/* * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include <Box2D/Dynamics/Joints/b2MouseJoint.h> #include <Box2D/Dynamics/b2Body.h> #include <Box2D/Dynamics/b2TimeStep.h> // p = attached point, m = mouse point // C = p - m // Cdot = v // = v + cross(w, r) // J = [I r_skew] // Identity used: // w k % (rx i + ry j) = w * (-ry i + rx j) b2MouseJoint::b2MouseJoint(const b2MouseJointDef* def) : b2Joint(def) { b2Assert(def->target.IsValid()); b2Assert(b2IsValid(def->maxForce) && def->maxForce >= 0.0f); b2Assert(b2IsValid(def->frequencyHz) && def->frequencyHz >= 0.0f); b2Assert(b2IsValid(def->dampingRatio) && def->dampingRatio >= 0.0f); m_targetA = def->target; m_localAnchorB = b2MulT(m_bodyB->GetTransform(), m_targetA); m_maxForce = def->maxForce; m_impulse.SetZero(); m_frequencyHz = def->frequencyHz; m_dampingRatio = def->dampingRatio; m_beta = 0.0f; m_gamma = 0.0f; } void b2MouseJoint::SetTarget(const b2Vec2& target) { if (m_bodyB->IsAwake() == false) { m_bodyB->SetAwake(true); } m_targetA = target; } const b2Vec2& b2MouseJoint::GetTarget() const { return m_targetA; } void b2MouseJoint::SetMaxForce(float32 force) { m_maxForce = force; } float32 b2MouseJoint::GetMaxForce() const { return m_maxForce; } void b2MouseJoint::SetFrequency(float32 hz) { m_frequencyHz = hz; } float32 b2MouseJoint::GetFrequency() const { return m_frequencyHz; } void b2MouseJoint::SetDampingRatio(float32 ratio) { m_dampingRatio = ratio; } float32 b2MouseJoint::GetDampingRatio() const { return m_dampingRatio; } void b2MouseJoint::InitVelocityConstraints(const b2SolverData& data) { m_indexB = m_bodyB->m_islandIndex; m_localCenterB = m_bodyB->m_sweep.localCenter; m_invMassB = m_bodyB->m_invMass; m_invIB = m_bodyB->m_invI; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; b2Rot qB(aB); float32 mass = m_bodyB->GetMass(); // Frequency float32 omega = 2.0f * b2_pi * m_frequencyHz; // Damping coefficient float32 d = 2.0f * mass * m_dampingRatio * omega; // Spring stiffness float32 k = mass * (omega * omega); // magic formulas // gamma has units of inverse mass. // beta has units of inverse time. float32 h = data.step.dt; b2Assert(d + h * k > b2_epsilon); m_gamma = h * (d + h * k); if (m_gamma != 0.0f) { m_gamma = 1.0f / m_gamma; } m_beta = h * k * m_gamma; // Compute the effective mass matrix. m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); // K = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)] // = [1/m1+1/m2 0 ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y] // [ 0 1/m1+1/m2] [-r1.x*r1.y r1.x*r1.x] [-r1.x*r1.y r1.x*r1.x] b2Mat22 K; K.ex.x = m_invMassB + m_invIB * m_rB.y * m_rB.y + m_gamma; K.ex.y = -m_invIB * m_rB.x * m_rB.y; K.ey.x = K.ex.y; K.ey.y = m_invMassB + m_invIB * m_rB.x * m_rB.x + m_gamma; m_mass = K.GetInverse(); m_C = cB + m_rB - m_targetA; m_C *= m_beta; // Cheat with some damping wB *= 0.98f; if (data.step.warmStarting) { m_impulse *= data.step.dtRatio; vB += m_invMassB * m_impulse; wB += m_invIB * b2Cross(m_rB, m_impulse); } else { m_impulse.SetZero(); } data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } void b2MouseJoint::SolveVelocityConstraints(const b2SolverData& data) { b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; // Cdot = v + cross(w, r) b2Vec2 Cdot = vB + b2Cross(wB, m_rB); b2Vec2 impulse = b2Mul(m_mass, -(Cdot + m_C + m_gamma * m_impulse)); b2Vec2 oldImpulse = m_impulse; m_impulse += impulse; float32 maxImpulse = data.step.dt * m_maxForce; if (m_impulse.LengthSquared() > maxImpulse * maxImpulse) { m_impulse *= maxImpulse / m_impulse.Length(); } impulse = m_impulse - oldImpulse; vB += m_invMassB * impulse; wB += m_invIB * b2Cross(m_rB, impulse); data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } bool b2MouseJoint::SolvePositionConstraints(const b2SolverData& data) { B2_NOT_USED(data); return true; } b2Vec2 b2MouseJoint::GetAnchorA() const { return m_targetA; } b2Vec2 b2MouseJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchorB); } b2Vec2 b2MouseJoint::GetReactionForce(float32 inv_dt) const { return inv_dt * m_impulse; } float32 b2MouseJoint::GetReactionTorque(float32 inv_dt) const { return inv_dt * 0.0f; }