/****************************************************************************** * Spine Runtimes License Agreement * Last updated January 1, 2020. Replaces all prior versions. * * Copyright (c) 2013-2020, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software * or otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ #include #include #include #include USING_NS_AX; namespace spine { namespace { Cocos2dTextureLoader textureLoader; int computeTotalCoordCount(Skeleton& skeleton, int startSlotIndex, int endSlotIndex); axis::Rect computeBoundingRect(const float* coords, int vertexCount); void interleaveCoordinates(float* dst, const float* src, int vertexCount, int dstStride); BlendFunc makeBlendFunc(BlendMode blendMode, bool premultipliedAlpha); void transformWorldVertices(float* dstCoord, int coordCount, Skeleton& skeleton, int startSlotIndex, int endSlotIndex); bool cullRectangle(Renderer* renderer, const Mat4& transform, const axis::Rect& rect); Color4B ColorToColor4B(const Color& color); bool slotIsOutRange(Slot& slot, int startSlotIndex, int endSlotIndex); bool nothingToDraw(Slot& slot, int startSlotIndex, int endSlotIndex); } // C Variable length array #ifdef _MSC_VER // VLA not supported, use _malloca #define VLA(type, arr, count) \ type* arr = static_cast( _malloca(sizeof(type) * count) ) #define VLA_FREE(arr) do { _freea(arr); } while(false) #else #define VLA(type, arr, count) \ type arr[count] #define VLA_FREE(arr) #endif SkeletonRenderer* SkeletonRenderer::createWithSkeleton(Skeleton* skeleton, bool ownsSkeleton, bool ownsSkeletonData) { SkeletonRenderer* node = new SkeletonRenderer(skeleton, ownsSkeleton, ownsSkeletonData); node->autorelease(); return node; } SkeletonRenderer* SkeletonRenderer::createWithData (SkeletonData* skeletonData, bool ownsSkeletonData) { SkeletonRenderer* node = new SkeletonRenderer(skeletonData, ownsSkeletonData); node->autorelease(); return node; } SkeletonRenderer* SkeletonRenderer::createWithFile (const std::string& skeletonDataFile, Atlas* atlas, float scale) { SkeletonRenderer* node = new SkeletonRenderer(skeletonDataFile, atlas, scale); node->autorelease(); return node; } SkeletonRenderer* SkeletonRenderer::createWithFile (const std::string& skeletonDataFile, const std::string& atlasFile, float scale) { SkeletonRenderer* node = new SkeletonRenderer(skeletonDataFile, atlasFile, scale); node->autorelease(); return node; } void SkeletonRenderer::initialize () { _clipper = new (__FILE__, __LINE__) SkeletonClipping(); _blendFunc = BlendFunc::ALPHA_PREMULTIPLIED; setOpacityModifyRGB(true); setTwoColorTint(false); _skeleton->setToSetupPose(); _skeleton->updateWorldTransform(); } void SkeletonRenderer::setupGLProgramState (bool twoColorTintEnabled) { if (twoColorTintEnabled) { #if COCOS2D_VERSION < 0x00040000 setGLProgramState(SkeletonTwoColorBatch::getInstance()->getTwoColorTintProgramState()); #endif return; } Texture2D *texture = nullptr; for (int i = 0, n = _skeleton->getSlots().size(); i < n; i++) { Slot* slot = _skeleton->getDrawOrder()[i]; Attachment* const attachment = slot->getAttachment(); if (!attachment) continue; if (attachment->getRTTI().isExactly(RegionAttachment::rtti)) { RegionAttachment* regionAttachment = static_cast(attachment); texture = static_cast(regionAttachment->getRendererObject())->_texture; } else if (attachment->getRTTI().isExactly(MeshAttachment::rtti)) { MeshAttachment* meshAttachment = static_cast(attachment); texture = static_cast(meshAttachment->getRendererObject())->_texture; } else { continue; } if (texture != nullptr) { break; } } #if COCOS2D_VERSION < 0x00040000 setGLProgramState(GLProgramState::getOrCreateWithGLProgramName(GLProgram::SHADER_NAME_POSITION_TEXTURE_COLOR_NO_MVP, texture)); #endif } void SkeletonRenderer::setSkeletonData (SkeletonData *skeletonData, bool ownsSkeletonData) { _skeleton = new (__FILE__, __LINE__) Skeleton(skeletonData); _ownsSkeletonData = ownsSkeletonData; } SkeletonRenderer::SkeletonRenderer () : _atlas(nullptr), _attachmentLoader(nullptr), _timeScale(1), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits::max()) { } SkeletonRenderer::SkeletonRenderer(Skeleton* skeleton, bool ownsSkeleton, bool ownsSkeletonData, bool ownsAtlas) : _atlas(nullptr), _attachmentLoader(nullptr), _timeScale(1), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits::max()) { initWithSkeleton(skeleton, ownsSkeleton, ownsSkeletonData, ownsAtlas); } SkeletonRenderer::SkeletonRenderer (SkeletonData *skeletonData, bool ownsSkeletonData) : _atlas(nullptr), _attachmentLoader(nullptr), _timeScale(1), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits::max()) { initWithData(skeletonData, ownsSkeletonData); } SkeletonRenderer::SkeletonRenderer (const std::string& skeletonDataFile, Atlas* atlas, float scale) : _atlas(nullptr), _attachmentLoader(nullptr), _timeScale(1), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits::max()) { initWithJsonFile(skeletonDataFile, atlas, scale); } SkeletonRenderer::SkeletonRenderer (const std::string& skeletonDataFile, const std::string& atlasFile, float scale) : _atlas(nullptr), _attachmentLoader(nullptr), _timeScale(1), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits::max()) { initWithJsonFile(skeletonDataFile, atlasFile, scale); } SkeletonRenderer::~SkeletonRenderer () { if (_ownsSkeletonData) delete _skeleton->getData(); if (_ownsSkeleton) delete _skeleton; if (_ownsAtlas && _atlas) delete _atlas; if (_attachmentLoader) delete _attachmentLoader; delete _clipper; } void SkeletonRenderer::initWithSkeleton(Skeleton* skeleton, bool ownsSkeleton, bool ownsSkeletonData, bool ownsAtlas) { _skeleton = skeleton; _ownsSkeleton = ownsSkeleton; _ownsSkeletonData = ownsSkeletonData; _ownsAtlas = ownsAtlas; initialize(); } void SkeletonRenderer::initWithData (SkeletonData* skeletonData, bool ownsSkeletonData) { _ownsSkeleton = true; setSkeletonData(skeletonData, ownsSkeletonData); initialize(); } void SkeletonRenderer::initWithJsonFile (const std::string& skeletonDataFile, Atlas* atlas, float scale) { _atlas = atlas; _attachmentLoader = new (__FILE__, __LINE__) Cocos2dAtlasAttachmentLoader(_atlas); SkeletonJson json(_attachmentLoader); json.setScale(scale); SkeletonData* skeletonData = json.readSkeletonDataFile(skeletonDataFile.c_str()); CCASSERT(skeletonData, (!json.getError().isEmpty() ? json.getError().buffer() : "Error reading skeleton data.")); _ownsSkeleton = true; setSkeletonData(skeletonData, true); initialize(); } void SkeletonRenderer::initWithJsonFile (const std::string& skeletonDataFile, const std::string& atlasFile, float scale) { _atlas = new (__FILE__, __LINE__) Atlas(atlasFile.c_str(), &textureLoader, true); CCASSERT(_atlas, "Error reading atlas file."); _attachmentLoader = new (__FILE__, __LINE__) Cocos2dAtlasAttachmentLoader(_atlas); SkeletonJson json(_attachmentLoader); json.setScale(scale); SkeletonData* skeletonData = json.readSkeletonDataFile(skeletonDataFile.c_str()); CCASSERT(skeletonData, (!json.getError().isEmpty() ? json.getError().buffer() : "Error reading skeleton data.")); _ownsSkeleton = true; _ownsAtlas = true; setSkeletonData(skeletonData, true); initialize(); } void SkeletonRenderer::initWithBinaryFile (const std::string& skeletonDataFile, Atlas* atlas, float scale) { _atlas = atlas; _attachmentLoader = new (__FILE__, __LINE__) Cocos2dAtlasAttachmentLoader(_atlas); SkeletonBinary binary(_attachmentLoader); binary.setScale(scale); SkeletonData* skeletonData = binary.readSkeletonDataFile(skeletonDataFile.c_str()); CCASSERT(skeletonData, (!binary.getError().isEmpty() ? binary.getError().buffer() : "Error reading skeleton data.")); _ownsSkeleton = true; setSkeletonData(skeletonData, true); initialize(); } void SkeletonRenderer::initWithBinaryFile (const std::string& skeletonDataFile, const std::string& atlasFile, float scale) { _atlas = new (__FILE__, __LINE__) Atlas(atlasFile.c_str(), &textureLoader, true); CCASSERT(_atlas, "Error reading atlas file."); _attachmentLoader = new (__FILE__, __LINE__) Cocos2dAtlasAttachmentLoader(_atlas); SkeletonBinary binary(_attachmentLoader); binary.setScale(scale); SkeletonData* skeletonData = binary.readSkeletonDataFile(skeletonDataFile.c_str()); CCASSERT(skeletonData, (!binary.getError().isEmpty() ? binary.getError().buffer() : "Error reading skeleton data.")); _ownsSkeleton = true; _ownsAtlas = true; setSkeletonData(skeletonData, true); initialize(); } void SkeletonRenderer::update (float deltaTime) { Node::update(deltaTime); if (_ownsSkeleton) _skeleton->update(deltaTime * _timeScale); } void SkeletonRenderer::draw (Renderer* renderer, const Mat4& transform, uint32_t transformFlags) { // Early exit if the skeleton is invisible. if (getDisplayedOpacity() == 0 || _skeleton->getColor().a == 0) { return; } const int coordCount = computeTotalCoordCount(*_skeleton, _startSlotIndex, _endSlotIndex); if (coordCount == 0) { return; } assert(coordCount % 2 == 0); VLA(float, worldCoords, coordCount); transformWorldVertices(worldCoords, coordCount, *_skeleton, _startSlotIndex, _endSlotIndex); #if AX_USE_CULLING const axis::Rect bb = computeBoundingRect(worldCoords, coordCount / 2); if (cullRectangle(renderer, transform, bb)) { VLA_FREE(worldCoords); return; } #endif const float* worldCoordPtr = worldCoords; SkeletonBatch* batch = SkeletonBatch::getInstance(); SkeletonTwoColorBatch* twoColorBatch = SkeletonTwoColorBatch::getInstance(); const bool hasSingleTint = (isTwoColorTint() == false); if (_effect) { _effect->begin(*_skeleton); } const Color3B displayedColor = getDisplayedColor(); Color nodeColor; nodeColor.r = displayedColor.r / 255.f; nodeColor.g = displayedColor.g / 255.f; nodeColor.b = displayedColor.b / 255.f; nodeColor.a = getDisplayedOpacity() / 255.f; Color color; Color darkColor; const float darkPremultipliedAlpha = _premultipliedAlpha ? 1.f : 0; AttachmentVertices* attachmentVertices = nullptr; TwoColorTrianglesCommand* lastTwoColorTrianglesCommand = nullptr; for (int i = 0, n = _skeleton->getSlots().size(); i < n; ++i) { Slot* slot = _skeleton->getDrawOrder()[i];; if (nothingToDraw(*slot, _startSlotIndex, _endSlotIndex)) { _clipper->clipEnd(*slot); continue; } axis::TrianglesCommand::Triangles triangles; TwoColorTriangles trianglesTwoColor; if (slot->getAttachment()->getRTTI().isExactly(RegionAttachment::rtti)) { RegionAttachment* attachment = static_cast(slot->getAttachment()); attachmentVertices = static_cast(attachment->getRendererObject()); float* dstTriangleVertices = nullptr; int dstStride = 0; // in floats if (hasSingleTint) { triangles.indices = attachmentVertices->_triangles->indices; triangles.indexCount = attachmentVertices->_triangles->indexCount; triangles.verts = batch->allocateVertices(attachmentVertices->_triangles->vertCount); triangles.vertCount = attachmentVertices->_triangles->vertCount; assert(triangles.vertCount == 4); memcpy(triangles.verts, attachmentVertices->_triangles->verts, sizeof(axis::V3F_C4B_T2F) * attachmentVertices->_triangles->vertCount); dstStride = sizeof(V3F_C4B_T2F) / sizeof(float); dstTriangleVertices = reinterpret_cast(triangles.verts); } else { trianglesTwoColor.indices = attachmentVertices->_triangles->indices; trianglesTwoColor.indexCount = attachmentVertices->_triangles->indexCount; trianglesTwoColor.verts = twoColorBatch->allocateVertices(attachmentVertices->_triangles->vertCount); trianglesTwoColor.vertCount = attachmentVertices->_triangles->vertCount; assert(trianglesTwoColor.vertCount == 4); for (int v = 0; v < trianglesTwoColor.vertCount; v++) { trianglesTwoColor.verts[v].texCoords = attachmentVertices->_triangles->verts[v].texCoords; } dstTriangleVertices = reinterpret_cast(trianglesTwoColor.verts); dstStride = sizeof(V3F_C4B_C4B_T2F) / sizeof(float); } // Copy world vertices to triangle vertices. interleaveCoordinates(dstTriangleVertices, worldCoordPtr, 4, dstStride); worldCoordPtr += 8; color = attachment->getColor(); } else if (slot->getAttachment()->getRTTI().isExactly(MeshAttachment::rtti)) { MeshAttachment* attachment = (MeshAttachment*)slot->getAttachment(); attachmentVertices = (AttachmentVertices*)attachment->getRendererObject(); float* dstTriangleVertices = nullptr; int dstStride = 0; // in floats int dstVertexCount = 0; if (hasSingleTint) { triangles.indices = attachmentVertices->_triangles->indices; triangles.indexCount = attachmentVertices->_triangles->indexCount; triangles.verts = batch->allocateVertices(attachmentVertices->_triangles->vertCount); triangles.vertCount = attachmentVertices->_triangles->vertCount; memcpy(triangles.verts, attachmentVertices->_triangles->verts, sizeof(axis::V3F_C4B_T2F) * attachmentVertices->_triangles->vertCount); dstTriangleVertices = (float*)triangles.verts; dstStride = sizeof(V3F_C4B_T2F) / sizeof(float); dstVertexCount = triangles.vertCount; } else { trianglesTwoColor.indices = attachmentVertices->_triangles->indices; trianglesTwoColor.indexCount = attachmentVertices->_triangles->indexCount; trianglesTwoColor.verts = twoColorBatch->allocateVertices(attachmentVertices->_triangles->vertCount); trianglesTwoColor.vertCount = attachmentVertices->_triangles->vertCount; for (int v = 0; v < trianglesTwoColor.vertCount; v++) { trianglesTwoColor.verts[v].texCoords = attachmentVertices->_triangles->verts[v].texCoords; } dstTriangleVertices = (float*)trianglesTwoColor.verts; dstStride = sizeof(V3F_C4B_C4B_T2F) / sizeof(float); dstVertexCount = trianglesTwoColor.vertCount; } // Copy world vertices to triangle vertices. //assert(dstVertexCount * 2 == attachment->super.worldVerticesLength); interleaveCoordinates(dstTriangleVertices, worldCoordPtr, dstVertexCount, dstStride); worldCoordPtr += dstVertexCount * 2; color = attachment->getColor(); } else if (slot->getAttachment()->getRTTI().isExactly(ClippingAttachment::rtti)) { ClippingAttachment* clip = (ClippingAttachment*)slot->getAttachment(); _clipper->clipStart(*slot, clip); continue; } else { _clipper->clipEnd(*slot); continue; } if (slot->hasDarkColor()) { darkColor = slot->getDarkColor(); } else { darkColor.r = 0; darkColor.g = 0; darkColor.b = 0; } darkColor.a = darkPremultipliedAlpha; color.a *= nodeColor.a * _skeleton->getColor().a * slot->getColor().a; if (color.a == 0) { _clipper->clipEnd(*slot); continue; } color.r *= nodeColor.r * _skeleton->getColor().r * slot->getColor().r; color.g *= nodeColor.g * _skeleton->getColor().g * slot->getColor().g; color.b *= nodeColor.b * _skeleton->getColor().b * slot->getColor().b; if (_premultipliedAlpha) { color.r *= color.a; color.g *= color.a; color.b *= color.a; } const axis::Color4B color4B = ColorToColor4B(color); const axis::Color4B darkColor4B = ColorToColor4B(darkColor); const BlendFunc blendFunc = makeBlendFunc(slot->getData().getBlendMode(), attachmentVertices->_texture->hasPremultipliedAlpha()); _blendFunc = blendFunc; if (hasSingleTint) { if (_clipper->isClipping()) { _clipper->clipTriangles((float*)&triangles.verts[0].vertices, triangles.indices, triangles.indexCount, (float*)&triangles.verts[0].texCoords, sizeof(axis::V3F_C4B_T2F) / 4); batch->deallocateVertices(triangles.vertCount); if (_clipper->getClippedTriangles().size() == 0) { _clipper->clipEnd(*slot); continue; } triangles.vertCount = _clipper->getClippedVertices().size() / 2; triangles.verts = batch->allocateVertices(triangles.vertCount); triangles.indexCount = _clipper->getClippedTriangles().size(); triangles.indices = batch->allocateIndices(triangles.indexCount); memcpy(triangles.indices, _clipper->getClippedTriangles().buffer(), sizeof(unsigned short) * _clipper->getClippedTriangles().size()); #if COCOS2D_VERSION < 0x00040000 axis::TrianglesCommand* batchedTriangles = batch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _glProgramState, blendFunc, triangles, transform, transformFlags); #else axis::TrianglesCommand* batchedTriangles = batch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _programState, blendFunc, triangles, transform, transformFlags); #endif const float* verts = _clipper->getClippedVertices().buffer(); const float* uvs = _clipper->getClippedUVs().buffer(); if (_effect) { V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts; Color darkTmp; for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv+=2, ++vertex) { Color lightCopy = color; vertex->vertices.x = verts[vv]; vertex->vertices.y = verts[vv + 1]; vertex->texCoords.u = uvs[vv]; vertex->texCoords.v = uvs[vv + 1]; _effect->transform(vertex->vertices.x, vertex->vertices.y, vertex->texCoords.u, vertex->texCoords.v, lightCopy, darkTmp); vertex->colors = ColorToColor4B(lightCopy); } } else { V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts; for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv+=2, ++vertex) { vertex->vertices.x = verts[vv]; vertex->vertices.y = verts[vv + 1]; vertex->texCoords.u = uvs[vv]; vertex->texCoords.v = uvs[vv + 1]; vertex->colors = color4B; } } } else { // Not clipping. #if COCOS2D_VERSION < 0x00040000 axis::TrianglesCommand* batchedTriangles = batch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _glProgramState, blendFunc, triangles, transform, transformFlags); #else axis::TrianglesCommand* batchedTriangles = batch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _programState, blendFunc, triangles, transform, transformFlags); #endif if (_effect) { V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts; Color darkTmp; for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) { Color lightCopy = color; _effect->transform(vertex->vertices.x, vertex->vertices.y, vertex->texCoords.u, vertex->texCoords.v, lightCopy, darkTmp); vertex->colors = ColorToColor4B(lightCopy); } } else { V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts; for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) { vertex->colors = color4B; } } } } else { // Two color tinting. if (_clipper->isClipping()) { _clipper->clipTriangles((float*)&trianglesTwoColor.verts[0].position, trianglesTwoColor.indices, trianglesTwoColor.indexCount, (float*)&trianglesTwoColor.verts[0].texCoords, sizeof(V3F_C4B_C4B_T2F) / 4); twoColorBatch->deallocateVertices(trianglesTwoColor.vertCount); if (_clipper->getClippedTriangles().size() == 0) { _clipper->clipEnd(*slot); continue; } trianglesTwoColor.vertCount = _clipper->getClippedVertices().size() / 2; trianglesTwoColor.verts = twoColorBatch->allocateVertices(trianglesTwoColor.vertCount); trianglesTwoColor.indexCount = _clipper->getClippedTriangles().size(); trianglesTwoColor.indices = twoColorBatch->allocateIndices(trianglesTwoColor.indexCount); memcpy(trianglesTwoColor.indices, _clipper->getClippedTriangles().buffer(), sizeof(unsigned short) * _clipper->getClippedTriangles().size()); #if COCOS2D_VERSION < 0x00040000 TwoColorTrianglesCommand* batchedTriangles = lastTwoColorTrianglesCommand = twoColorBatch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture->getName(), _glProgramState, blendFunc, trianglesTwoColor, transform, transformFlags); #else TwoColorTrianglesCommand* batchedTriangles = lastTwoColorTrianglesCommand = twoColorBatch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _programState, blendFunc, trianglesTwoColor, transform, transformFlags); #endif const float* verts = _clipper->getClippedVertices().buffer(); const float* uvs = _clipper->getClippedUVs().buffer(); if (_effect) { V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts; for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv += 2, ++vertex) { Color lightCopy = color; Color darkCopy = darkColor; vertex->position.x = verts[vv]; vertex->position.y = verts[vv + 1]; vertex->texCoords.u = uvs[vv]; vertex->texCoords.v = uvs[vv + 1]; _effect->transform(vertex->position.x, vertex->position.y, vertex->texCoords.u, vertex->texCoords.v, lightCopy, darkCopy); vertex->color = ColorToColor4B(lightCopy); vertex->color2 = ColorToColor4B(darkCopy); } } else { V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts; for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv += 2, ++vertex) { vertex->position.x = verts[vv]; vertex->position.y = verts[vv + 1]; vertex->texCoords.u = uvs[vv]; vertex->texCoords.v = uvs[vv + 1]; vertex->color = color4B; vertex->color2 = darkColor4B; } } } else { #if COCOS2D_VERSION < 0x00040000 TwoColorTrianglesCommand* batchedTriangles = lastTwoColorTrianglesCommand = twoColorBatch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture->getName(), _glProgramState, blendFunc, trianglesTwoColor, transform, transformFlags); #else TwoColorTrianglesCommand* batchedTriangles = lastTwoColorTrianglesCommand = twoColorBatch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _programState, blendFunc, trianglesTwoColor, transform, transformFlags); #endif if (_effect) { V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts; for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) { Color lightCopy = color; Color darkCopy = darkColor; _effect->transform(vertex->position.x, vertex->position.y, vertex->texCoords.u, vertex->texCoords.v, lightCopy, darkCopy); vertex->color = ColorToColor4B(lightCopy); vertex->color2 = ColorToColor4B(darkCopy); } } else { V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts; for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) { vertex->color = color4B; vertex->color2 = darkColor4B; } } } } _clipper->clipEnd(*slot); } _clipper->clipEnd(); if (lastTwoColorTrianglesCommand) { Node* parent = this->getParent(); // We need to decide if we can postpone flushing the current batch. We can postpone if the next sibling node is a two color // tinted skeleton with the same global-z. // The parent->getChildrenCount() > 100 check is a hack as checking for a sibling is an O(n) operation, and if all children // of this nodes parent are skeletons, we are in O(n2) territory. if (!parent || parent->getChildrenCount() > 100 || getChildrenCount() != 0) { lastTwoColorTrianglesCommand->setForceFlush(true); } else { const axis::Vector& children = parent->getChildren(); Node* sibling = nullptr; for (ssize_t i = 0; i < children.size(); i++) { if (children.at(i) == this) { if (i < children.size() - 1) { sibling = children.at(i+1); break; } } } if (!sibling) { lastTwoColorTrianglesCommand->setForceFlush(true); } else { SkeletonRenderer* siblingSkeleton = dynamic_cast(sibling); if (!siblingSkeleton || // flush is next sibling isn't a SkeletonRenderer !siblingSkeleton->isTwoColorTint() || // flush if next sibling isn't two color tinted !siblingSkeleton->isVisible() || // flush if next sibling is two color tinted but not visible (siblingSkeleton->getGlobalZOrder() != this->getGlobalZOrder())) { // flush if next sibling is two color tinted but z-order differs lastTwoColorTrianglesCommand->setForceFlush(true); } } } } if (_effect) _effect->end(); if (_debugBoundingRect || _debugSlots || _debugBones || _debugMeshes) { drawDebug(renderer, transform, transformFlags); } VLA_FREE(worldCoords); } void SkeletonRenderer::drawDebug (Renderer* renderer, const Mat4 &transform, uint32_t transformFlags) { #if !defined(USE_MATRIX_STACK_PROJECTION_ONLY) Director* director = Director::getInstance(); director->pushMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW); director->loadMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW, transform); #endif DrawNode* drawNode = DrawNode::create(); drawNode->setGlobalZOrder(getGlobalZOrder()); // Draw bounding rectangle if (_debugBoundingRect) { #if COCOS2D_VERSION < 0x00040000 glLineWidth(2); #else drawNode->setLineWidth(2.0f); #endif const axis::Rect brect = getBoundingBox(); const Vec2 points[4] = { brect.origin, { brect.origin.x + brect.size.width, brect.origin.y }, { brect.origin.x + brect.size.width, brect.origin.y + brect.size.height }, { brect.origin.x, brect.origin.y + brect.size.height } }; drawNode->drawPoly(points, 4, true, Color4F::GREEN); } if (_debugSlots) { // Slots. // DrawPrimitives::setDrawColor4B(0, 0, 255, 255); #if COCOS2D_VERSION < 0x00040000 glLineWidth(2); #else drawNode->setLineWidth(2.0f); #endif V3F_C4B_T2F_Quad quad; for (int i = 0, n = _skeleton->getSlots().size(); i < n; i++) { Slot* slot = _skeleton->getDrawOrder()[i]; if (!slot->getBone().isActive()) continue; if (!slot->getAttachment() || !slot->getAttachment()->getRTTI().isExactly(RegionAttachment::rtti)) continue; if (slotIsOutRange(*slot, _startSlotIndex, _endSlotIndex)) { continue; } RegionAttachment* attachment = (RegionAttachment*)slot->getAttachment(); float worldVertices[8]; attachment->computeWorldVertices(slot->getBone(), worldVertices, 0, 2); const Vec2 points[4] = { { worldVertices[0], worldVertices[1] }, { worldVertices[2], worldVertices[3] }, { worldVertices[4], worldVertices[5] }, { worldVertices[6], worldVertices[7] } }; drawNode->drawPoly(points, 4, true, Color4F::BLUE); } } if (_debugBones) { // Bone lengths. #if COCOS2D_VERSION < 0x00040000 glLineWidth(2); #else drawNode->setLineWidth(2.0f); #endif for (int i = 0, n = _skeleton->getBones().size(); i < n; i++) { Bone *bone = _skeleton->getBones()[i]; if (!bone->isActive()) continue; float x = bone->getData().getLength() * bone->getA() + bone->getWorldX(); float y = bone->getData().getLength() * bone->getC() + bone->getWorldY(); drawNode->drawLine(Vec2(bone->getWorldX(), bone->getWorldY()), Vec2(x, y), Color4F::RED); } // Bone origins. auto color = Color4F::BLUE; // Root bone is blue. for (int i = 0, n = _skeleton->getBones().size(); i < n; i++) { Bone *bone = _skeleton->getBones()[i]; if (!bone->isActive()) continue; drawNode->drawPoint(Vec2(bone->getWorldX(), bone->getWorldY()), 4, color); if (i == 0) color = Color4F::GREEN; } } if (_debugMeshes) { // Meshes. #if COCOS2D_VERSION < 0x00040000 glLineWidth(2); #else drawNode->setLineWidth(2.0f); #endif for (int i = 0, n = _skeleton->getSlots().size(); i < n; ++i) { Slot* slot = _skeleton->getDrawOrder()[i]; if (!slot->getBone().isActive()) continue; if (!slot->getAttachment() || !slot->getAttachment()->getRTTI().isExactly(MeshAttachment::rtti)) continue; MeshAttachment* const mesh = static_cast(slot->getAttachment()); VLA(float, worldCoord, mesh->getWorldVerticesLength()); mesh->computeWorldVertices(*slot, 0, mesh->getWorldVerticesLength(), worldCoord, 0, 2); for (size_t t = 0; t < mesh->getTriangles().size(); t += 3) { // Fetch triangle indices const int idx0 = mesh->getTriangles()[t + 0]; const int idx1 = mesh->getTriangles()[t + 1]; const int idx2 = mesh->getTriangles()[t + 2]; const Vec2 v[3] = { worldCoord + (idx0 * 2), worldCoord + (idx1 * 2), worldCoord + (idx2 * 2) }; drawNode->drawPoly(v, 3, true, Color4F::YELLOW); } VLA_FREE(worldCoord); } } drawNode->draw(renderer, transform, transformFlags); #if !defined(USE_MATRIX_STACK_PROJECTION_ONLY) director->popMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW); #endif } axis::Rect SkeletonRenderer::getBoundingBox () const { const int coordCount = computeTotalCoordCount(*_skeleton, _startSlotIndex, _endSlotIndex); if (coordCount == 0) return { 0, 0, 0, 0 }; VLA(float, worldCoords, coordCount); transformWorldVertices(worldCoords, coordCount, *_skeleton, _startSlotIndex, _endSlotIndex); const axis::Rect bb = computeBoundingRect(worldCoords, coordCount / 2); VLA_FREE(worldCoords); return bb; } // --- Convenience methods for Skeleton_* functions. void SkeletonRenderer::updateWorldTransform() { _skeleton->updateWorldTransform(); } void SkeletonRenderer::setToSetupPose () { _skeleton->setToSetupPose(); } void SkeletonRenderer::setBonesToSetupPose () { _skeleton->setBonesToSetupPose(); } void SkeletonRenderer::setSlotsToSetupPose () { _skeleton->setSlotsToSetupPose(); } Bone* SkeletonRenderer::findBone (const std::string& boneName) const { return _skeleton->findBone(boneName.c_str()); } Slot* SkeletonRenderer::findSlot (const std::string& slotName) const { return _skeleton->findSlot( slotName.c_str()); } void SkeletonRenderer::setSkin (const std::string& skinName) { _skeleton->setSkin(skinName.empty() ? 0 : skinName.c_str()); } void SkeletonRenderer::setSkin (const char* skinName) { _skeleton->setSkin(skinName); } Attachment* SkeletonRenderer::getAttachment (const std::string& slotName, const std::string& attachmentName) const { return _skeleton->getAttachment(slotName.c_str(), attachmentName.c_str()); } bool SkeletonRenderer::setAttachment (const std::string& slotName, const std::string& attachmentName) { bool result = _skeleton->getAttachment(slotName.c_str(), attachmentName.empty() ? 0 : attachmentName.c_str()) ? true : false; _skeleton->setAttachment(slotName.c_str(), attachmentName.empty() ? 0 : attachmentName.c_str()); return result; } bool SkeletonRenderer::setAttachment (const std::string& slotName, const char* attachmentName) { bool result = _skeleton->getAttachment(slotName.c_str(), attachmentName) ? true : false; _skeleton->setAttachment(slotName.c_str(), attachmentName); return result; } void SkeletonRenderer::setTwoColorTint(bool enabled) { #if COCOS2D_VERSION >= 0x00040000 _twoColorTint = enabled; #endif setupGLProgramState(enabled); } bool SkeletonRenderer::isTwoColorTint() { #if COCOS2D_VERSION < 0x00040000 return getGLProgramState() == SkeletonTwoColorBatch::getInstance()->getTwoColorTintProgramState(); #else return _twoColorTint; #endif } void SkeletonRenderer::setVertexEffect(VertexEffect *effect) { this->_effect = effect; } void SkeletonRenderer::setSlotsRange(int startSlotIndex, int endSlotIndex) { _startSlotIndex = startSlotIndex == -1 ? 0 : startSlotIndex; _endSlotIndex = endSlotIndex == -1 ? std::numeric_limits::max() : endSlotIndex; } Skeleton* SkeletonRenderer::getSkeleton () const { return _skeleton; } void SkeletonRenderer::setTimeScale (float scale) { _timeScale = scale; } float SkeletonRenderer::getTimeScale () const { return _timeScale; } void SkeletonRenderer::setDebugSlotsEnabled (bool enabled) { _debugSlots = enabled; } bool SkeletonRenderer::getDebugSlotsEnabled () const { return _debugSlots; } void SkeletonRenderer::setDebugBonesEnabled (bool enabled) { _debugBones = enabled; } bool SkeletonRenderer::getDebugBonesEnabled () const { return _debugBones; } void SkeletonRenderer::setDebugMeshesEnabled (bool enabled) { _debugMeshes = enabled; } bool SkeletonRenderer::getDebugMeshesEnabled () const { return _debugMeshes; } void SkeletonRenderer::setDebugBoundingRectEnabled(bool enabled) { _debugBoundingRect = enabled; } bool SkeletonRenderer::getDebugBoundingRectEnabled() const { return _debugBoundingRect; } void SkeletonRenderer::onEnter () { #if AX_ENABLE_SCRIPT_BINDING && COCOS2D_VERSION < 0x00040000 if (_scriptType == kScriptTypeJavascript && ScriptEngineManager::sendNodeEventToJSExtended(this, kNodeOnEnter)) return; #endif Node::onEnter(); scheduleUpdate(); } void SkeletonRenderer::onExit () { #if AX_ENABLE_SCRIPT_BINDING && COCOS2D_VERSION < 0x00040000 if (_scriptType == kScriptTypeJavascript && ScriptEngineManager::sendNodeEventToJSExtended(this, kNodeOnExit)) return; #endif Node::onExit(); unscheduleUpdate(); } // --- CCBlendProtocol const BlendFunc& SkeletonRenderer::getBlendFunc () const { return _blendFunc; } void SkeletonRenderer::setBlendFunc (const BlendFunc &blendFunc) { _blendFunc = blendFunc; } void SkeletonRenderer::setOpacityModifyRGB (bool value) { _premultipliedAlpha = value; } bool SkeletonRenderer::isOpacityModifyRGB () const { return _premultipliedAlpha; } namespace { axis::Rect computeBoundingRect(const float* coords, int vertexCount) { assert(coords); assert(vertexCount > 0); const float* v = coords; float minX = v[0]; float minY = v[1]; float maxX = minX; float maxY = minY; for (int i = 1; i < vertexCount; ++i) { v += 2; float x = v[0]; float y = v[1]; minX = std::min(minX, x); minY = std::min(minY, y); maxX = std::max(maxX, x); maxY = std::max(maxY, y); } return { minX, minY, maxX - minX, maxY - minY }; } bool slotIsOutRange(Slot& slot, int startSlotIndex, int endSlotIndex) { const int index = slot.getData().getIndex(); return startSlotIndex > index || endSlotIndex < index; } bool nothingToDraw(Slot& slot, int startSlotIndex, int endSlotIndex) { Attachment *attachment = slot.getAttachment(); if (!attachment || slotIsOutRange(slot, startSlotIndex, endSlotIndex) || !slot.getBone().isActive()) return true; const auto& attachmentRTTI = attachment->getRTTI(); if (attachmentRTTI.isExactly(ClippingAttachment::rtti)) return false; if (slot.getColor().a == 0) return true; if (attachmentRTTI.isExactly(RegionAttachment::rtti)) { if (static_cast(attachment)->getColor().a == 0) return true; } else if (attachmentRTTI.isExactly(MeshAttachment::rtti)) { if (static_cast(attachment)->getColor().a == 0) return true; } return false; } int computeTotalCoordCount(Skeleton& skeleton, int startSlotIndex, int endSlotIndex) { int coordCount = 0; for (size_t i = 0; i < skeleton.getSlots().size(); ++i) { Slot& slot = *skeleton.getSlots()[i]; if (nothingToDraw(slot, startSlotIndex, endSlotIndex)) { continue; } Attachment* const attachment = slot.getAttachment(); if (attachment->getRTTI().isExactly(RegionAttachment::rtti)) { coordCount += 8; } else if (attachment->getRTTI().isExactly(MeshAttachment::rtti)) { MeshAttachment* const mesh = static_cast(attachment); coordCount += mesh->getWorldVerticesLength(); } } return coordCount; } void transformWorldVertices(float* dstCoord, int coordCount, Skeleton& skeleton, int startSlotIndex, int endSlotIndex) { float* dstPtr = dstCoord; #ifndef NDEBUG float* const dstEnd = dstCoord + coordCount; #endif for (size_t i = 0; i < skeleton.getSlots().size(); ++i) { /*const*/ Slot& slot = *skeleton.getDrawOrder()[i]; // match the draw order of SkeletonRenderer::Draw if (nothingToDraw(slot, startSlotIndex, endSlotIndex)) { continue; } Attachment* const attachment = slot.getAttachment(); if (attachment->getRTTI().isExactly(RegionAttachment::rtti)) { RegionAttachment* const regionAttachment = static_cast(attachment); assert(dstPtr + 8 <= dstEnd); regionAttachment->computeWorldVertices(slot.getBone(), dstPtr, 0, 2); dstPtr += 8; } else if (attachment->getRTTI().isExactly(MeshAttachment::rtti)) { MeshAttachment* const mesh = static_cast(attachment); assert(dstPtr + mesh->getWorldVerticesLength() <= dstEnd); mesh->computeWorldVertices(slot, 0, mesh->getWorldVerticesLength(), dstPtr, 0, 2); dstPtr += mesh->getWorldVerticesLength(); } } assert(dstPtr == dstEnd); } void interleaveCoordinates(float* dst, const float* src, int count, int dstStride) { if (dstStride == 2) { memcpy(dst, src, sizeof(float) * count * 2); } else { for (int i = 0; i < count; ++i) { dst[0] = src[0]; dst[1] = src[1]; dst += dstStride; src += 2; } } } BlendFunc makeBlendFunc(BlendMode blendMode, bool premultipliedAlpha) { BlendFunc blendFunc; #if COCOS2D_VERSION < 0x00040000 switch (blendMode) { case BlendMode_Additive: blendFunc.src = premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA; blendFunc.dst = GL_ONE; break; case BlendMode_Multiply: blendFunc.src = GL_DST_COLOR; blendFunc.dst = GL_ONE_MINUS_SRC_ALPHA; break; case BlendMode_Screen: blendFunc.src = GL_ONE; blendFunc.dst = GL_ONE_MINUS_SRC_COLOR; break; default: blendFunc.src = premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA; blendFunc.dst = GL_ONE_MINUS_SRC_ALPHA; break; } #else switch (blendMode) { case BlendMode_Additive: blendFunc.src = premultipliedAlpha ? backend::BlendFactor::ONE : backend::BlendFactor::SRC_ALPHA; blendFunc.dst = backend::BlendFactor::ONE; break; case BlendMode_Multiply: blendFunc.src = backend::BlendFactor::DST_COLOR; blendFunc.dst = backend::BlendFactor::ONE_MINUS_SRC_ALPHA; break; case BlendMode_Screen: blendFunc.src = backend::BlendFactor::ONE; blendFunc.dst = backend::BlendFactor::ONE_MINUS_SRC_COLOR; break; default: blendFunc.src = premultipliedAlpha ? backend::BlendFactor::ONE : backend::BlendFactor::SRC_ALPHA; blendFunc.dst = backend::BlendFactor::ONE_MINUS_SRC_ALPHA; } #endif return blendFunc; } bool cullRectangle(Renderer* renderer, const Mat4& transform, const axis::Rect& rect) { if (Camera::getVisitingCamera() == nullptr) return false; auto director = Director::getInstance(); auto scene = director->getRunningScene(); if (!scene || (scene && Camera::getDefaultCamera() != Camera::getVisitingCamera())) return false; Rect visibleRect(director->getVisibleOrigin(), director->getVisibleSize()); // transform center point to screen space float hSizeX = rect.size.width/2; float hSizeY = rect.size.height/2; Vec3 v3p(rect.origin.x + hSizeX, rect.origin.y + hSizeY, 0); transform.transformPoint(&v3p); Vec2 v2p = Camera::getVisitingCamera()->projectGL(v3p); // convert content size to world coordinates float wshw = std::max(fabsf(hSizeX * transform.m[0] + hSizeY * transform.m[4]), fabsf(hSizeX * transform.m[0] - hSizeY * transform.m[4])); float wshh = std::max(fabsf(hSizeX * transform.m[1] + hSizeY * transform.m[5]), fabsf(hSizeX * transform.m[1] - hSizeY * transform.m[5])); // enlarge visible rect half size in screen coord visibleRect.origin.x -= wshw; visibleRect.origin.y -= wshh; visibleRect.size.width += wshw * 2; visibleRect.size.height += wshh * 2; return !visibleRect.containsPoint(v2p); } Color4B ColorToColor4B(const Color& color) { return { (uint8_t)(color.r * 255.f), (uint8_t)(color.g * 255.f), (uint8_t)(color.b * 255.f), (uint8_t)(color.a * 255.f) }; } } }