/**************************************************************************** Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2009 Valentin Milea Copyright (c) 2011 Zynga Inc. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "CCNode.h" #include #include "CCString.h" #include "ccCArray.h" #include "TransformUtils.h" #include "CCCamera.h" #include "CCGrid.h" #include "CCDirector.h" #include "CCScheduler.h" #include "CCTouch.h" #include "CCActionManager.h" #include "CCScriptSupport.h" #include "CCGLProgram.h" #include "CCEventDispatcher.h" #include "CCEvent.h" #include "CCEventTouch.h" #include "CCScene.h" #ifdef CC_USE_PHYSICS #include "CCPhysicsBody.h" #endif // externals #include "kazmath/GL/matrix.h" #include "CCComponent.h" #include "CCComponentContainer.h" #if CC_NODE_RENDER_SUBPIXEL #define RENDER_IN_SUBPIXEL #else #define RENDER_IN_SUBPIXEL(__ARGS__) (ceil(__ARGS__)) #endif NS_CC_BEGIN #if CC_USE_ARRAY_VECTOR bool nodeComparisonLess(const RCPtr& pp1, const RCPtr& pp2) { Object *p1 = static_cast(pp1); Object *p2 = static_cast(pp2); Node *n1 = static_cast(p1); Node *n2 = static_cast(p2); return( n1->getZOrder() < n2->getZOrder() || ( n1->getZOrder() == n2->getZOrder() && n1->getOrderOfArrival() < n2->getOrderOfArrival() ) ); } #else bool nodeComparisonLess(Object* p1, Object* p2) { Node *n1 = static_cast(p1); Node *n2 = static_cast(p2); return( n1->getZOrder() < n2->getZOrder() || ( n1->getZOrder() == n2->getZOrder() && n1->getOrderOfArrival() < n2->getOrderOfArrival() ) ); } #endif // XXX: Yes, nodes might have a sort problem once every 15 days if the game runs at 60 FPS and each frame sprites are reordered. static int s_globalOrderOfArrival = 1; Node::Node(void) : _rotationX(0.0f) , _rotationY(0.0f) , _scaleX(1.0f) , _scaleY(1.0f) , _vertexZ(0.0f) , _position(Point::ZERO) , _skewX(0.0f) , _skewY(0.0f) , _anchorPointInPoints(Point::ZERO) , _anchorPoint(Point::ZERO) , _contentSize(Size::ZERO) , _additionalTransformDirty(false) , _transformDirty(true) , _inverseDirty(true) , _camera(nullptr) // children (lazy allocs) // lazy alloc , _ZOrder(0) , _parent(nullptr) // "whole screen" objects. like Scenes and Layers, should set _ignoreAnchorPointForPosition to true , _tag(Node::INVALID_TAG) // userData is always inited as nil , _userData(nullptr) , _userObject(nullptr) , _shaderProgram(nullptr) , _orderOfArrival(0) , _running(false) , _visible(true) , _ignoreAnchorPointForPosition(false) , _reorderChildDirty(false) , _isTransitionFinished(false) , _updateScriptHandler(0) , _componentContainer(nullptr) #ifdef CC_USE_PHYSICS , _physicsBody(nullptr) #endif , _displayedOpacity(255) , _realOpacity(255) , _displayedColor(Color3B::WHITE) , _realColor(Color3B::WHITE) , _cascadeColorEnabled(false) , _cascadeOpacityEnabled(false) { // set default scheduler and actionManager Director *director = Director::getInstance(); _actionManager = director->getActionManager(); _actionManager->retain(); _scheduler = director->getScheduler(); _scheduler->retain(); _eventDispatcher = director->getEventDispatcher(); _eventDispatcher->retain(); ScriptEngineProtocol* engine = ScriptEngineManager::getInstance()->getScriptEngine(); _scriptType = engine != nullptr ? engine->getScriptType() : kScriptTypeNone; kmMat4Identity(&_transform); kmMat4Identity(&_inverse); kmMat4Identity(&_additionalTransform); } Node::~Node() { CCLOGINFO( "deallocing Node: %p - tag: %i", this, _tag ); if (_updateScriptHandler) { ScriptEngineManager::getInstance()->getScriptEngine()->removeScriptHandler(_updateScriptHandler); } CC_SAFE_RELEASE(_actionManager); CC_SAFE_RELEASE(_scheduler); _eventDispatcher->cleanTarget(this); CC_SAFE_RELEASE(_eventDispatcher); // attributes CC_SAFE_RELEASE(_camera); CC_SAFE_RELEASE(_shaderProgram); CC_SAFE_RELEASE(_userObject); for (auto& child : _children) { child->_parent = nullptr; } removeAllComponents(); CC_SAFE_DELETE(_componentContainer); #ifdef CC_USE_PHYSICS CC_SAFE_RELEASE(_physicsBody); #endif } bool Node::init() { return true; } float Node::getSkewX() const { return _skewX; } void Node::setSkewX(float newSkewX) { _skewX = newSkewX; _transformDirty = _inverseDirty = true; } float Node::getSkewY() const { return _skewY; } void Node::setSkewY(float newSkewY) { _skewY = newSkewY; _transformDirty = _inverseDirty = true; } /// zOrder getter int Node::getZOrder() const { return _ZOrder; } /// zOrder setter : private method /// used internally to alter the zOrder variable. DON'T call this method manually void Node::_setZOrder(int z) { _ZOrder = z; } void Node::setZOrder(int z) { if (_parent) { _parent->reorderChild(this, z); } // should set "_ZOrder" after reorderChild, because the implementation of reorderChild subclass of Node, such as Sprite, // will return when _ZOrder value is not changed _setZOrder(z); _eventDispatcher->setDirtyForNode(this); } /// vertexZ getter float Node::getVertexZ() const { return _vertexZ; } /// vertexZ setter void Node::setVertexZ(float var) { _vertexZ = var; } /// rotation getter float Node::getRotation() const { CCASSERT(_rotationX == _rotationY, "CCNode#rotation. RotationX != RotationY. Don't know which one to return"); return _rotationX; } /// rotation setter void Node::setRotation(float newRotation) { _rotationX = _rotationY = newRotation; _transformDirty = _inverseDirty = true; #ifdef CC_USE_PHYSICS if (_physicsBody) { _physicsBody->setRotation(newRotation); } #endif } float Node::getRotationX() const { return _rotationX; } void Node::setRotationX(float fRotationX) { _rotationX = fRotationX; _transformDirty = _inverseDirty = true; } float Node::getRotationY() const { return _rotationY; } void Node::setRotationY(float rotationY) { _rotationY = rotationY; _transformDirty = _inverseDirty = true; } /// scale getter float Node::getScale(void) const { CCASSERT( _scaleX == _scaleY, "CCNode#scale. ScaleX != ScaleY. Don't know which one to return"); return _scaleX; } /// scale setter void Node::setScale(float scale) { _scaleX = _scaleY = scale; _transformDirty = _inverseDirty = true; } /// scaleX getter float Node::getScaleX() const { return _scaleX; } /// scale setter void Node::setScale(float scaleX,float scaleY) { _scaleX = scaleX; _scaleY = scaleY; _transformDirty = _inverseDirty = true; } /// scaleX setter void Node::setScaleX(float newScaleX) { _scaleX = newScaleX; _transformDirty = _inverseDirty = true; } /// scaleY getter float Node::getScaleY() const { return _scaleY; } /// scaleY setter void Node::setScaleY(float newScaleY) { _scaleY = newScaleY; _transformDirty = _inverseDirty = true; } /// position getter const Point& Node::getPosition() const { return _position; } /// position setter void Node::setPosition(const Point& newPosition) { _position = newPosition; _transformDirty = _inverseDirty = true; #ifdef CC_USE_PHYSICS if (_physicsBody) { _physicsBody->setPosition(newPosition); } #endif } void Node::getPosition(float* x, float* y) const { *x = _position.x; *y = _position.y; } void Node::setPosition(float x, float y) { setPosition(Point(x, y)); } float Node::getPositionX() const { return _position.x; } float Node::getPositionY() const { return _position.y; } void Node::setPositionX(float x) { setPosition(Point(x, _position.y)); } void Node::setPositionY(float y) { setPosition(Point(_position.x, y)); } ssize_t Node::getChildrenCount() const { return _children.size(); } /// camera getter: lazy alloc Camera* Node::getCamera() { if (!_camera) { _camera = new Camera(); } return _camera; } /// isVisible getter bool Node::isVisible() const { return _visible; } /// isVisible setter void Node::setVisible(bool var) { _visible = var; } const Point& Node::getAnchorPointInPoints() const { return _anchorPointInPoints; } /// anchorPoint getter const Point& Node::getAnchorPoint() const { return _anchorPoint; } void Node::setAnchorPoint(const Point& point) { if( ! point.equals(_anchorPoint)) { _anchorPoint = point; _anchorPointInPoints = Point(_contentSize.width * _anchorPoint.x, _contentSize.height * _anchorPoint.y ); _transformDirty = _inverseDirty = true; } } /// contentSize getter const Size& Node::getContentSize() const { return _contentSize; } void Node::setContentSize(const Size & size) { if ( ! size.equals(_contentSize)) { _contentSize = size; _anchorPointInPoints = Point(_contentSize.width * _anchorPoint.x, _contentSize.height * _anchorPoint.y ); _transformDirty = _inverseDirty = true; } } // isRunning getter bool Node::isRunning() const { return _running; } /// parent setter void Node::setParent(Node * var) { _parent = var; } /// isRelativeAnchorPoint getter bool Node::isIgnoreAnchorPointForPosition() const { return _ignoreAnchorPointForPosition; } /// isRelativeAnchorPoint setter void Node::ignoreAnchorPointForPosition(bool newValue) { if (newValue != _ignoreAnchorPointForPosition) { _ignoreAnchorPointForPosition = newValue; _transformDirty = _inverseDirty = true; } } /// tag getter int Node::getTag() const { return _tag; } /// tag setter void Node::setTag(int var) { _tag = var; } /// userData setter void Node::setUserData(void *var) { _userData = var; } int Node::getOrderOfArrival() const { return _orderOfArrival; } void Node::setOrderOfArrival(int orderOfArrival) { CCASSERT(orderOfArrival >=0, "Invalid orderOfArrival"); _orderOfArrival = orderOfArrival; } void Node::setUserObject(Object *pUserObject) { CC_SAFE_RETAIN(pUserObject); CC_SAFE_RELEASE(_userObject); _userObject = pUserObject; } void Node::setShaderProgram(GLProgram *pShaderProgram) { CC_SAFE_RETAIN(pShaderProgram); CC_SAFE_RELEASE(_shaderProgram); _shaderProgram = pShaderProgram; } Rect Node::getBoundingBox() const { Rect rect = Rect(0, 0, _contentSize.width, _contentSize.height); return RectApplyAffineTransform(rect, getNodeToParentAffineTransform()); } Node * Node::create(void) { Node * ret = new Node(); if (ret && ret->init()) { ret->autorelease(); } else { CC_SAFE_DELETE(ret); } return ret; } void Node::cleanup() { // actions this->stopAllActions(); this->unscheduleAllSelectors(); if ( _scriptType != kScriptTypeNone) { int action = kNodeOnCleanup; BasicScriptData data(this,(void*)&action); ScriptEvent scriptEvent(kNodeEvent,(void*)&data); ScriptEngineManager::getInstance()->getScriptEngine()->sendEvent(&scriptEvent); } // timers for( const auto &child: _children) child->cleanup(); } std::string Node::getDescription() const { return StringUtils::format("_tag == tag) return child; } return nullptr; } /* "add" logic MUST only be on this method * If a class want's to extend the 'addChild' behavior it only needs * to override this method */ void Node::addChild(Node *child, int zOrder, int tag) { CCASSERT( child != nullptr, "Argument must be non-nil"); CCASSERT( child->_parent == nullptr, "child already added. It can't be added again"); if (_children.empty()) { this->childrenAlloc(); } this->insertChild(child, zOrder); #ifdef CC_USE_PHYSICS for (Node* node = this->getParent(); node != nullptr; node = node->getParent()) { if (dynamic_cast(node) != nullptr) { (dynamic_cast(node))->addChildToPhysicsWorld(child); break; } } #endif child->_tag = tag; child->setParent(this); child->setOrderOfArrival(s_globalOrderOfArrival++); if( _running ) { child->onEnter(); // prevent onEnterTransitionDidFinish to be called twice when a node is added in onEnter if (_isTransitionFinished) { child->onEnterTransitionDidFinish(); } } if (_cascadeColorEnabled) { updateCascadeColor(); } if (_cascadeOpacityEnabled) { updateCascadeOpacity(); } } void Node::addChild(Node *child, int zOrder) { CCASSERT( child != nullptr, "Argument must be non-nil"); this->addChild(child, zOrder, child->_tag); } void Node::addChild(Node *child) { CCASSERT( child != nullptr, "Argument must be non-nil"); this->addChild(child, child->_ZOrder, child->_tag); } void Node::removeFromParent() { this->removeFromParentAndCleanup(true); } void Node::removeFromParentAndCleanup(bool cleanup) { if (_parent != nullptr) { _parent->removeChild(this,cleanup); } } /* "remove" logic MUST only be on this method * If a class want's to extend the 'removeChild' behavior it only needs * to override this method */ void Node::removeChild(Node* child, bool cleanup /* = true */) { // explicit nil handling if (_children.empty()) { return; } ssize_t index = _children.getIndex(child); if( index != CC_INVALID_INDEX ) this->detachChild( child, index, cleanup ); } void Node::removeChildByTag(int tag, bool cleanup/* = true */) { CCASSERT( tag != Node::INVALID_TAG, "Invalid tag"); Node *child = this->getChildByTag(tag); if (child == nullptr) { CCLOG("cocos2d: removeChildByTag(tag = %d): child not found!", tag); } else { this->removeChild(child, cleanup); } } void Node::removeAllChildren() { this->removeAllChildrenWithCleanup(true); } void Node::removeAllChildrenWithCleanup(bool cleanup) { // not using detachChild improves speed here for (auto& child : _children) { // IMPORTANT: // -1st do onExit // -2nd cleanup if(_running) { child->onExitTransitionDidStart(); child->onExit(); } if (cleanup) { child->cleanup(); } // set parent nil at the end child->setParent(nullptr); } _children.clear(); } void Node::detachChild(Node *child, ssize_t childIndex, bool doCleanup) { // IMPORTANT: // -1st do onExit // -2nd cleanup if (_running) { child->onExitTransitionDidStart(); child->onExit(); } #ifdef CC_USE_PHYSICS if (child->_physicsBody != nullptr) { child->_physicsBody->removeFromWorld(); } #endif // If you don't do cleanup, the child's actions will not get removed and the // its scheduledSelectors_ dict will not get released! if (doCleanup) { child->cleanup(); } // set parent nil at the end child->setParent(nullptr); _children.erase(childIndex); } // helper used by reorderChild & add void Node::insertChild(Node* child, int z) { _reorderChildDirty = true; _children.pushBack(child); child->_setZOrder(z); } void Node::reorderChild(Node *child, int zOrder) { CCASSERT( child != nullptr, "Child must be non-nil"); _reorderChildDirty = true; child->setOrderOfArrival(s_globalOrderOfArrival++); child->_setZOrder(zOrder); } void Node::sortAllChildren() { if( _reorderChildDirty ) { std::sort( std::begin(_children), std::end(_children), nodeComparisonLess ); _reorderChildDirty = false; } } void Node::draw() { //CCASSERT(0); // override me // Only use- this function to draw your stuff. // DON'T draw your stuff outside this method } void Node::visit() { // quick return if not visible. children won't be drawn. if (!_visible) { return; } kmGLPushMatrix(); this->transform(); int i = 0; if(!_children.empty()) { sortAllChildren(); // draw children zOrder < 0 for( ; i < _children.size(); i++ ) { auto node = _children.at(i); if ( node && node->_ZOrder < 0 ) node->visit(); else break; } // self draw this->draw(); for(auto it=_children.cbegin()+i; it != _children.cend(); ++it) (*it)->visit(); } else { this->draw(); } // reset for next frame _orderOfArrival = 0; kmGLPopMatrix(); } void Node::transformAncestors() { if( _parent != nullptr ) { _parent->transformAncestors(); _parent->transform(); } } void Node::transform() { #ifdef CC_USE_PHYSICS updatePhysicsTransform(); #endif kmMat4 transfrom4x4 = this->getNodeToParentTransform(); // Update Z vertex manually transfrom4x4.mat[14] = _vertexZ; kmGLMultMatrix( &transfrom4x4 ); // saves the MV matrix kmGLGetMatrix(KM_GL_MODELVIEW, &_modelViewTransform); } void Node::onEnter() { _isTransitionFinished = false; for( const auto &child: _children) child->onEnter(); this->resume(); _running = true; if (_scriptType != kScriptTypeNone) { int action = kNodeOnEnter; BasicScriptData data(this,(void*)&action); ScriptEvent scriptEvent(kNodeEvent,(void*)&data); ScriptEngineManager::getInstance()->getScriptEngine()->sendEvent(&scriptEvent); } } void Node::onEnterTransitionDidFinish() { _isTransitionFinished = true; for( const auto &child: _children) child->onEnterTransitionDidFinish(); if (_scriptType != kScriptTypeNone) { int action = kNodeOnEnterTransitionDidFinish; BasicScriptData data(this,(void*)&action); ScriptEvent scriptEvent(kNodeEvent,(void*)&data); ScriptEngineManager::getInstance()->getScriptEngine()->sendEvent(&scriptEvent); } } void Node::onExitTransitionDidStart() { for( const auto &child: _children) child->onExitTransitionDidStart(); if (_scriptType != kScriptTypeNone) { int action = kNodeOnExitTransitionDidStart; BasicScriptData data(this,(void*)&action); ScriptEvent scriptEvent(kNodeEvent,(void*)&data); ScriptEngineManager::getInstance()->getScriptEngine()->sendEvent(&scriptEvent); } } void Node::onExit() { this->pause(); _running = false; if (_scriptType != kScriptTypeNone) { int action = kNodeOnExit; BasicScriptData data(this,(void*)&action); ScriptEvent scriptEvent(kNodeEvent,(void*)&data); ScriptEngineManager::getInstance()->getScriptEngine()->sendEvent(&scriptEvent); } for( const auto &child: _children) child->onExit(); } void Node::setEventDispatcher(EventDispatcher* dispatcher) { if (dispatcher != _eventDispatcher) { _eventDispatcher->cleanTarget(this); CC_SAFE_RETAIN(dispatcher); CC_SAFE_RELEASE(_eventDispatcher); _eventDispatcher = dispatcher; } } void Node::setActionManager(ActionManager* actionManager) { if( actionManager != _actionManager ) { this->stopAllActions(); CC_SAFE_RETAIN(actionManager); CC_SAFE_RELEASE(_actionManager); _actionManager = actionManager; } } Action * Node::runAction(Action* action) { CCASSERT( action != nullptr, "Argument must be non-nil"); _actionManager->addAction(action, this, !_running); return action; } void Node::stopAllActions() { _actionManager->removeAllActionsFromTarget(this); } void Node::stopAction(Action* action) { _actionManager->removeAction(action); } void Node::stopActionByTag(int tag) { CCASSERT( tag != Action::INVALID_TAG, "Invalid tag"); _actionManager->removeActionByTag(tag, this); } Action * Node::getActionByTag(int tag) { CCASSERT( tag != Action::INVALID_TAG, "Invalid tag"); return _actionManager->getActionByTag(tag, this); } ssize_t Node::getNumberOfRunningActions() const { return _actionManager->getNumberOfRunningActionsInTarget(this); } // Node - Callbacks void Node::setScheduler(Scheduler* scheduler) { if( scheduler != _scheduler ) { this->unscheduleAllSelectors(); CC_SAFE_RETAIN(scheduler); CC_SAFE_RELEASE(_scheduler); _scheduler = scheduler; } } bool Node::isScheduled(SEL_SCHEDULE selector) { return _scheduler->isScheduledForTarget(selector, this); } void Node::scheduleUpdate() { scheduleUpdateWithPriority(0); } void Node::scheduleUpdateWithPriority(int priority) { _scheduler->scheduleUpdateForTarget(this, priority, !_running); } void Node::scheduleUpdateWithPriorityLua(int nHandler, int priority) { unscheduleUpdate(); _updateScriptHandler = nHandler; _scheduler->scheduleUpdateForTarget(this, priority, !_running); } void Node::unscheduleUpdate() { _scheduler->unscheduleUpdateForTarget(this); if (_updateScriptHandler) { ScriptEngineManager::getInstance()->getScriptEngine()->removeScriptHandler(_updateScriptHandler); _updateScriptHandler = 0; } } void Node::schedule(SEL_SCHEDULE selector) { this->schedule(selector, 0.0f, kRepeatForever, 0.0f); } void Node::schedule(SEL_SCHEDULE selector, float interval) { this->schedule(selector, interval, kRepeatForever, 0.0f); } void Node::schedule(SEL_SCHEDULE selector, float interval, unsigned int repeat, float delay) { CCASSERT( selector, "Argument must be non-nil"); CCASSERT( interval >=0, "Argument must be positive"); _scheduler->scheduleSelector(selector, this, interval , repeat, delay, !_running); } void Node::scheduleOnce(SEL_SCHEDULE selector, float delay) { this->schedule(selector, 0.0f, 0, delay); } void Node::unschedule(SEL_SCHEDULE selector) { // explicit nil handling if (selector == 0) return; _scheduler->unscheduleSelector(selector, this); } void Node::unscheduleAllSelectors() { _scheduler->unscheduleAllForTarget(this); } void Node::resume() { _scheduler->resumeTarget(this); _actionManager->resumeTarget(this); _eventDispatcher->resumeTarget(this); } void Node::pause() { _scheduler->pauseTarget(this); _actionManager->pauseTarget(this); _eventDispatcher->pauseTarget(this); } void Node::resumeSchedulerAndActions() { resume(); } void Node::pauseSchedulerAndActions() { pause(); } // override me void Node::update(float fDelta) { if (0 != _updateScriptHandler) { //only lua use SchedulerScriptData data(_updateScriptHandler,fDelta); ScriptEvent event(kScheduleEvent,&data); ScriptEngineManager::getInstance()->getScriptEngine()->sendEvent(&event); } if (_componentContainer && !_componentContainer->isEmpty()) { _componentContainer->visit(fDelta); } } AffineTransform Node::getNodeToParentAffineTransform() const { AffineTransform ret; kmMat4 ret4 = getNodeToParentTransform(); GLToCGAffine(ret4.mat, &ret); return ret; } const kmMat4& Node::getNodeToParentTransform() const { if (_transformDirty) { // Translate values float x = _position.x; float y = _position.y; if (_ignoreAnchorPointForPosition) { x += _anchorPointInPoints.x; y += _anchorPointInPoints.y; } // Rotation values // Change rotation code to handle X and Y // If we skew with the exact same value for both x and y then we're simply just rotating float cx = 1, sx = 0, cy = 1, sy = 0; if (_rotationX || _rotationY) { float radiansX = -CC_DEGREES_TO_RADIANS(_rotationX); float radiansY = -CC_DEGREES_TO_RADIANS(_rotationY); cx = cosf(radiansX); sx = sinf(radiansX); cy = cosf(radiansY); sy = sinf(radiansY); } bool needsSkewMatrix = ( _skewX || _skewY ); // optimization: // inline anchor point calculation if skew is not needed // Adjusted transform calculation for rotational skew if (! needsSkewMatrix && !_anchorPointInPoints.equals(Point::ZERO)) { x += cy * -_anchorPointInPoints.x * _scaleX + -sx * -_anchorPointInPoints.y * _scaleY; y += sy * -_anchorPointInPoints.x * _scaleX + cx * -_anchorPointInPoints.y * _scaleY; } // Build Transform Matrix // Adjusted transform calculation for rotational skew kmScalar mat[] = { cy * _scaleX, sy * _scaleX, 0, 0, -sx * _scaleY, cx * _scaleY, 0, 0, 0, 0, 1, 0, x, y, 0, 1 }; kmMat4Fill(&_transform, mat); // XXX: Try to inline skew // If skew is needed, apply skew and then anchor point if (needsSkewMatrix) { kmMat4 skewMatrix = { 1, tanf(CC_DEGREES_TO_RADIANS(_skewY)), 0, 0, tanf(CC_DEGREES_TO_RADIANS(_skewX)), 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}; kmMat4Multiply(&_transform, &_transform, &skewMatrix); // adjust anchor point if (!_anchorPointInPoints.equals(Point::ZERO)) { // XXX: Argh, kmMat needs a "translate" method. // XXX: Although this is faster than multiplying a vec4 * mat4 _transform.mat[12] += _transform.mat[0] * -_anchorPointInPoints.x + _transform.mat[4] * -_anchorPointInPoints.y; _transform.mat[13] += _transform.mat[1] * -_anchorPointInPoints.x + _transform.mat[5] * -_anchorPointInPoints.y; } } if (_additionalTransformDirty) { kmMat4Multiply(&_transform, &_transform, &_additionalTransform); _additionalTransformDirty = false; } _transformDirty = false; } return _transform; } void Node::setAdditionalTransform(const AffineTransform& additionalTransform) { CGAffineToGL(additionalTransform, _additionalTransform.mat); _transformDirty = true; _additionalTransformDirty = true; } void Node::setAdditionalTransform(const kmMat4& additionalTransform) { _additionalTransform = additionalTransform; _transformDirty = true; _additionalTransformDirty = true; } AffineTransform Node::getParentToNodeAffineTransform() const { AffineTransform ret; kmMat4 ret4 = getParentToNodeTransform(); GLToCGAffine(ret4.mat,&ret); return ret; } const kmMat4& Node::getParentToNodeTransform() const { if ( _inverseDirty ) { kmMat4Inverse(&_inverse, &_transform); _inverseDirty = false; } return _inverse; } AffineTransform Node::getNodeToWorldAffineTransform() const { AffineTransform t = this->getNodeToParentAffineTransform(); for (Node *p = _parent; p != nullptr; p = p->getParent()) t = AffineTransformConcat(t, p->getNodeToParentAffineTransform()); return t; } kmMat4 Node::getNodeToWorldTransform() const { kmMat4 t = this->getNodeToParentTransform(); for (Node *p = _parent; p != nullptr; p = p->getParent()) kmMat4Multiply(&t, &t, &p->getNodeToParentTransform()); return t; } AffineTransform Node::getWorldToNodeAffineTransform() const { return AffineTransformInvert(this->getNodeToWorldAffineTransform()); } kmMat4 Node::getWorldToNodeTransform() const { kmMat4 tmp, tmp2; tmp2 = this->getNodeToWorldTransform(); kmMat4Inverse(&tmp, &tmp2); return tmp; } Point Node::convertToNodeSpace(const Point& worldPoint) const { kmMat4 tmp = getWorldToNodeTransform(); kmVec3 vec3 = {worldPoint.x, worldPoint.y, 0}; kmVec3 ret; kmVec3Transform(&ret, &vec3, &tmp); return Point(ret.x, ret.y); } Point Node::convertToWorldSpace(const Point& nodePoint) const { kmMat4 tmp = getNodeToWorldTransform(); kmVec3 vec3 = {nodePoint.x, nodePoint.y, 0}; kmVec3 ret; kmVec3Transform(&ret, &vec3, &tmp); return Point(ret.x, ret.y); } Point Node::convertToNodeSpaceAR(const Point& worldPoint) const { Point nodePoint = convertToNodeSpace(worldPoint); return nodePoint - _anchorPointInPoints; } Point Node::convertToWorldSpaceAR(const Point& nodePoint) const { Point pt = nodePoint + _anchorPointInPoints; return convertToWorldSpace(pt); } Point Node::convertToWindowSpace(const Point& nodePoint) const { Point worldPoint = this->convertToWorldSpace(nodePoint); return Director::getInstance()->convertToUI(worldPoint); } // convenience methods which take a Touch instead of Point Point Node::convertTouchToNodeSpace(Touch *touch) const { Point point = touch->getLocation(); return this->convertToNodeSpace(point); } Point Node::convertTouchToNodeSpaceAR(Touch *touch) const { Point point = touch->getLocation(); return this->convertToNodeSpaceAR(point); } #ifdef CC_USE_PHYSICS bool Node::updatePhysicsTransform() { if (_physicsBody != nullptr && _physicsBody->getWorld() != nullptr && !_physicsBody->isResting()) { _position = _physicsBody->getPosition(); _rotationX = _rotationY = _physicsBody->getRotation(); _transformDirty = _inverseDirty = true; return true; } return false; } #endif void Node::updateTransform() { // Recursively iterate over children for( const auto &child: _children) child->updateTransform(); } Component* Node::getComponent(const char *pName) { if( _componentContainer ) return _componentContainer->get(pName); return nullptr; } bool Node::addComponent(Component *pComponent) { // lazy alloc if( !_componentContainer ) _componentContainer = new ComponentContainer(this); return _componentContainer->add(pComponent); } bool Node::removeComponent(const char *pName) { if( _componentContainer ) return _componentContainer->remove(pName); return false; } void Node::removeAllComponents() { if( _componentContainer ) _componentContainer->removeAll(); } #ifdef CC_USE_PHYSICS void Node::setPhysicsBody(PhysicsBody* body) { if (_physicsBody != nullptr) { _physicsBody->_node = nullptr; _physicsBody->release(); } _physicsBody = body; _physicsBody->_node = this; _physicsBody->retain(); _physicsBody->setPosition(getPosition()); _physicsBody->setRotation(getRotation()); } PhysicsBody* Node::getPhysicsBody() const { return _physicsBody; } #endif //CC_USE_PHYSICS GLubyte Node::getOpacity(void) const { return _realOpacity; } GLubyte Node::getDisplayedOpacity(void) const { return _displayedOpacity; } void Node::setOpacity(GLubyte opacity) { _displayedOpacity = _realOpacity = opacity; updateCascadeOpacity(); } void Node::updateDisplayedOpacity(GLubyte parentOpacity) { _displayedOpacity = _realOpacity * parentOpacity/255.0; updateColor(); if (_cascadeOpacityEnabled) { for(auto child : _children){ child->updateDisplayedOpacity(_displayedOpacity); } } } bool Node::isCascadeOpacityEnabled(void) const { return _cascadeOpacityEnabled; } void Node::setCascadeOpacityEnabled(bool cascadeOpacityEnabled) { if (_cascadeOpacityEnabled == cascadeOpacityEnabled) { return; } _cascadeOpacityEnabled = cascadeOpacityEnabled; if (cascadeOpacityEnabled) { updateCascadeOpacity(); } else { disableCascadeOpacity(); } } void Node::updateCascadeOpacity() { GLubyte parentOpacity = 255; if (_parent != nullptr && _parent->isCascadeOpacityEnabled()) { parentOpacity = _parent->getDisplayedOpacity(); } updateDisplayedOpacity(parentOpacity); } void Node::disableCascadeOpacity() { _displayedOpacity = _realOpacity; for(auto child : _children){ child->updateDisplayedOpacity(255); } } const Color3B& Node::getColor(void) const { return _realColor; } const Color3B& Node::getDisplayedColor() const { return _displayedColor; } void Node::setColor(const Color3B& color) { _displayedColor = _realColor = color; updateCascadeColor(); } void Node::updateDisplayedColor(const Color3B& parentColor) { _displayedColor.r = _realColor.r * parentColor.r/255.0; _displayedColor.g = _realColor.g * parentColor.g/255.0; _displayedColor.b = _realColor.b * parentColor.b/255.0; updateColor(); if (_cascadeColorEnabled) { for(const auto &child : _children){ child->updateDisplayedColor(_displayedColor); } } } bool Node::isCascadeColorEnabled(void) const { return _cascadeColorEnabled; } void Node::setCascadeColorEnabled(bool cascadeColorEnabled) { if (_cascadeColorEnabled == cascadeColorEnabled) { return; } _cascadeColorEnabled = cascadeColorEnabled; if (_cascadeColorEnabled) { updateCascadeColor(); } else { disableCascadeColor(); } } void Node::updateCascadeColor() { Color3B parentColor = Color3B::WHITE; if (_parent && _parent->isCascadeColorEnabled()) { parentColor = _parent->getDisplayedColor(); } updateDisplayedColor(parentColor); } void Node::disableCascadeColor() { for(auto child : _children){ child->updateDisplayedColor(Color3B::WHITE); } } __NodeRGBA::__NodeRGBA() { CCLOG("NodeRGBA deprecated."); } NS_CC_END