/* * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #ifndef RAY_CAST_H #define RAY_CAST_H // This test demonstrates how to use the world ray-cast feature. // NOTE: we are intentionally filtering one of the polygons, therefore // the ray will always miss one type of polygon. // This callback finds the closest hit. Polygon 0 is filtered. class RayCastClosestCallback : public b2RayCastCallback { public: RayCastClosestCallback() { m_hit = false; } float32 ReportFixture(b2Fixture* fixture, const b2Vec2& point, const b2Vec2& normal, float32 fraction) { b2Body* body = fixture->GetBody(); void* userData = body->GetUserData(); if (userData) { int32 index = *(int32*)userData; if (index == 0) { // By returning -1, we instruct the calling code to ignore this fixture and // continue the ray-cast to the next fixture. return -1.0f; } } m_hit = true; m_point = point; m_normal = normal; // By returning the current fraction, we instruct the calling code to clip the ray and // continue the ray-cast to the next fixture. WARNING: do not assume that fixtures // are reported in order. However, by clipping, we can always get the closest fixture. return fraction; } bool m_hit; b2Vec2 m_point; b2Vec2 m_normal; }; // This callback finds any hit. Polygon 0 is filtered. For this type of query we are usually // just checking for obstruction, so the actual fixture and hit point are irrelevant. class RayCastAnyCallback : public b2RayCastCallback { public: RayCastAnyCallback() { m_hit = false; } float32 ReportFixture(b2Fixture* fixture, const b2Vec2& point, const b2Vec2& normal, float32 fraction) { b2Body* body = fixture->GetBody(); void* userData = body->GetUserData(); if (userData) { int32 index = *(int32*)userData; if (index == 0) { // By returning -1, we instruct the calling code to ignore this fixture // and continue the ray-cast to the next fixture. return -1.0f; } } m_hit = true; m_point = point; m_normal = normal; // At this point we have a hit, so we know the ray is obstructed. // By returning 0, we instruct the calling code to terminate the ray-cast. return 0.0f; } bool m_hit; b2Vec2 m_point; b2Vec2 m_normal; }; // This ray cast collects multiple hits along the ray. Polygon 0 is filtered. // The fixtures are not necessary reported in order, so we might not capture // the closest fixture. class RayCastMultipleCallback : public b2RayCastCallback { public: enum { e_maxCount = 3 }; RayCastMultipleCallback() { m_count = 0; } float32 ReportFixture(b2Fixture* fixture, const b2Vec2& point, const b2Vec2& normal, float32 fraction) { b2Body* body = fixture->GetBody(); void* userData = body->GetUserData(); if (userData) { int32 index = *(int32*)userData; if (index == 0) { // By returning -1, we instruct the calling code to ignore this fixture // and continue the ray-cast to the next fixture. return -1.0f; } } b2Assert(m_count < e_maxCount); m_points[m_count] = point; m_normals[m_count] = normal; ++m_count; if (m_count == e_maxCount) { // At this point the buffer is full. // By returning 0, we instruct the calling code to terminate the ray-cast. return 0.0f; } // By returning 1, we instruct the caller to continue without clipping the ray. return 1.0f; } b2Vec2 m_points[e_maxCount]; b2Vec2 m_normals[e_maxCount]; int32 m_count; }; class RayCast : public Test { public: enum { e_maxBodies = 256 }; enum Mode { e_closest, e_any, e_multiple }; RayCast() { // Ground body { b2BodyDef bd; b2Body* ground = m_world->CreateBody(&bd); b2EdgeShape shape; shape.Set(b2Vec2(-40.0f, 0.0f), b2Vec2(40.0f, 0.0f)); ground->CreateFixture(&shape, 0.0f); } { b2Vec2 vertices[3]; vertices[0].Set(-0.5f, 0.0f); vertices[1].Set(0.5f, 0.0f); vertices[2].Set(0.0f, 1.5f); m_polygons[0].Set(vertices, 3); } { b2Vec2 vertices[3]; vertices[0].Set(-0.1f, 0.0f); vertices[1].Set(0.1f, 0.0f); vertices[2].Set(0.0f, 1.5f); m_polygons[1].Set(vertices, 3); } { float32 w = 1.0f; float32 b = w / (2.0f + b2Sqrt(2.0f)); float32 s = b2Sqrt(2.0f) * b; b2Vec2 vertices[8]; vertices[0].Set(0.5f * s, 0.0f); vertices[1].Set(0.5f * w, b); vertices[2].Set(0.5f * w, b + s); vertices[3].Set(0.5f * s, w); vertices[4].Set(-0.5f * s, w); vertices[5].Set(-0.5f * w, b + s); vertices[6].Set(-0.5f * w, b); vertices[7].Set(-0.5f * s, 0.0f); m_polygons[2].Set(vertices, 8); } { m_polygons[3].SetAsBox(0.5f, 0.5f); } { m_circle.m_radius = 0.5f; } { m_edge.Set(b2Vec2(-1.0f, 0.0f), b2Vec2(1.0f, 0.0f)); } m_bodyIndex = 0; memset(m_bodies, 0, sizeof(m_bodies)); m_angle = 0.0f; m_mode = e_closest; } void Create(int32 index) { if (m_bodies[m_bodyIndex] != NULL) { m_world->DestroyBody(m_bodies[m_bodyIndex]); m_bodies[m_bodyIndex] = NULL; } b2BodyDef bd; float32 x = RandomFloat(-10.0f, 10.0f); float32 y = RandomFloat(0.0f, 20.0f); bd.position.Set(x, y); bd.angle = RandomFloat(-b2_pi, b2_pi); m_userData[m_bodyIndex] = index; bd.userData = m_userData + m_bodyIndex; if (index == 4) { bd.angularDamping = 0.02f; } m_bodies[m_bodyIndex] = m_world->CreateBody(&bd); if (index < 4) { b2FixtureDef fd; fd.shape = m_polygons + index; fd.friction = 0.3f; m_bodies[m_bodyIndex]->CreateFixture(&fd); } else if (index < 5) { b2FixtureDef fd; fd.shape = &m_circle; fd.friction = 0.3f; m_bodies[m_bodyIndex]->CreateFixture(&fd); } else { b2FixtureDef fd; fd.shape = &m_edge; fd.friction = 0.3f; m_bodies[m_bodyIndex]->CreateFixture(&fd); } m_bodyIndex = (m_bodyIndex + 1) % e_maxBodies; } void DestroyBody() { for (int32 i = 0; i < e_maxBodies; ++i) { if (m_bodies[i] != NULL) { m_world->DestroyBody(m_bodies[i]); m_bodies[i] = NULL; return; } } } void Keyboard(unsigned char key) { switch (key) { case '1': case '2': case '3': case '4': case '5': case '6': Create(key - '1'); break; case 'd': DestroyBody(); break; case 'm': if (m_mode == e_closest) { m_mode = e_any; } else if (m_mode == e_any) { m_mode = e_multiple; } else if (m_mode == e_multiple) { m_mode = e_closest; } } } void Step(Settings* settings) { bool advanceRay = settings->pause == 0 || settings->singleStep; Test::Step(settings); m_debugDraw.DrawString(5, m_textLine, "Press 1-6 to drop stuff, m to change the mode"); m_textLine += DRAW_STRING_NEW_LINE; switch (m_mode) { case e_closest: m_debugDraw.DrawString(5, m_textLine, "Ray-cast mode: closest - find closest fixture along the ray"); break; case e_any: m_debugDraw.DrawString(5, m_textLine, "Ray-cast mode: any - check for obstruction"); break; case e_multiple: m_debugDraw.DrawString(5, m_textLine, "Ray-cast mode: multiple - gather multiple fixtures"); break; } m_textLine += DRAW_STRING_NEW_LINE; float32 L = 11.0f; b2Vec2 point1(0.0f, 10.0f); b2Vec2 d(L * cosf(m_angle), L * sinf(m_angle)); b2Vec2 point2 = point1 + d; if (m_mode == e_closest) { RayCastClosestCallback callback; m_world->RayCast(&callback, point1, point2); if (callback.m_hit) { m_debugDraw.DrawPoint(callback.m_point, 5.0f, b2Color(0.4f, 0.9f, 0.4f)); m_debugDraw.DrawSegment(point1, callback.m_point, b2Color(0.8f, 0.8f, 0.8f)); b2Vec2 head = callback.m_point + 0.5f * callback.m_normal; m_debugDraw.DrawSegment(callback.m_point, head, b2Color(0.9f, 0.9f, 0.4f)); } else { m_debugDraw.DrawSegment(point1, point2, b2Color(0.8f, 0.8f, 0.8f)); } } else if (m_mode == e_any) { RayCastAnyCallback callback; m_world->RayCast(&callback, point1, point2); if (callback.m_hit) { m_debugDraw.DrawPoint(callback.m_point, 5.0f, b2Color(0.4f, 0.9f, 0.4f)); m_debugDraw.DrawSegment(point1, callback.m_point, b2Color(0.8f, 0.8f, 0.8f)); b2Vec2 head = callback.m_point + 0.5f * callback.m_normal; m_debugDraw.DrawSegment(callback.m_point, head, b2Color(0.9f, 0.9f, 0.4f)); } else { m_debugDraw.DrawSegment(point1, point2, b2Color(0.8f, 0.8f, 0.8f)); } } else if (m_mode == e_multiple) { RayCastMultipleCallback callback; m_world->RayCast(&callback, point1, point2); m_debugDraw.DrawSegment(point1, point2, b2Color(0.8f, 0.8f, 0.8f)); for (int32 i = 0; i < callback.m_count; ++i) { b2Vec2 p = callback.m_points[i]; b2Vec2 n = callback.m_normals[i]; m_debugDraw.DrawPoint(p, 5.0f, b2Color(0.4f, 0.9f, 0.4f)); m_debugDraw.DrawSegment(point1, p, b2Color(0.8f, 0.8f, 0.8f)); b2Vec2 head = p + 0.5f * n; m_debugDraw.DrawSegment(p, head, b2Color(0.9f, 0.9f, 0.4f)); } } if (advanceRay) { m_angle += 0.25f * b2_pi / 180.0f; } #if 0 // This case was failing. { b2Vec2 vertices[4]; //vertices[0].Set(-22.875f, -3.0f); //vertices[1].Set(22.875f, -3.0f); //vertices[2].Set(22.875f, 3.0f); //vertices[3].Set(-22.875f, 3.0f); b2PolygonShape shape; //shape.Set(vertices, 4); shape.SetAsBox(22.875f, 3.0f); b2RayCastInput input; input.p1.Set(10.2725f,1.71372f); input.p2.Set(10.2353f,2.21807f); //input.maxFraction = 0.567623f; input.maxFraction = 0.56762173f; b2Transform xf; xf.SetIdentity(); xf.position.Set(23.0f, 5.0f); b2RayCastOutput output; bool hit; hit = shape.RayCast(&output, input, xf); hit = false; b2Color color(1.0f, 1.0f, 1.0f); b2Vec2 vs[4]; for (int32 i = 0; i < 4; ++i) { vs[i] = b2Mul(xf, shape.m_vertices[i]); } m_debugDraw.DrawPolygon(vs, 4, color); m_debugDraw.DrawSegment(input.p1, input.p2, color); } #endif } static Test* Create() { return new RayCast; } int32 m_bodyIndex; b2Body* m_bodies[e_maxBodies]; int32 m_userData[e_maxBodies]; b2PolygonShape m_polygons[4]; b2CircleShape m_circle; b2EdgeShape m_edge; float32 m_angle; Mode m_mode; }; #endif