/**************************************************************************** Copyright (c) 2015-2016 Chukong Technologies Inc. Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd. https://axmolengine.github.io/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "physics3d/Physics3D.h" #include "2d/Node.h" #include "2d/Scene.h" #if AX_USE_3D_PHYSICS # if (AX_ENABLE_BULLET_INTEGRATION) NS_AX_BEGIN Physics3DComponent::~Physics3DComponent() { AX_SAFE_RELEASE(_physics3DObj); } std::string& Physics3DComponent::getPhysics3DComponentName() { static std::string comName = "___Physics3DComponent___"; return comName; } bool Physics3DComponent::init() { setName(getPhysics3DComponentName()); return Component::init(); } Physics3DComponent* Physics3DComponent::create(Physics3DObject* physicsObj, const ax::Vec3& translateInPhysics, const ax::Quaternion& rotInPhsyics) { auto ret = new Physics3DComponent(); if (ret->init()) { ret->setPhysics3DObject(physicsObj); ret->setTransformInPhysics(translateInPhysics, rotInPhsyics); ret->autorelease(); return ret; } AX_SAFE_DELETE(ret); return nullptr; } void Physics3DComponent::setPhysics3DObject(Physics3DObject* physicsObj) { AX_SAFE_RETAIN(physicsObj); AX_SAFE_RELEASE(_physics3DObj); _physics3DObj = physicsObj; } Physics3DComponent::Physics3DComponent() : _physics3DObj(nullptr), _syncFlag(Physics3DComponent::PhysicsSyncFlag::NODE_AND_NODE) {} void Physics3DComponent::setEnabled(bool b) { bool oldBool = _enabled; Component::setEnabled(b); if (_physics3DObj && oldBool != _enabled) { _enabled ? _physics3DObj->getPhysicsWorld()->addPhysics3DObject(_physics3DObj) : _physics3DObj->getPhysicsWorld()->removePhysics3DObject(_physics3DObj); } } void Physics3DComponent::addToPhysicsWorld(Physics3DWorld* world) { // add component to physics world if (_physics3DObj) { _physics3DObj->setPhysicsWorld(world); world->addPhysics3DObject(_physics3DObj); auto& components = world->_physicsComponents; auto it = std::find(components.begin(), components.end(), this); if (it == components.end()) { auto parent = _owner->getParent(); while (parent) { for (size_t i = 0; i < components.size(); i++) { if (parent == components[i]->getOwner()) { // insert it here components.insert(components.begin() + i, this); return; } } parent = parent->getParent(); } components.insert(components.begin(), this); } } } void Physics3DComponent::onEnter() { Component::onEnter(); if (_physics3DObj->getPhysicsWorld() == nullptr && _owner) { auto scene = _owner->getScene(); if (scene) addToPhysicsWorld(scene->getPhysics3DWorld()); } } void Physics3DComponent::onExit() { Component::onExit(); setEnabled(false); // remove component from physics world if (_physics3DObj) { auto& components = _physics3DObj->getPhysicsWorld()->_physicsComponents; auto it = std::find(components.begin(), components.end(), this); if (it != components.end()) components.erase(it); } } void Physics3DComponent::preSimulate() { if (((int)_syncFlag & (int)Physics3DComponent::PhysicsSyncFlag::NODE_TO_PHYSICS) && _physics3DObj && _owner) { syncNodeToPhysics(); } } void Physics3DComponent::postSimulate() { if (((int)_syncFlag & (int)Physics3DComponent::PhysicsSyncFlag::PHYSICS_TO_NODE) && _physics3DObj && _owner) { syncPhysicsToNode(); } } void Physics3DComponent::setTransformInPhysics(const ax::Vec3& translateInPhysics, const ax::Quaternion& rotInPhsyics) { Mat4::createRotation(rotInPhsyics, &_transformInPhysics); _transformInPhysics.m[12] = translateInPhysics.x; _transformInPhysics.m[13] = translateInPhysics.y; _transformInPhysics.m[14] = translateInPhysics.z; _invTransformInPhysics = _transformInPhysics.getInversed(); } void Physics3DComponent::setSyncFlag(PhysicsSyncFlag syncFlag) { _syncFlag = syncFlag; } void Physics3DComponent::syncPhysicsToNode() { if (_physics3DObj->getObjType() == Physics3DObject::PhysicsObjType::RIGID_BODY || _physics3DObj->getObjType() == Physics3DObject::PhysicsObjType::COLLIDER) { Mat4 parentMat; if (_owner->getParent()) parentMat = _owner->getParent()->getNodeToWorldTransform(); auto mat = parentMat.getInversed() * _physics3DObj->getWorldTransform(); // remove scale, no scale support for physics float oneOverLen = 1.f / sqrtf(mat.m[0] * mat.m[0] + mat.m[1] * mat.m[1] + mat.m[2] * mat.m[2]); mat.m[0] *= oneOverLen; mat.m[1] *= oneOverLen; mat.m[2] *= oneOverLen; oneOverLen = 1.f / sqrtf(mat.m[4] * mat.m[4] + mat.m[5] * mat.m[5] + mat.m[6] * mat.m[6]); mat.m[4] *= oneOverLen; mat.m[5] *= oneOverLen; mat.m[6] *= oneOverLen; oneOverLen = 1.f / sqrtf(mat.m[8] * mat.m[8] + mat.m[9] * mat.m[9] + mat.m[10] * mat.m[10]); mat.m[8] *= oneOverLen; mat.m[9] *= oneOverLen; mat.m[10] *= oneOverLen; mat *= _transformInPhysics; static Vec3 scale, translation; static Quaternion quat; mat.decompose(&scale, &quat, &translation); _owner->setPosition3D(translation); quat.normalize(); _owner->setRotationQuat(quat); } } void Physics3DComponent::syncNodeToPhysics() { if (_physics3DObj->getObjType() == Physics3DObject::PhysicsObjType::RIGID_BODY || _physics3DObj->getObjType() == Physics3DObject::PhysicsObjType::COLLIDER) { auto mat = _owner->getNodeToWorldTransform(); // remove scale, no scale support for physics float oneOverLen = 1.f / sqrtf(mat.m[0] * mat.m[0] + mat.m[1] * mat.m[1] + mat.m[2] * mat.m[2]); mat.m[0] *= oneOverLen; mat.m[1] *= oneOverLen; mat.m[2] *= oneOverLen; oneOverLen = 1.f / sqrtf(mat.m[4] * mat.m[4] + mat.m[5] * mat.m[5] + mat.m[6] * mat.m[6]); mat.m[4] *= oneOverLen; mat.m[5] *= oneOverLen; mat.m[6] *= oneOverLen; oneOverLen = 1.f / sqrtf(mat.m[8] * mat.m[8] + mat.m[9] * mat.m[9] + mat.m[10] * mat.m[10]); mat.m[8] *= oneOverLen; mat.m[9] *= oneOverLen; mat.m[10] *= oneOverLen; mat *= _invTransformInPhysics; if (_physics3DObj->getObjType() == Physics3DObject::PhysicsObjType::RIGID_BODY) { auto body = static_cast<Physics3DRigidBody*>(_physics3DObj)->getRigidBody(); auto motionState = body->getMotionState(); motionState->setWorldTransform(convertMat4TobtTransform(mat)); body->setMotionState(motionState); } else if (_physics3DObj->getObjType() == Physics3DObject::PhysicsObjType::COLLIDER) { auto object = static_cast<Physics3DCollider*>(_physics3DObj)->getGhostObject(); object->setWorldTransform(convertMat4TobtTransform(mat)); } } } NS_AX_END # endif // AX_ENABLE_BULLET_INTEGRATION #endif // AX_USE_3D_PHYSICS