[4], // arrays to return results back through. float best_error[21][4], int format_of_choice[21][4]) { int i; int partition_size = pi->texels_per_partition[partition_index]; static const float baseline_quant_error[21] = { (65536.0f * 65536.0f / 18.0f), // 2 values, 1 step (65536.0f * 65536.0f / 18.0f) / (2 * 2), // 3 values, 2 steps (65536.0f * 65536.0f / 18.0f) / (3 * 3), // 4 values, 3 steps (65536.0f * 65536.0f / 18.0f) / (4 * 4), // 5 values (65536.0f * 65536.0f / 18.0f) / (5 * 5), (65536.0f * 65536.0f / 18.0f) / (7 * 7), (65536.0f * 65536.0f / 18.0f) / (9 * 9), (65536.0f * 65536.0f / 18.0f) / (11 * 11), (65536.0f * 65536.0f / 18.0f) / (15 * 15), (65536.0f * 65536.0f / 18.0f) / (19 * 19), (65536.0f * 65536.0f / 18.0f) / (23 * 23), (65536.0f * 65536.0f / 18.0f) / (31 * 31), (65536.0f * 65536.0f / 18.0f) / (39 * 39), (65536.0f * 65536.0f / 18.0f) / (47 * 47), (65536.0f * 65536.0f / 18.0f) / (63 * 63), (65536.0f * 65536.0f / 18.0f) / (79 * 79), (65536.0f * 65536.0f / 18.0f) / (95 * 95), (65536.0f * 65536.0f / 18.0f) / (127 * 127), (65536.0f * 65536.0f / 18.0f) / (159 * 159), (65536.0f * 65536.0f / 18.0f) / (191 * 191), (65536.0f * 65536.0f / 18.0f) / (255 * 255) }; float4 ep0 = ep->endpt0[partition_index]; float4 ep1 = ep->endpt1[partition_index]; float ep0_max = MAX(MAX(ep0.x, ep0.y), ep0.z); float ep0_min = MIN(MIN(ep0.x, ep0.y), ep0.z); float ep1_max = MAX(MAX(ep1.x, ep1.y), ep1.z); float ep1_min = MIN(MIN(ep1.x, ep1.y), ep1.z); ep0_min = MAX(ep0_min, 0.0f); ep1_min = MAX(ep1_min, 0.0f); ep0_max = MAX(ep0_max, 1e-10f); ep1_max = MAX(ep1_max, 1e-10f); float4 error_weight = error_weightings[partition_index]; float error_weight_rgbsum = error_weight.x + error_weight.y + error_weight.z; float range_upper_limit_rgb = encode_hdr_rgb ? 61440.0f : 65535.0f; float range_upper_limit_alpha = encode_hdr_alpha ? 61440.0f : 65535.0f; // it is possible to get endpoint colors significantly outside [0,upper-limit] // even if the input data are safely contained in [0,upper-limit]; // we need to add an error term for this situation, float4 ep0_range_error_high; float4 ep1_range_error_high; float4 ep0_range_error_low; float4 ep1_range_error_low; ep0_range_error_high.x = MAX(0.0f, ep0.x - range_upper_limit_rgb); ep0_range_error_high.y = MAX(0.0f, ep0.y - range_upper_limit_rgb); ep0_range_error_high.z = MAX(0.0f, ep0.z - range_upper_limit_rgb); ep0_range_error_high.w = MAX(0.0f, ep0.w - range_upper_limit_alpha); ep1_range_error_high.x = MAX(0.0f, ep1.x - range_upper_limit_rgb); ep1_range_error_high.y = MAX(0.0f, ep1.y - range_upper_limit_rgb); ep1_range_error_high.z = MAX(0.0f, ep1.z - range_upper_limit_rgb); ep1_range_error_high.w = MAX(0.0f, ep1.w - range_upper_limit_alpha); ep0_range_error_low.x = MIN(0.0f, ep0.x); ep0_range_error_low.y = MIN(0.0f, ep0.y); ep0_range_error_low.z = MIN(0.0f, ep0.z); ep0_range_error_low.w = MIN(0.0f, ep0.w); ep1_range_error_low.x = MIN(0.0f, ep1.x); ep1_range_error_low.y = MIN(0.0f, ep1.y); ep1_range_error_low.z = MIN(0.0f, ep1.z); ep1_range_error_low.w = MIN(0.0f, ep1.w); float4 sum_range_error = (ep0_range_error_low * ep0_range_error_low) + (ep1_range_error_low * ep1_range_error_low) + (ep0_range_error_high * ep0_range_error_high) + (ep1_range_error_high * ep1_range_error_high); float rgb_range_error = dot(sum_range_error.xyz, error_weight.xyz) * 0.5f * partition_size; float alpha_range_error = sum_range_error.w * error_weight.w * 0.5f * partition_size; #ifdef DEBUG_PRINT_DIAGNOSTICS if (print_diagnostics) { printf("%s : partition=%d\nrgb-error_wt=%f alpha_error_wt=%f\n", __func__, partition_index, error_weight_rgbsum, error_weight.w); printf("ep0 = %f %f %f %f\n", ep0.x, ep0.y, ep0.z, ep0.w); printf("ep1 = %f %f %f %f\n", ep1.x, ep1.y, ep1.z, ep1.w); printf("rgb_range_error = %f, alpha_range_error = %f\n", rgb_range_error, alpha_range_error); printf("rgb-luma-error: %f\n", eci->rgb_luma_error); } #endif if (encode_hdr_rgb) { // collect some statistics float af, cf; if (ep1.x > ep1.y && ep1.x > ep1.z) { af = ep1.x; cf = ep1.x - ep0.x; } else if (ep1.y > ep1.z) { af = ep1.y; cf = ep1.y - ep0.y; } else { af = ep1.z; cf = ep1.z - ep0.z; } float bf = af - ep1_min; // estimate of color-component spread in high endpoint color float3 prd = ep1.xyz - float3(cf, cf, cf); float3 pdif = prd - ep0.xyz; // estimate of color-component spread in low endpoint color float df = MAX(MAX(fabs(pdif.x), fabs(pdif.y)), fabs(pdif.z)); int b = (int)bf; int c = (int)cf; int d = (int)df; // determine which one of the 6 submodes is likely to be used in // case of an RGBO-mode int rgbo_mode = 5; // 7 bits per component // mode 4: 8 7 6 if (b < 32768 && c < 16384) rgbo_mode = 4; // mode 3: 9 6 7 if (b < 8192 && c < 16384) rgbo_mode = 3; // mode 2: 10 5 8 if (b < 2048 && c < 16384) rgbo_mode = 2; // mode 1: 11 6 5 if (b < 2048 && c < 1024) rgbo_mode = 1; // mode 0: 11 5 7 if (b < 1024 && c < 4096) rgbo_mode = 0; // determine which one of the 9 submodes is likely to be used in // case of an RGB-mode. int rgb_mode = 8; // 8 bits per component, except 7 bits for blue // mode 0: 9 7 6 7 if (b < 16384 && c < 8192 && d < 8192) rgb_mode = 0; // mode 1: 9 8 6 6 if (b < 32768 && c < 8192 && d < 4096) rgb_mode = 1; // mode 2: 10 6 7 7 if (b < 4096 && c < 8192 && d < 4096) rgb_mode = 2; // mode 3: 10 7 7 6 if (b < 8192 && c < 8192 && d < 2048) rgb_mode = 3; // mode 4: 11 8 6 5 if (b < 8192 && c < 2048 && d < 512) rgb_mode = 4; // mode 5: 11 6 8 6 if (b < 2048 && c < 8192 && d < 1024) rgb_mode = 5; // mode 6: 12 7 7 5 if (b < 2048 && c < 2048 && d < 256) rgb_mode = 6; // mode 7: 12 6 7 6 if (b < 1024 && c < 2048 && d < 512) rgb_mode = 7; static const float rgbo_error_scales[6] = { 4.0f, 4.0f, 16.0f, 64.0f, 256.0f, 1024.0f }; static const float rgb_error_scales[9] = { 64.0f, 64.0f, 16.0f, 16.0f, 4.0f, 4.0f, 1.0f, 1.0f, 384.0f }; float mode7mult = rgbo_error_scales[rgbo_mode] * 0.0015f; // empirically determined .... float mode11mult = rgb_error_scales[rgb_mode] * 0.010f; // empirically determined .... float lum_high = (ep1.x + ep1.y + ep1.z) * (1.0f / 3.0f); float lum_low = (ep0.x + ep0.y + ep0.z) * (1.0f / 3.0f); float lumdif = lum_high - lum_low; float mode23mult = lumdif < 960 ? 4.0f : lumdif < 3968 ? 16.0f : 128.0f; mode23mult *= 0.0005f; // empirically determined .... // pick among the available HDR endpoint modes for (i = 0; i < 8; i++) { best_error[i][3] = 1e30f; format_of_choice[i][3] = encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA; best_error[i][2] = 1e30f; format_of_choice[i][2] = FMT_HDR_RGB; best_error[i][1] = 1e30f; format_of_choice[i][1] = FMT_HDR_RGB_SCALE; best_error[i][0] = 1e30f; format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE; } for (i = 8; i < 21; i++) { // base_quant_error should depend on the scale-factor that would be used // during actual encode of the color value. float base_quant_error = baseline_quant_error[i] * partition_size * 1.0f; float rgb_quantization_error = error_weight_rgbsum * base_quant_error * 2.0f; float alpha_quantization_error = error_weight.w * base_quant_error * 2.0f; float rgba_quantization_error = rgb_quantization_error + alpha_quantization_error; #ifdef DEBUG_PRINT_DIAGNOSTICS if (print_diagnostics) printf("rgba-quant = %f can_offset_encode=%d\n", rgba_quantization_error, eci->can_offset_encode); #endif // for 8 integers, we have two encodings: one with HDR alpha and another one // with LDR alpha. float full_hdr_rgba_error = rgba_quantization_error + rgb_range_error + alpha_range_error; best_error[i][3] = full_hdr_rgba_error; format_of_choice[i][3] = encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA; // for 6 integers, we have one HDR-RGB encoding float full_hdr_rgb_error = (rgb_quantization_error * mode11mult) + rgb_range_error + eci->alpha_drop_error; best_error[i][2] = full_hdr_rgb_error; format_of_choice[i][2] = FMT_HDR_RGB; // for 4 integers, we have one HDR-RGB-Scale encoding float hdr_rgb_scale_error = (rgb_quantization_error * mode7mult) + rgb_range_error + eci->alpha_drop_error + eci->rgb_luma_error; best_error[i][1] = hdr_rgb_scale_error; format_of_choice[i][1] = FMT_HDR_RGB_SCALE; // for 2 integers, we assume luminance-with-large-range float hdr_luminance_error = (rgb_quantization_error * mode23mult) + rgb_range_error + eci->alpha_drop_error + eci->luminance_error; best_error[i][0] = hdr_luminance_error; format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE; #ifdef DEBUG_PRINT_DIAGNOSTICS if (print_diagnostics) { for (int j = 0; j < 4; j++) { printf("(hdr) quant-level=%d ints=%d format=%d error=%f\n", i, j, format_of_choice[i][j], best_error[i][j]); } } #endif } } else { for (i = 0; i < 4; i++) { best_error[i][3] = 1e30f; best_error[i][2] = 1e30f; best_error[i][1] = 1e30f; best_error[i][0] = 1e30f; format_of_choice[i][3] = FMT_RGBA; format_of_choice[i][2] = FMT_RGB; format_of_choice[i][1] = FMT_RGB_SCALE; format_of_choice[i][0] = FMT_LUMINANCE; } // pick among the available LDR endpoint modes for (i = 4; i < 21; i++) { float base_quant_error = baseline_quant_error[i] * partition_size * 1.0f; float rgb_quantization_error = error_weight_rgbsum * base_quant_error; float alpha_quantization_error = error_weight.w * base_quant_error; float rgba_quantization_error = rgb_quantization_error + alpha_quantization_error; #ifdef DEBUG_PRINT_DIAGNOSTICS if (print_diagnostics) printf("rgba-quant = %f can_offset_encode=%d\n", rgba_quantization_error, eci->can_offset_encode); #endif // for 8 integers, the available encodings are: // full LDR RGB-Alpha float full_ldr_rgba_error = rgba_quantization_error; if (eci->can_blue_contract) full_ldr_rgba_error *= 0.625f; if (eci->can_offset_encode && i <= 18) full_ldr_rgba_error *= 0.5f; full_ldr_rgba_error += rgb_range_error + alpha_range_error; best_error[i][3] = full_ldr_rgba_error; format_of_choice[i][3] = FMT_RGBA; // for 6 integers, we have: // - an LDR-RGB encoding // - an RGBS + Alpha encoding (LDR) float full_ldr_rgb_error = rgb_quantization_error; if (eci->can_blue_contract) full_ldr_rgb_error *= 0.5f; if (eci->can_offset_encode && i <= 18) full_ldr_rgb_error *= 0.25f; full_ldr_rgb_error += eci->alpha_drop_error + rgb_range_error; float rgbs_alpha_error = rgba_quantization_error + eci->rgb_scale_error + rgb_range_error + alpha_range_error; if (rgbs_alpha_error < full_ldr_rgb_error) { best_error[i][2] = rgbs_alpha_error; format_of_choice[i][2] = FMT_RGB_SCALE_ALPHA; } else { best_error[i][2] = full_ldr_rgb_error; format_of_choice[i][2] = FMT_RGB; } // for 4 integers, we have a Luminance-Alpha encoding and the RGBS encoding float ldr_rgbs_error = rgb_quantization_error + eci->alpha_drop_error + eci->rgb_scale_error + rgb_range_error; float lum_alpha_error = rgba_quantization_error + eci->luminance_error + rgb_range_error + alpha_range_error; if (ldr_rgbs_error < lum_alpha_error) { best_error[i][1] = ldr_rgbs_error; format_of_choice[i][1] = FMT_RGB_SCALE; } else { best_error[i][1] = lum_alpha_error; format_of_choice[i][1] = FMT_LUMINANCE_ALPHA; } // for 2 integers, we have a Luminance-encoding and an Alpha-encoding. float luminance_error = rgb_quantization_error + eci->alpha_drop_error + eci->luminance_error + rgb_range_error; best_error[i][0] = luminance_error; format_of_choice[i][0] = FMT_LUMINANCE; #ifdef DEBUG_PRINT_DIAGNOSTICS if (print_diagnostics) { for (int j = 0; j < 4; j++) { printf(" (ldr) quant-level=%d ints=%d format=%d error=%f\n", i, j, format_of_choice[i][j], best_error[i][j]); } } #endif } } } // for 1 partition, find the best combination (one format + a quantization level) for a given bitcount static void one_partition_find_best_combination_for_bitcount(float combined_best_error[21][4], int formats_of_choice[21][4], int bits_available, int *best_quantization_level, int *best_formats, float *error_of_best_combination) { int i; int best_integer_count = -1; float best_integer_count_error = 1e20f; for (i = 0; i < 4; i++) { // compute the quantization level for a given number of integers and a given number of bits. int quantization_level = quantization_mode_table[i + 1][bits_available]; if (quantization_level == -1) continue; // used to indicate the case where we don't have enough bits to represent a given endpoint format at all. if (combined_best_error[quantization_level][i] < best_integer_count_error) { best_integer_count_error = combined_best_error[quantization_level][i]; best_integer_count = i; } } int ql = quantization_mode_table[best_integer_count + 1][bits_available]; *best_quantization_level = ql; *error_of_best_combination = best_integer_count_error; if (ql >= 0) *best_formats = formats_of_choice[ql][best_integer_count]; else *best_formats = FMT_LUMINANCE; } // for 2 partitions, find the best format combinations for every (quantization-mode, integer-count) combination static void two_partitions_find_best_combination_for_every_quantization_and_integer_count(float best_error[2][21][4], // indexed by (partition, quant-level, integer-pair-count-minus-1) int format_of_choice[2][21][4], float combined_best_error[21][7], // indexed by (quant-level, integer-pair-count-minus-2) int formats_of_choice[21][7][2]) { int i, j; for (i = 0; i < 21; i++) for (j = 0; j < 7; j++) combined_best_error[i][j] = 1e30f; int quant; for (quant = 5; quant < 21; quant++) { for (i = 0; i < 4; i++) // integer-count for first endpoint-pair { for (j = 0; j < 4; j++) // integer-count for second endpoint-pair { int low2 = MIN(i, j); int high2 = MAX(i, j); if ((high2 - low2) > 1) continue; int intcnt = i + j; float errorterm = MIN(best_error[0][quant][i] + best_error[1][quant][j], 1e10f); if (errorterm <= combined_best_error[quant][intcnt]) { combined_best_error[quant][intcnt] = errorterm; formats_of_choice[quant][intcnt][0] = format_of_choice[0][quant][i]; formats_of_choice[quant][intcnt][1] = format_of_choice[1][quant][j]; } } } } } // for 2 partitions, find the best combination (two formats + a quantization level) for a given bitcount static void two_partitions_find_best_combination_for_bitcount(float combined_best_error[21][7], int formats_of_choice[21][7][2], int bits_available, int *best_quantization_level, int *best_quantization_level_mod, int *best_formats, float *error_of_best_combination) { int i; int best_integer_count = 0; float best_integer_count_error = 1e20f; int integer_count; for (integer_count = 2; integer_count <= 8; integer_count++) { // compute the quantization level for a given number of integers and a given number of bits. int quantization_level = quantization_mode_table[integer_count][bits_available]; if (quantization_level == -1) break; // used to indicate the case where we don't have enough bits to represent a given endpoint format at all. float integer_count_error = combined_best_error[quantization_level][integer_count - 2]; if (integer_count_error < best_integer_count_error) { best_integer_count_error = integer_count_error; best_integer_count = integer_count; } } int ql = quantization_mode_table[best_integer_count][bits_available]; int ql_mod = quantization_mode_table[best_integer_count][bits_available + 2]; *best_quantization_level = ql; *best_quantization_level_mod = ql_mod; *error_of_best_combination = best_integer_count_error; if (ql >= 0) { for (i = 0; i < 2; i++) best_formats[i] = formats_of_choice[ql][best_integer_count - 2][i]; } else { for (i = 0; i < 2; i++) best_formats[i] = FMT_LUMINANCE; } } // for 3 partitions, find the best format combinations for every (quantization-mode, integer-count) combination static void three_partitions_find_best_combination_for_every_quantization_and_integer_count(float best_error[3][21][4], // indexed by (partition, quant-level, integer-count) int format_of_choice[3][21][4], float combined_best_error[21][10], int formats_of_choice[21][10][3]) { int i, j, k; for (i = 0; i < 21; i++) for (j = 0; j < 10; j++) combined_best_error[i][j] = 1e30f; int quant; for (quant = 5; quant < 21; quant++) { for (i = 0; i < 4; i++) // integer-count for first endpoint-pair { for (j = 0; j < 4; j++) // integer-count for second endpoint-pair { int low2 = MIN(i, j); int high2 = MAX(i, j); if ((high2 - low2) > 1) continue; for (k = 0; k < 4; k++) // integer-count for third endpoint-pair { int low3 = MIN(k, low2); int high3 = MAX(k, high2); if ((high3 - low3) > 1) continue; int intcnt = i + j + k; float errorterm = MIN(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k], 1e10f); if (errorterm <= combined_best_error[quant][intcnt]) { combined_best_error[quant][intcnt] = errorterm; formats_of_choice[quant][intcnt][0] = format_of_choice[0][quant][i]; formats_of_choice[quant][intcnt][1] = format_of_choice[1][quant][j]; formats_of_choice[quant][intcnt][2] = format_of_choice[2][quant][k]; } } } } } } // for 3 partitions, find the best combination (three formats + a quantization level) for a given bitcount static void three_partitions_find_best_combination_for_bitcount(float combined_best_error[21][10], int formats_of_choice[21][10][3], int bits_available, int *best_quantization_level, int *best_quantization_level_mod, int *best_formats, float *error_of_best_combination) { int i; int best_integer_count = 0; float best_integer_count_error = 1e20f; int integer_count; for (integer_count = 3; integer_count <= 9; integer_count++) { // compute the quantization level for a given number of integers and a given number of bits. int quantization_level = quantization_mode_table[integer_count][bits_available]; if (quantization_level == -1) break; // used to indicate the case where we don't have enough bits to represent a given endpoint format at all. float integer_count_error = combined_best_error[quantization_level][integer_count - 3]; if (integer_count_error < best_integer_count_error) { best_integer_count_error = integer_count_error; best_integer_count = integer_count; } } int ql = quantization_mode_table[best_integer_count][bits_available]; int ql_mod = quantization_mode_table[best_integer_count][bits_available + 5]; *best_quantization_level = ql; *best_quantization_level_mod = ql_mod; *error_of_best_combination = best_integer_count_error; if (ql >= 0) { for (i = 0; i < 3; i++) best_formats[i] = formats_of_choice[ql][best_integer_count - 3][i]; } else { for (i = 0; i < 3; i++) best_formats[i] = FMT_LUMINANCE; } } // for 4 partitions, find the best format combinations for every (quantization-mode, integer-count) combination static void four_partitions_find_best_combination_for_every_quantization_and_integer_count(float best_error[4][21][4], // indexed by (partition, quant-level, integer-count) int format_of_choice[4][21][4], float combined_best_error[21][13], int formats_of_choice[21][13][4]) { int i, j, k, l; for (i = 0; i < 21; i++) for (j = 0; j < 13; j++) combined_best_error[i][j] = 1e30f; int quant; for (quant = 5; quant < 21; quant++) { for (i = 0; i < 4; i++) // integer-count for first endpoint-pair { for (j = 0; j < 4; j++) // integer-count for second endpoint-pair { int low2 = MIN(i, j); int high2 = MAX(i, j); if ((high2 - low2) > 1) continue; for (k = 0; k < 4; k++) // integer-count for third endpoint-pair { int low3 = MIN(k, low2); int high3 = MAX(k, high2); if ((high3 - low3) > 1) continue; for (l = 0; l < 4; l++) // integer-count for fourth endpoint-pair { int low4 = MIN(l, low3); int high4 = MAX(l, high3); if ((high4 - low4) > 1) continue; int intcnt = i + j + k + l; float errorterm = MIN(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k] + best_error[3][quant][l], 1e10f); if (errorterm <= combined_best_error[quant][intcnt]) { combined_best_error[quant][intcnt] = errorterm; formats_of_choice[quant][intcnt][0] = format_of_choice[0][quant][i]; formats_of_choice[quant][intcnt][1] = format_of_choice[1][quant][j]; formats_of_choice[quant][intcnt][2] = format_of_choice[2][quant][k]; formats_of_choice[quant][intcnt][3] = format_of_choice[3][quant][l]; } } } } } } } // for 4 partitions, find the best combination (four formats + a quantization level) for a given bitcount static void four_partitions_find_best_combination_for_bitcount(float combined_best_error[21][13], int formats_of_choice[21][13][4], int bits_available, int *best_quantization_level, int *best_quantization_level_mod, int *best_formats, float *error_of_best_combination) { int i; int best_integer_count = 0; float best_integer_count_error = 1e20f; int integer_count; for (integer_count = 4; integer_count <= 9; integer_count++) { // compute the quantization level for a given number of integers and a given number of bits. int quantization_level = quantization_mode_table[integer_count][bits_available]; if (quantization_level == -1) break; // used to indicate the case where we don't have enough bits to represent a given endpoint format at all. float integer_count_error = combined_best_error[quantization_level][integer_count - 4]; if (integer_count_error < best_integer_count_error) { best_integer_count_error = integer_count_error; best_integer_count = integer_count; } } int ql = quantization_mode_table[best_integer_count][bits_available]; int ql_mod = quantization_mode_table[best_integer_count][bits_available + 8]; *best_quantization_level = ql; *best_quantization_level_mod = ql_mod; *error_of_best_combination = best_integer_count_error; if (ql >= 0) { for (i = 0; i < 4; i++) best_formats[i] = formats_of_choice[ql][best_integer_count - 4][i]; } else { for (i = 0; i < 4; i++) best_formats[i] = FMT_LUMINANCE; } } /* The determine_optimal_set_of_endpoint_formats_to_use() function. It identifies, for each mode, which set of color endpoint encodings produces the best overall result. It then reports back which 4 modes look best, along with the ideal color encoding combination for each. It takes as input: a partitioning an imageblock, a set of color endpoints. for each mode, the number of bits available for color encoding and the error incurred by quantization. in case of 2 plane of weights, a specifier for which color component to use for the second plane of weights. It delivers as output for each of the 4 selected modes: format specifier for each partition quantization level to use modified quantization level to use (when all format specifiers are equal) */ void determine_optimal_set_of_endpoint_formats_to_use(int xdim, int ydim, int zdim, const partition_info * pt, const imageblock * blk, const error_weight_block * ewb, const endpoints * ep, int separate_component, // separate color component for 2-plane mode; -1 for single-plane mode // bitcounts and errors computed for the various quantization methods const int *qwt_bitcounts, const float *qwt_errors, // output data int partition_format_specifiers[4][4], int quantized_weight[4], int quantization_level[4], int quantization_level_mod[4]) { int i, j; int partition_count = pt->partition_count; int encode_hdr_rgb = blk->rgb_lns[0]; int encode_hdr_alpha = blk->alpha_lns[0]; // call a helper function to compute the errors that result from various // encoding choices (such as using luminance instead of RGB, discarding Alpha, // using RGB-scale in place of two separate RGB endpoints and so on) encoding_choice_errors eci[4]; compute_encoding_choice_errors(xdim, ydim, zdim, blk, pt, ewb, separate_component, eci); // for each partition, compute the error weights to apply for that partition. float4 error_weightings[4]; float4 dummied_color_scalefactors[4]; // only used to receive data compute_partition_error_color_weightings(xdim, ydim, zdim, ewb, pt, error_weightings, dummied_color_scalefactors); float best_error[4][21][4]; int format_of_choice[4][21][4]; for (i = 0; i < partition_count; i++) compute_color_error_for_every_integer_count_and_quantization_level(encode_hdr_rgb, encode_hdr_alpha, i, pt, &(eci[i]), ep, error_weightings, best_error[i], format_of_choice[i]); float errors_of_best_combination[MAX_WEIGHT_MODES]; int best_quantization_levels[MAX_WEIGHT_MODES]; int best_quantization_levels_mod[MAX_WEIGHT_MODES]; int best_ep_formats[MAX_WEIGHT_MODES][4]; // code for the case where the block contains 1 partition if (partition_count == 1) { int best_quantization_level; int best_format; float error_of_best_combination; for (i = 0; i < MAX_WEIGHT_MODES; i++) { if (qwt_errors[i] >= 1e29f) { errors_of_best_combination[i] = 1e30f; continue; } one_partition_find_best_combination_for_bitcount(best_error[0], format_of_choice[0], qwt_bitcounts[i], &best_quantization_level, &best_format, &error_of_best_combination); error_of_best_combination += qwt_errors[i]; errors_of_best_combination[i] = error_of_best_combination; best_quantization_levels[i] = best_quantization_level; best_quantization_levels_mod[i] = best_quantization_level; best_ep_formats[i][0] = best_format; } } // code for the case where the block contains 2 partitions else if (partition_count == 2) { int best_quantization_level; int best_quantization_level_mod; int best_formats[2]; float error_of_best_combination; float combined_best_error[21][7]; int formats_of_choice[21][7][2]; two_partitions_find_best_combination_for_every_quantization_and_integer_count(best_error, format_of_choice, combined_best_error, formats_of_choice); for (i = 0; i < MAX_WEIGHT_MODES; i++) { if (qwt_errors[i] >= 1e29f) { errors_of_best_combination[i] = 1e30f; continue; } two_partitions_find_best_combination_for_bitcount(combined_best_error, formats_of_choice, qwt_bitcounts[i], &best_quantization_level, &best_quantization_level_mod, best_formats, &error_of_best_combination); error_of_best_combination += qwt_errors[i]; errors_of_best_combination[i] = error_of_best_combination; best_quantization_levels[i] = best_quantization_level; best_quantization_levels_mod[i] = best_quantization_level_mod; best_ep_formats[i][0] = best_formats[0]; best_ep_formats[i][1] = best_formats[1]; } } // code for the case where the block contains 3 partitions else if (partition_count == 3) { int best_quantization_level; int best_quantization_level_mod; int best_formats[3]; float error_of_best_combination; float combined_best_error[21][10]; int formats_of_choice[21][10][3]; three_partitions_find_best_combination_for_every_quantization_and_integer_count(best_error, format_of_choice, combined_best_error, formats_of_choice); for (i = 0; i < MAX_WEIGHT_MODES; i++) { if (qwt_errors[i] >= 1e29f) { errors_of_best_combination[i] = 1e30f; continue; } three_partitions_find_best_combination_for_bitcount(combined_best_error, formats_of_choice, qwt_bitcounts[i], &best_quantization_level, &best_quantization_level_mod, best_formats, &error_of_best_combination); error_of_best_combination += qwt_errors[i]; errors_of_best_combination[i] = error_of_best_combination; best_quantization_levels[i] = best_quantization_level; best_quantization_levels_mod[i] = best_quantization_level_mod; best_ep_formats[i][0] = best_formats[0]; best_ep_formats[i][1] = best_formats[1]; best_ep_formats[i][2] = best_formats[2]; } } // code for the case where the block contains 4 partitions else if (partition_count == 4) { int best_quantization_level; int best_quantization_level_mod; int best_formats[4]; float error_of_best_combination; float combined_best_error[21][13]; int formats_of_choice[21][13][4]; four_partitions_find_best_combination_for_every_quantization_and_integer_count(best_error, format_of_choice, combined_best_error, formats_of_choice); for (i = 0; i < MAX_WEIGHT_MODES; i++) { if (qwt_errors[i] >= 1e29f) { errors_of_best_combination[i] = 1e30f; continue; } four_partitions_find_best_combination_for_bitcount(combined_best_error, formats_of_choice, qwt_bitcounts[i], &best_quantization_level, &best_quantization_level_mod, best_formats, &error_of_best_combination); error_of_best_combination += qwt_errors[i]; errors_of_best_combination[i] = error_of_best_combination; best_quantization_levels[i] = best_quantization_level; best_quantization_levels_mod[i] = best_quantization_level_mod; best_ep_formats[i][0] = best_formats[0]; best_ep_formats[i][1] = best_formats[1]; best_ep_formats[i][2] = best_formats[2]; best_ep_formats[i][3] = best_formats[3]; } } // finally, go through the results and pick the 4 best-looking modes. int best_error_weights[4]; for (i = 0; i < 4; i++) { float best_ep_error = 1e30f; int best_error_index = -1; for (j = 0; j < MAX_WEIGHT_MODES; j++) { if (errors_of_best_combination[j] < best_ep_error && best_quantization_levels[j] >= 5) { best_ep_error = errors_of_best_combination[j]; best_error_index = j; } } best_error_weights[i] = best_error_index; if(best_error_index >= 0) { errors_of_best_combination[best_error_index] = 1e30f; } } for (i = 0; i < 4; i++) { quantized_weight[i] = best_error_weights[i]; if (quantized_weight[i] >= 0) { quantization_level[i] = best_quantization_levels[best_error_weights[i]]; quantization_level_mod[i] = best_quantization_levels_mod[best_error_weights[i]]; for (j = 0; j < partition_count; j++) { partition_format_specifiers[i][j] = best_ep_formats[best_error_weights[i]][j]; } } } }