/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jsgc_h___ #define jsgc_h___ /* * JS Garbage Collector. */ #include #include "mozilla/Util.h" #include "jsalloc.h" #include "jstypes.h" #include "jsprvtd.h" #include "jspubtd.h" #include "jslock.h" #include "jsutil.h" #include "jsversion.h" #include "ds/BitArray.h" #include "gc/Heap.h" #include "gc/Statistics.h" #include "js/HashTable.h" #include "js/Vector.h" #include "js/TemplateLib.h" struct JSCompartment; #if JS_STACK_GROWTH_DIRECTION > 0 # define JS_CHECK_STACK_SIZE(limit, lval) ((uintptr_t)(lval) < limit) #else # define JS_CHECK_STACK_SIZE(limit, lval) ((uintptr_t)(lval) > limit) #endif namespace js { class GCHelperThread; struct Shape; namespace gc { enum State { NO_INCREMENTAL, MARK_ROOTS, MARK, INVALID }; class ChunkPool { Chunk *emptyChunkListHead; size_t emptyCount; public: ChunkPool() : emptyChunkListHead(NULL), emptyCount(0) { } size_t getEmptyCount() const { return emptyCount; } inline bool wantBackgroundAllocation(JSRuntime *rt) const; /* Must be called with the GC lock taken. */ inline Chunk *get(JSRuntime *rt); /* Must be called either during the GC or with the GC lock taken. */ inline void put(Chunk *chunk); /* * Return the list of chunks that can be released outside the GC lock. * Must be called either during the GC or with the GC lock taken. */ Chunk *expire(JSRuntime *rt, bool releaseAll); /* Must be called with the GC lock taken. */ void expireAndFree(JSRuntime *rt, bool releaseAll); }; static inline JSGCTraceKind MapAllocToTraceKind(AllocKind thingKind) { static const JSGCTraceKind map[FINALIZE_LIMIT] = { JSTRACE_OBJECT, /* FINALIZE_OBJECT0 */ JSTRACE_OBJECT, /* FINALIZE_OBJECT0_BACKGROUND */ JSTRACE_OBJECT, /* FINALIZE_OBJECT2 */ JSTRACE_OBJECT, /* FINALIZE_OBJECT2_BACKGROUND */ JSTRACE_OBJECT, /* FINALIZE_OBJECT4 */ JSTRACE_OBJECT, /* FINALIZE_OBJECT4_BACKGROUND */ JSTRACE_OBJECT, /* FINALIZE_OBJECT8 */ JSTRACE_OBJECT, /* FINALIZE_OBJECT8_BACKGROUND */ JSTRACE_OBJECT, /* FINALIZE_OBJECT12 */ JSTRACE_OBJECT, /* FINALIZE_OBJECT12_BACKGROUND */ JSTRACE_OBJECT, /* FINALIZE_OBJECT16 */ JSTRACE_OBJECT, /* FINALIZE_OBJECT16_BACKGROUND */ JSTRACE_SCRIPT, /* FINALIZE_SCRIPT */ JSTRACE_SHAPE, /* FINALIZE_SHAPE */ JSTRACE_BASE_SHAPE, /* FINALIZE_BASE_SHAPE */ JSTRACE_TYPE_OBJECT,/* FINALIZE_TYPE_OBJECT */ #if JS_HAS_XML_SUPPORT /* FINALIZE_XML */ JSTRACE_XML, #endif JSTRACE_STRING, /* FINALIZE_SHORT_STRING */ JSTRACE_STRING, /* FINALIZE_STRING */ JSTRACE_STRING, /* FINALIZE_EXTERNAL_STRING */ }; return map[thingKind]; } inline JSGCTraceKind GetGCThingTraceKind(const void *thing); struct ArenaLists { /* * ArenaList::head points to the start of the list. Normally cursor points * to the first arena in the list with some free things and all arenas * before cursor are fully allocated. However, as the arena currently being * allocated from is considered full while its list of free spans is moved * into the freeList, during the GC or cell enumeration, when an * unallocated freeList is moved back to the arena, we can see an arena * with some free cells before the cursor. The cursor is an indirect * pointer to allow for efficient list insertion at the cursor point and * other list manipulations. */ struct ArenaList { ArenaHeader *head; ArenaHeader **cursor; ArenaList() { clear(); } void clear() { head = NULL; cursor = &head; } }; private: /* * For each arena kind its free list is represented as the first span with * free things. Initially all the spans are initialized as empty. After we * find a new arena with available things we move its first free span into * the list and set the arena as fully allocated. way we do not need to * update the arena header after the initial allocation. When starting the * GC we only move the head of the of the list of spans back to the arena * only for the arena that was not fully allocated. */ FreeSpan freeLists[FINALIZE_LIMIT]; ArenaList arenaLists[FINALIZE_LIMIT]; /* * The background finalization adds the finalized arenas to the list at * the *cursor position. backgroundFinalizeState controls the interaction * between the GC lock and the access to the list from the allocation * thread. * * BFS_DONE indicates that the finalizations is not running or cannot * affect this arena list. The allocation thread can access the list * outside the GC lock. * * In BFS_RUN and BFS_JUST_FINISHED the allocation thread must take the * lock. The former indicates that the finalization still runs. The latter * signals that finalization just added to the list finalized arenas. In * that case the lock effectively serves as a read barrier to ensure that * the allocation thread see all the writes done during finalization. */ enum BackgroundFinalizeState { BFS_DONE, BFS_RUN, BFS_JUST_FINISHED }; volatile uintptr_t backgroundFinalizeState[FINALIZE_LIMIT]; public: ArenaLists() { for (size_t i = 0; i != FINALIZE_LIMIT; ++i) freeLists[i].initAsEmpty(); for (size_t i = 0; i != FINALIZE_LIMIT; ++i) backgroundFinalizeState[i] = BFS_DONE; } ~ArenaLists() { for (size_t i = 0; i != FINALIZE_LIMIT; ++i) { /* * We can only call this during the shutdown after the last GC when * the background finalization is disabled. */ JS_ASSERT(backgroundFinalizeState[i] == BFS_DONE); ArenaHeader **headp = &arenaLists[i].head; while (ArenaHeader *aheader = *headp) { *headp = aheader->next; aheader->chunk()->releaseArena(aheader); } } } const FreeSpan *getFreeList(AllocKind thingKind) const { return &freeLists[thingKind]; } ArenaHeader *getFirstArena(AllocKind thingKind) const { return arenaLists[thingKind].head; } bool arenaListsAreEmpty() const { for (size_t i = 0; i != FINALIZE_LIMIT; ++i) { /* * The arena cannot be empty if the background finalization is not yet * done. */ if (backgroundFinalizeState[i] != BFS_DONE) return false; if (arenaLists[i].head) return false; } return true; } void unmarkAll() { for (size_t i = 0; i != FINALIZE_LIMIT; ++i) { /* The background finalization must have stopped at this point. */ JS_ASSERT(backgroundFinalizeState[i] == BFS_DONE || backgroundFinalizeState[i] == BFS_JUST_FINISHED); for (ArenaHeader *aheader = arenaLists[i].head; aheader; aheader = aheader->next) { uintptr_t *word = aheader->chunk()->bitmap.arenaBits(aheader); memset(word, 0, ArenaBitmapWords * sizeof(uintptr_t)); } } } bool doneBackgroundFinalize(AllocKind kind) const { return backgroundFinalizeState[kind] == BFS_DONE; } /* * Return the free list back to the arena so the GC finalization will not * run the finalizers over unitialized bytes from free things. */ void purge() { for (size_t i = 0; i != FINALIZE_LIMIT; ++i) { FreeSpan *headSpan = &freeLists[i]; if (!headSpan->isEmpty()) { ArenaHeader *aheader = headSpan->arenaHeader(); aheader->setFirstFreeSpan(headSpan); headSpan->initAsEmpty(); } } } inline void prepareForIncrementalGC(JSRuntime *rt); /* * Temporarily copy the free list heads to the arenas so the code can see * the proper value in ArenaHeader::freeList when accessing the latter * outside the GC. */ void copyFreeListsToArenas() { for (size_t i = 0; i != FINALIZE_LIMIT; ++i) copyFreeListToArena(AllocKind(i)); } void copyFreeListToArena(AllocKind thingKind) { FreeSpan *headSpan = &freeLists[thingKind]; if (!headSpan->isEmpty()) { ArenaHeader *aheader = headSpan->arenaHeader(); JS_ASSERT(!aheader->hasFreeThings()); aheader->setFirstFreeSpan(headSpan); } } /* * Clear the free lists in arenas that were temporarily set there using * copyToArenas. */ void clearFreeListsInArenas() { for (size_t i = 0; i != FINALIZE_LIMIT; ++i) clearFreeListInArena(AllocKind(i)); } void clearFreeListInArena(AllocKind kind) { FreeSpan *headSpan = &freeLists[kind]; if (!headSpan->isEmpty()) { ArenaHeader *aheader = headSpan->arenaHeader(); JS_ASSERT(aheader->getFirstFreeSpan().isSameNonEmptySpan(headSpan)); aheader->setAsFullyUsed(); } } /* * Check that the free list is either empty or were synchronized with the * arena using copyToArena(). */ bool isSynchronizedFreeList(AllocKind kind) { FreeSpan *headSpan = &freeLists[kind]; if (headSpan->isEmpty()) return true; ArenaHeader *aheader = headSpan->arenaHeader(); if (aheader->hasFreeThings()) { /* * If the arena has a free list, it must be the same as one in * lists. */ JS_ASSERT(aheader->getFirstFreeSpan().isSameNonEmptySpan(headSpan)); return true; } return false; } JS_ALWAYS_INLINE void *allocateFromFreeList(AllocKind thingKind, size_t thingSize) { return freeLists[thingKind].allocate(thingSize); } static void *refillFreeList(JSContext *cx, AllocKind thingKind); void checkEmptyFreeLists() { #ifdef DEBUG for (size_t i = 0; i < mozilla::ArrayLength(freeLists); ++i) JS_ASSERT(freeLists[i].isEmpty()); #endif } void checkEmptyFreeList(AllocKind kind) { JS_ASSERT(freeLists[kind].isEmpty()); } void finalizeObjects(FreeOp *fop); void finalizeStrings(FreeOp *fop); void finalizeShapes(FreeOp *fop); void finalizeScripts(FreeOp *fop); static void backgroundFinalize(FreeOp *fop, ArenaHeader *listHead); private: inline void finalizeNow(FreeOp *fop, AllocKind thingKind); inline void finalizeLater(FreeOp *fop, AllocKind thingKind); inline void *allocateFromArena(JSCompartment *comp, AllocKind thingKind); }; /* * Initial allocation size for data structures holding chunks is set to hold * chunks with total capacity of 16MB to avoid buffer resizes during browser * startup. */ const size_t INITIAL_CHUNK_CAPACITY = 16 * 1024 * 1024 / ChunkSize; /* The number of GC cycles an empty chunk can survive before been released. */ const size_t MAX_EMPTY_CHUNK_AGE = 4; inline Cell * AsCell(JSObject *obj) { return reinterpret_cast(obj); } } /* namespace gc */ struct GCPtrHasher { typedef void *Lookup; static HashNumber hash(void *key) { return HashNumber(uintptr_t(key) >> JS_GCTHING_ZEROBITS); } static bool match(void *l, void *k) { return l == k; } }; typedef HashMap GCLocks; struct RootInfo { RootInfo() {} RootInfo(const char *name, JSGCRootType type) : name(name), type(type) {} const char *name; JSGCRootType type; }; typedef js::HashMap, js::SystemAllocPolicy> RootedValueMap; } /* namespace js */ extern JS_FRIEND_API(JSGCTraceKind) js_GetGCThingTraceKind(void *thing); extern JSBool js_InitGC(JSRuntime *rt, uint32_t maxbytes); extern void js_FinishGC(JSRuntime *rt); extern JSBool js_AddRoot(JSContext *cx, js::Value *vp, const char *name); extern JSBool js_AddGCThingRoot(JSContext *cx, void **rp, const char *name); #ifdef DEBUG extern void js_DumpNamedRoots(JSRuntime *rt, void (*dump)(const char *name, void *rp, JSGCRootType type, void *data), void *data); #endif extern uint32_t js_MapGCRoots(JSRuntime *rt, JSGCRootMapFun map, void *data); /* Table of pointers with count valid members. */ typedef struct JSPtrTable { size_t count; void **array; } JSPtrTable; extern JSBool js_LockGCThingRT(JSRuntime *rt, void *thing); extern void js_UnlockGCThingRT(JSRuntime *rt, void *thing); extern bool js_IsAddressableGCThing(JSRuntime *rt, uintptr_t w, js::gc::AllocKind *thingKind, void **thing); namespace js { extern void MarkCompartmentActive(js::StackFrame *fp); extern void TraceRuntime(JSTracer *trc); extern JS_FRIEND_API(void) MarkContext(JSTracer *trc, JSContext *acx); /* Must be called with GC lock taken. */ extern void TriggerGC(JSRuntime *rt, js::gcreason::Reason reason); /* Must be called with GC lock taken. */ extern void TriggerCompartmentGC(JSCompartment *comp, js::gcreason::Reason reason); extern void MaybeGC(JSContext *cx); extern void ShrinkGCBuffers(JSRuntime *rt); extern void ReleaseAllJITCode(FreeOp *op); extern JS_FRIEND_API(void) PrepareForFullGC(JSRuntime *rt); /* * Kinds of js_GC invocation. */ typedef enum JSGCInvocationKind { /* Normal invocation. */ GC_NORMAL = 0, /* Minimize GC triggers and release empty GC chunks right away. */ GC_SHRINK = 1 } JSGCInvocationKind; extern void GC(JSRuntime *rt, JSGCInvocationKind gckind, js::gcreason::Reason reason); extern void GCSlice(JSRuntime *rt, JSGCInvocationKind gckind, js::gcreason::Reason reason); extern void GCFinalSlice(JSRuntime *rt, JSGCInvocationKind gckind, js::gcreason::Reason reason); extern void GCDebugSlice(JSRuntime *rt, bool limit, int64_t objCount); extern void PrepareForDebugGC(JSRuntime *rt); } /* namespace js */ namespace js { void InitTracer(JSTracer *trc, JSRuntime *rt, JSTraceCallback callback); /* * Helper that implements sweeping and allocation for kinds that can be swept * and allocated off the main thread. * * In non-threadsafe builds, all actual sweeping and allocation is performed * on the main thread, but GCHelperThread encapsulates this from clients as * much as possible. */ class GCHelperThread { enum State { IDLE, SWEEPING, ALLOCATING, CANCEL_ALLOCATION, SHUTDOWN }; /* * During the finalization we do not free immediately. Rather we add the * corresponding pointers to a buffer which we later release on a * separated thread. * * The buffer is implemented as a vector of 64K arrays of pointers, not as * a simple vector, to avoid realloc calls during the vector growth and to * not bloat the binary size of the inlined freeLater method. Any OOM * during buffer growth results in the pointer being freed immediately. */ static const size_t FREE_ARRAY_SIZE = size_t(1) << 16; static const size_t FREE_ARRAY_LENGTH = FREE_ARRAY_SIZE / sizeof(void *); JSRuntime *const rt; PRThread *thread; PRCondVar *wakeup; PRCondVar *done; volatile State state; bool sweepFlag; bool shrinkFlag; Vector freeVector; void **freeCursor; void **freeCursorEnd; Vector finalizeVector; bool backgroundAllocation; friend struct js::gc::ArenaLists; JS_FRIEND_API(void) replenishAndFreeLater(void *ptr); static void freeElementsAndArray(void **array, void **end) { JS_ASSERT(array <= end); for (void **p = array; p != end; ++p) js::Foreground::free_(*p); js::Foreground::free_(array); } static void threadMain(void* arg); void threadLoop(); /* Must be called with the GC lock taken. */ void doSweep(); public: GCHelperThread(JSRuntime *rt) : rt(rt), thread(NULL), wakeup(NULL), done(NULL), state(IDLE), sweepFlag(false), shrinkFlag(false), freeCursor(NULL), freeCursorEnd(NULL), backgroundAllocation(true) { } bool init(); void finish(); /* Must be called with the GC lock taken. */ void startBackgroundSweep(bool shouldShrink); /* Must be called with the GC lock taken. */ void startBackgroundShrink(); /* Must be called with the GC lock taken. */ void waitBackgroundSweepEnd(); /* Must be called with the GC lock taken. */ void waitBackgroundSweepOrAllocEnd(); /* Must be called with the GC lock taken. */ inline void startBackgroundAllocationIfIdle(); bool canBackgroundAllocate() const { return backgroundAllocation; } void disableBackgroundAllocation() { backgroundAllocation = false; } PRThread *getThread() const { return thread; } /* * Outside the GC lock may give true answer when in fact the sweeping has * been done. */ bool sweeping() const { return state == SWEEPING; } bool shouldShrink() const { JS_ASSERT(sweeping()); return shrinkFlag; } void freeLater(void *ptr) { JS_ASSERT(!sweeping()); if (freeCursor != freeCursorEnd) *freeCursor++ = ptr; else replenishAndFreeLater(ptr); } /* Must be called with the GC lock taken. */ bool prepareForBackgroundSweep(); }; struct GCChunkHasher { typedef gc::Chunk *Lookup; /* * Strip zeros for better distribution after multiplying by the golden * ratio. */ static HashNumber hash(gc::Chunk *chunk) { JS_ASSERT(!(uintptr_t(chunk) & gc::ChunkMask)); return HashNumber(uintptr_t(chunk) >> gc::ChunkShift); } static bool match(gc::Chunk *k, gc::Chunk *l) { JS_ASSERT(!(uintptr_t(k) & gc::ChunkMask)); JS_ASSERT(!(uintptr_t(l) & gc::ChunkMask)); return k == l; } }; typedef HashSet GCChunkSet; template struct MarkStack { T *stack; T *tos; T *limit; T *ballast; T *ballastLimit; size_t sizeLimit; MarkStack(size_t sizeLimit) : stack(NULL), tos(NULL), limit(NULL), ballast(NULL), ballastLimit(NULL), sizeLimit(sizeLimit) { } ~MarkStack() { if (stack != ballast) js_free(stack); js_free(ballast); } bool init(size_t ballastcap) { JS_ASSERT(!stack); if (ballastcap == 0) return true; ballast = (T *)js_malloc(sizeof(T) * ballastcap); if (!ballast) return false; ballastLimit = ballast + ballastcap; initFromBallast(); return true; } void initFromBallast() { stack = ballast; limit = ballastLimit; if (size_t(limit - stack) > sizeLimit) limit = stack + sizeLimit; tos = stack; } void setSizeLimit(size_t size) { JS_ASSERT(isEmpty()); sizeLimit = size; reset(); } bool push(T item) { if (tos == limit) { if (!enlarge()) return false; } JS_ASSERT(tos < limit); *tos++ = item; return true; } bool push(T item1, T item2, T item3) { T *nextTos = tos + 3; if (nextTos > limit) { if (!enlarge()) return false; nextTos = tos + 3; } JS_ASSERT(nextTos <= limit); tos[0] = item1; tos[1] = item2; tos[2] = item3; tos = nextTos; return true; } bool isEmpty() const { return tos == stack; } T pop() { JS_ASSERT(!isEmpty()); return *--tos; } ptrdiff_t position() const { return tos - stack; } void reset() { if (stack != ballast) js_free(stack); initFromBallast(); JS_ASSERT(stack == ballast); } bool enlarge() { size_t tosIndex = tos - stack; size_t cap = limit - stack; if (cap == sizeLimit) return false; size_t newcap = cap * 2; if (newcap == 0) newcap = 32; if (newcap > sizeLimit) newcap = sizeLimit; T *newStack; if (stack == ballast) { newStack = (T *)js_malloc(sizeof(T) * newcap); if (!newStack) return false; for (T *src = stack, *dst = newStack; src < tos; ) *dst++ = *src++; } else { newStack = (T *)js_realloc(stack, sizeof(T) * newcap); if (!newStack) return false; } stack = newStack; tos = stack + tosIndex; limit = newStack + newcap; return true; } size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const { size_t n = 0; if (stack != ballast) n += mallocSizeOf(stack); n += mallocSizeOf(ballast); return n; } }; /* * This class records how much work has been done in a given GC slice, so that * we can return before pausing for too long. Some slices are allowed to run for * unlimited time, and others are bounded. To reduce the number of gettimeofday * calls, we only check the time every 1000 operations. */ struct SliceBudget { int64_t deadline; /* in microseconds */ intptr_t counter; static const intptr_t CounterReset = 1000; static const int64_t Unlimited = 0; static int64_t TimeBudget(int64_t millis); static int64_t WorkBudget(int64_t work); /* Equivalent to SliceBudget(UnlimitedBudget). */ SliceBudget(); /* Instantiate as SliceBudget(Time/WorkBudget(n)). */ SliceBudget(int64_t budget); void reset() { deadline = INT64_MAX; counter = INTPTR_MAX; } void step(intptr_t amt = 1) { counter -= amt; } bool checkOverBudget(); bool isOverBudget() { if (counter >= 0) return false; return checkOverBudget(); } }; static const size_t MARK_STACK_LENGTH = 32768; struct GCMarker : public JSTracer { private: /* * We use a common mark stack to mark GC things of different types and use * the explicit tags to distinguish them when it cannot be deduced from * the context of push or pop operation. */ enum StackTag { ValueArrayTag, ObjectTag, TypeTag, XmlTag, ArenaTag, SavedValueArrayTag, LastTag = SavedValueArrayTag }; static const uintptr_t StackTagMask = 7; static void staticAsserts() { JS_STATIC_ASSERT(StackTagMask >= uintptr_t(LastTag)); JS_STATIC_ASSERT(StackTagMask <= gc::Cell::CellMask); } public: explicit GCMarker(); bool init(); void setSizeLimit(size_t size) { stack.setSizeLimit(size); } size_t sizeLimit() const { return stack.sizeLimit; } void start(JSRuntime *rt); void stop(); void reset(); void pushObject(JSObject *obj) { pushTaggedPtr(ObjectTag, obj); } void pushArenaList(gc::ArenaHeader *firstArena) { pushTaggedPtr(ArenaTag, firstArena); } void pushType(types::TypeObject *type) { pushTaggedPtr(TypeTag, type); } #if JS_HAS_XML_SUPPORT void pushXML(JSXML *xml) { pushTaggedPtr(XmlTag, xml); } #endif uint32_t getMarkColor() const { return color; } /* * The only valid color transition during a GC is from black to gray. It is * wrong to switch the mark color from gray to black. The reason is that the * cycle collector depends on the invariant that there are no black to gray * edges in the GC heap. This invariant lets the CC not trace through black * objects. If this invariant is violated, the cycle collector may free * objects that are still reachable. */ void setMarkColorGray() { JS_ASSERT(isDrained()); JS_ASSERT(color == gc::BLACK); color = gc::GRAY; } inline void delayMarkingArena(gc::ArenaHeader *aheader); void delayMarkingChildren(const void *thing); void markDelayedChildren(gc::ArenaHeader *aheader); bool markDelayedChildren(SliceBudget &budget); bool hasDelayedChildren() const { return !!unmarkedArenaStackTop; } bool isDrained() { return isMarkStackEmpty() && !unmarkedArenaStackTop; } bool drainMarkStack(SliceBudget &budget); /* * Gray marking must be done after all black marking is complete. However, * we do not have write barriers on XPConnect roots. Therefore, XPConnect * roots must be accumulated in the first slice of incremental GC. We * accumulate these roots in the GrayRootMarker and then mark them later, * after black marking is complete. This accumulation can fail, but in that * case we switch to non-incremental GC. */ bool hasBufferedGrayRoots() const; void startBufferingGrayRoots(); void endBufferingGrayRoots(); void markBufferedGrayRoots(); static void GrayCallback(JSTracer *trc, void **thing, JSGCTraceKind kind); size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const; MarkStack stack; private: #ifdef DEBUG void checkCompartment(void *p); #else void checkCompartment(void *p) {} #endif void pushTaggedPtr(StackTag tag, void *ptr) { checkCompartment(ptr); uintptr_t addr = reinterpret_cast(ptr); JS_ASSERT(!(addr & StackTagMask)); if (!stack.push(addr | uintptr_t(tag))) delayMarkingChildren(ptr); } void pushValueArray(JSObject *obj, void *start, void *end) { checkCompartment(obj); JS_ASSERT(start <= end); uintptr_t tagged = reinterpret_cast(obj) | GCMarker::ValueArrayTag; uintptr_t startAddr = reinterpret_cast(start); uintptr_t endAddr = reinterpret_cast(end); /* * Push in the reverse order so obj will be on top. If we cannot push * the array, we trigger delay marking for the whole object. */ if (!stack.push(endAddr, startAddr, tagged)) delayMarkingChildren(obj); } bool isMarkStackEmpty() { return stack.isEmpty(); } bool restoreValueArray(JSObject *obj, void **vpp, void **endp); void saveValueRanges(); inline void processMarkStackTop(SliceBudget &budget); void processMarkStackOther(SliceBudget &budget, uintptr_t tag, uintptr_t addr); void appendGrayRoot(void *thing, JSGCTraceKind kind); /* The color is only applied to objects, functions and xml. */ uint32_t color; DebugOnly started; /* Pointer to the top of the stack of arenas we are delaying marking on. */ js::gc::ArenaHeader *unmarkedArenaStackTop; /* Count of arenas that are currently in the stack. */ DebugOnly markLaterArenas; struct GrayRoot { void *thing; JSGCTraceKind kind; #ifdef DEBUG JSTraceNamePrinter debugPrinter; const void *debugPrintArg; size_t debugPrintIndex; #endif GrayRoot(void *thing, JSGCTraceKind kind) : thing(thing), kind(kind) {} }; bool grayFailed; Vector grayRoots; }; void SetMarkStackLimit(JSRuntime *rt, size_t limit); void MarkStackRangeConservatively(JSTracer *trc, Value *begin, Value *end); typedef void (*IterateChunkCallback)(JSRuntime *rt, void *data, gc::Chunk *chunk); typedef void (*IterateArenaCallback)(JSRuntime *rt, void *data, gc::Arena *arena, JSGCTraceKind traceKind, size_t thingSize); typedef void (*IterateCellCallback)(JSRuntime *rt, void *data, void *thing, JSGCTraceKind traceKind, size_t thingSize); /* * This function calls |compartmentCallback| on every compartment, * |arenaCallback| on every in-use arena, and |cellCallback| on every in-use * cell in the GC heap. */ extern JS_FRIEND_API(void) IterateCompartmentsArenasCells(JSRuntime *rt, void *data, JSIterateCompartmentCallback compartmentCallback, IterateArenaCallback arenaCallback, IterateCellCallback cellCallback); /* * Invoke chunkCallback on every in-use chunk. */ extern JS_FRIEND_API(void) IterateChunks(JSRuntime *rt, void *data, IterateChunkCallback chunkCallback); /* * Invoke cellCallback on every in-use object of the specified thing kind for * the given compartment or for all compartments if it is null. */ extern JS_FRIEND_API(void) IterateCells(JSRuntime *rt, JSCompartment *compartment, gc::AllocKind thingKind, void *data, IterateCellCallback cellCallback); /* * Invoke cellCallback on every gray JS_OBJECT in the given compartment. */ extern JS_FRIEND_API(void) IterateGrayObjects(JSCompartment *compartment, GCThingCallback *cellCallback, void *data); } /* namespace js */ extern void js_FinalizeStringRT(JSRuntime *rt, JSString *str); /* * Macro to test if a traversal is the marking phase of the GC. */ #define IS_GC_MARKING_TRACER(trc) \ ((trc)->callback == NULL || (trc)->callback == GCMarker::GrayCallback) namespace js { namespace gc { JSCompartment * NewCompartment(JSContext *cx, JSPrincipals *principals); /* Tries to run a GC no matter what (used for GC zeal). */ void RunDebugGC(JSContext *cx); void SetDeterministicGC(JSContext *cx, bool enabled); const int ZealPokeValue = 1; const int ZealAllocValue = 2; const int ZealFrameGCValue = 3; const int ZealVerifierValue = 4; const int ZealFrameVerifierValue = 5; const int ZealStackRootingSafeValue = 6; const int ZealStackRootingValue = 7; const int ZealIncrementalRootsThenFinish = 8; const int ZealIncrementalMarkAllThenFinish = 9; const int ZealIncrementalMultipleSlices = 10; #ifdef JS_GC_ZEAL /* Check that write barriers have been used correctly. See jsgc.cpp. */ void VerifyBarriers(JSRuntime *rt); void MaybeVerifyBarriers(JSContext *cx, bool always = false); #else static inline void VerifyBarriers(JSRuntime *rt) { } static inline void MaybeVerifyBarriers(JSContext *cx, bool always = false) { } #endif } /* namespace gc */ static inline JSCompartment * GetObjectCompartment(JSObject *obj) { return reinterpret_cast(obj)->compartment(); } } /* namespace js */ #endif /* jsgc_h___ */