/**************************************************************************** Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2011 Zynga Inc. Copyright (c) 2013-2014 Chukong Technologies Inc. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "2d/CCActionInterval.h" #include #include "2d/CCSprite.h" #include "2d/CCNode.h" #include "2d/CCSpriteFrame.h" #include "2d/CCActionInstant.h" #include "base/CCDirector.h" #include "base/CCEventCustom.h" #include "base/CCEventDispatcher.h" #include "platform/CCStdC.h" NS_CC_BEGIN // Extra action for making a Sequence or Spawn when only adding one action to it. class ExtraAction : public FiniteTimeAction { public: static ExtraAction* create(); virtual ExtraAction* clone() const; virtual ExtraAction* reverse(void) const; virtual void update(float time); virtual void step(float dt); }; ExtraAction* ExtraAction::create() { ExtraAction* ret = new (std::nothrow) ExtraAction(); if (ret) { ret->autorelease(); } return ret; } ExtraAction* ExtraAction::clone() const { // no copy constructor auto a = new (std::nothrow) ExtraAction(); a->autorelease(); return a; } ExtraAction* ExtraAction::reverse() const { return ExtraAction::create(); } void ExtraAction::update(float time) { CC_UNUSED_PARAM(time); } void ExtraAction::step(float dt) { CC_UNUSED_PARAM(dt); } // // IntervalAction // bool ActionInterval::initWithDuration(float d) { _duration = d; // prevent division by 0 // This comparison could be in step:, but it might decrease the performance // by 3% in heavy based action games. if (_duration == 0) { _duration = FLT_EPSILON; } _elapsed = 0; _firstTick = true; return true; } bool ActionInterval::isDone() const { return _elapsed >= _duration; } void ActionInterval::step(float dt) { if (_firstTick) { _firstTick = false; _elapsed = 0; } else { _elapsed += dt; } this->update(MAX (0, // needed for rewind. elapsed could be negative MIN(1, _elapsed / MAX(_duration, FLT_EPSILON) // division by 0 ) ) ); } void ActionInterval::setAmplitudeRate(float amp) { CC_UNUSED_PARAM(amp); // Abstract class needs implementation CCASSERT(0, ""); } float ActionInterval::getAmplitudeRate() { // Abstract class needs implementation CCASSERT(0, ""); return 0; } void ActionInterval::startWithTarget(Node *target) { FiniteTimeAction::startWithTarget(target); _elapsed = 0.0f; _firstTick = true; } // // Sequence // Sequence* Sequence::createWithTwoActions(FiniteTimeAction *actionOne, FiniteTimeAction *actionTwo) { Sequence *sequence = new (std::nothrow) Sequence(); sequence->initWithTwoActions(actionOne, actionTwo); sequence->autorelease(); return sequence; } #if (CC_TARGET_PLATFORM == CC_PLATFORM_WP8) || (CC_TARGET_PLATFORM == CC_PLATFORM_WINRT) Sequence* Sequence::variadicCreate(FiniteTimeAction *action1, ...) { va_list params; va_start(params, action1); Sequence *ret = Sequence::createWithVariableList(action1, params); va_end(params); return ret; } #else Sequence* Sequence::create(FiniteTimeAction *action1, ...) { va_list params; va_start(params, action1); Sequence *ret = Sequence::createWithVariableList(action1, params); va_end(params); return ret; } #endif Sequence* Sequence::createWithVariableList(FiniteTimeAction *action1, va_list args) { FiniteTimeAction *now; FiniteTimeAction *prev = action1; bool bOneAction = true; while (action1) { now = va_arg(args, FiniteTimeAction*); if (now) { prev = createWithTwoActions(prev, now); bOneAction = false; } else { // If only one action is added to Sequence, make up a Sequence by adding a simplest finite time action. if (bOneAction) { prev = createWithTwoActions(prev, ExtraAction::create()); } break; } } return ((Sequence*)prev); } Sequence* Sequence::create(const Vector& arrayOfActions) { Sequence* ret = nullptr; do { auto count = arrayOfActions.size(); CC_BREAK_IF(count == 0); auto prev = arrayOfActions.at(0); if (count > 1) { for (int i = 1; i < count; ++i) { prev = createWithTwoActions(prev, arrayOfActions.at(i)); } } else { // If only one action is added to Sequence, make up a Sequence by adding a simplest finite time action. prev = createWithTwoActions(prev, ExtraAction::create()); } ret = static_cast(prev); }while (0); return ret; } bool Sequence::initWithTwoActions(FiniteTimeAction *actionOne, FiniteTimeAction *actionTwo) { CCASSERT(actionOne != nullptr, ""); CCASSERT(actionTwo != nullptr, ""); float d = actionOne->getDuration() + actionTwo->getDuration(); ActionInterval::initWithDuration(d); _actions[0] = actionOne; actionOne->retain(); _actions[1] = actionTwo; actionTwo->retain(); return true; } Sequence* Sequence::clone() const { // no copy constructor auto a = new (std::nothrow) Sequence(); a->initWithTwoActions(_actions[0]->clone(), _actions[1]->clone() ); a->autorelease(); return a; } Sequence::~Sequence(void) { CC_SAFE_RELEASE(_actions[0]); CC_SAFE_RELEASE(_actions[1]); } void Sequence::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); _split = _actions[0]->getDuration() / _duration; _last = -1; } void Sequence::stop(void) { // Issue #1305 if( _last != - 1) { _actions[_last]->stop(); } ActionInterval::stop(); } void Sequence::update(float t) { int found = 0; float new_t = 0.0f; if( t < _split ) { // action[0] found = 0; if( _split != 0 ) new_t = t / _split; else new_t = 1; } else { // action[1] found = 1; if ( _split == 1 ) new_t = 1; else new_t = (t-_split) / (1 - _split ); } if ( found==1 ) { if( _last == -1 ) { // action[0] was skipped, execute it. _actions[0]->startWithTarget(_target); _actions[0]->update(1.0f); _actions[0]->stop(); } else if( _last == 0 ) { // switching to action 1. stop action 0. _actions[0]->update(1.0f); _actions[0]->stop(); } } else if(found==0 && _last==1 ) { // Reverse mode ? // FIXME: Bug. this case doesn't contemplate when _last==-1, found=0 and in "reverse mode" // since it will require a hack to know if an action is on reverse mode or not. // "step" should be overriden, and the "reverseMode" value propagated to inner Sequences. _actions[1]->update(0); _actions[1]->stop(); } // Last action found and it is done. if( found == _last && _actions[found]->isDone() ) { return; } // Last action found and it is done if( found != _last ) { _actions[found]->startWithTarget(_target); } _actions[found]->update(new_t); _last = found; } Sequence* Sequence::reverse() const { return Sequence::createWithTwoActions(_actions[1]->reverse(), _actions[0]->reverse()); } // // Repeat // Repeat* Repeat::create(FiniteTimeAction *action, unsigned int times) { Repeat* repeat = new (std::nothrow) Repeat(); repeat->initWithAction(action, times); repeat->autorelease(); return repeat; } bool Repeat::initWithAction(FiniteTimeAction *action, unsigned int times) { float d = action->getDuration() * times; if (ActionInterval::initWithDuration(d)) { _times = times; _innerAction = action; action->retain(); _actionInstant = dynamic_cast(action) ? true : false; //an instant action needs to be executed one time less in the update method since it uses startWithTarget to execute the action if (_actionInstant) { _times -=1; } _total = 0; return true; } return false; } Repeat* Repeat::clone(void) const { // no copy constructor auto a = new (std::nothrow) Repeat(); a->initWithAction( _innerAction->clone(), _times ); a->autorelease(); return a; } Repeat::~Repeat(void) { CC_SAFE_RELEASE(_innerAction); } void Repeat::startWithTarget(Node *target) { _total = 0; _nextDt = _innerAction->getDuration()/_duration; ActionInterval::startWithTarget(target); _innerAction->startWithTarget(target); } void Repeat::stop(void) { _innerAction->stop(); ActionInterval::stop(); } // issue #80. Instead of hooking step:, hook update: since it can be called by any // container action like Repeat, Sequence, Ease, etc.. void Repeat::update(float dt) { if (dt >= _nextDt) { while (dt > _nextDt && _total < _times) { _innerAction->update(1.0f); _total++; _innerAction->stop(); _innerAction->startWithTarget(_target); _nextDt = _innerAction->getDuration()/_duration * (_total+1); } // fix for issue #1288, incorrect end value of repeat if(dt >= 1.0f && _total < _times) { _total++; } // don't set an instant action back or update it, it has no use because it has no duration if (!_actionInstant) { if (_total == _times) { _innerAction->update(1); _innerAction->stop(); } else { // issue #390 prevent jerk, use right update _innerAction->update(dt - (_nextDt - _innerAction->getDuration()/_duration)); } } } else { _innerAction->update(fmodf(dt * _times,1.0f)); } } bool Repeat::isDone(void) const { return _total == _times; } Repeat* Repeat::reverse() const { return Repeat::create(_innerAction->reverse(), _times); } // // RepeatForever // RepeatForever::~RepeatForever() { CC_SAFE_RELEASE(_innerAction); } RepeatForever *RepeatForever::create(ActionInterval *action) { RepeatForever *ret = new (std::nothrow) RepeatForever(); if (ret && ret->initWithAction(action)) { ret->autorelease(); return ret; } CC_SAFE_DELETE(ret); return nullptr; } bool RepeatForever::initWithAction(ActionInterval *action) { CCASSERT(action != nullptr, ""); action->retain(); _innerAction = action; return true; } RepeatForever *RepeatForever::clone() const { // no copy constructor auto a = new (std::nothrow) RepeatForever(); a->initWithAction(_innerAction->clone()); a->autorelease(); return a; } void RepeatForever::startWithTarget(Node* target) { ActionInterval::startWithTarget(target); _innerAction->startWithTarget(target); } void RepeatForever::step(float dt) { _innerAction->step(dt); if (_innerAction->isDone()) { float diff = _innerAction->getElapsed() - _innerAction->getDuration(); if (diff > _innerAction->getDuration()) diff = fmodf(diff, _innerAction->getDuration()); _innerAction->startWithTarget(_target); // to prevent jerk. issue #390, 1247 _innerAction->step(0.0f); _innerAction->step(diff); } } bool RepeatForever::isDone() const { return false; } RepeatForever *RepeatForever::reverse() const { return RepeatForever::create(_innerAction->reverse()); } // // Spawn // #if (CC_TARGET_PLATFORM == CC_PLATFORM_WP8) || (CC_TARGET_PLATFORM == CC_PLATFORM_WINRT) Spawn* Spawn::variadicCreate(FiniteTimeAction *action1, ...) { va_list params; va_start(params, action1); Spawn *ret = Spawn::createWithVariableList(action1, params); va_end(params); return ret; } #else Spawn* Spawn::create(FiniteTimeAction *action1, ...) { va_list params; va_start(params, action1); Spawn *ret = Spawn::createWithVariableList(action1, params); va_end(params); return ret; } #endif Spawn* Spawn::createWithVariableList(FiniteTimeAction *action1, va_list args) { FiniteTimeAction *now; FiniteTimeAction *prev = action1; bool oneAction = true; while (action1) { now = va_arg(args, FiniteTimeAction*); if (now) { prev = createWithTwoActions(prev, now); oneAction = false; } else { // If only one action is added to Spawn, make up a Spawn by adding a simplest finite time action. if (oneAction) { prev = createWithTwoActions(prev, ExtraAction::create()); } break; } } return ((Spawn*)prev); } Spawn* Spawn::create(const Vector& arrayOfActions) { Spawn* ret = nullptr; do { auto count = arrayOfActions.size(); CC_BREAK_IF(count == 0); auto prev = arrayOfActions.at(0); if (count > 1) { for (int i = 1; i < arrayOfActions.size(); ++i) { prev = createWithTwoActions(prev, arrayOfActions.at(i)); } } else { // If only one action is added to Spawn, make up a Spawn by adding a simplest finite time action. prev = createWithTwoActions(prev, ExtraAction::create()); } ret = static_cast(prev); }while (0); return ret; } Spawn* Spawn::createWithTwoActions(FiniteTimeAction *action1, FiniteTimeAction *action2) { Spawn *spawn = new (std::nothrow) Spawn(); spawn->initWithTwoActions(action1, action2); spawn->autorelease(); return spawn; } bool Spawn::initWithTwoActions(FiniteTimeAction *action1, FiniteTimeAction *action2) { CCASSERT(action1 != nullptr, ""); CCASSERT(action2 != nullptr, ""); bool ret = false; float d1 = action1->getDuration(); float d2 = action2->getDuration(); if (ActionInterval::initWithDuration(MAX(d1, d2))) { _one = action1; _two = action2; if (d1 > d2) { _two = Sequence::createWithTwoActions(action2, DelayTime::create(d1 - d2)); } else if (d1 < d2) { _one = Sequence::createWithTwoActions(action1, DelayTime::create(d2 - d1)); } _one->retain(); _two->retain(); ret = true; } return ret; } Spawn* Spawn::clone(void) const { // no copy constructor auto a = new (std::nothrow) Spawn(); a->initWithTwoActions(_one->clone(), _two->clone()); a->autorelease(); return a; } Spawn::~Spawn(void) { CC_SAFE_RELEASE(_one); CC_SAFE_RELEASE(_two); } void Spawn::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); _one->startWithTarget(target); _two->startWithTarget(target); } void Spawn::stop(void) { _one->stop(); _two->stop(); ActionInterval::stop(); } void Spawn::update(float time) { if (_one) { _one->update(time); } if (_two) { _two->update(time); } } Spawn* Spawn::reverse() const { return Spawn::createWithTwoActions(_one->reverse(), _two->reverse()); } // // RotateTo // RotateTo* RotateTo::create(float duration, float dstAngle) { RotateTo* rotateTo = new (std::nothrow) RotateTo(); rotateTo->initWithDuration(duration, dstAngle, dstAngle); rotateTo->autorelease(); return rotateTo; } RotateTo* RotateTo::create(float duration, float dstAngleX, float dstAngleY) { RotateTo* rotateTo = new (std::nothrow) RotateTo(); rotateTo->initWithDuration(duration, dstAngleX, dstAngleY); rotateTo->autorelease(); return rotateTo; } RotateTo* RotateTo::create(float duration, const Vec3& dstAngle3D) { RotateTo* rotateTo = new (std::nothrow) RotateTo(); rotateTo->initWithDuration(duration, dstAngle3D); rotateTo->autorelease(); return rotateTo; } RotateTo::RotateTo() : _is3D(false) { } bool RotateTo::initWithDuration(float duration, float dstAngleX, float dstAngleY) { if (ActionInterval::initWithDuration(duration)) { _dstAngle.x = dstAngleX; _dstAngle.y = dstAngleY; return true; } return false; } bool RotateTo::initWithDuration(float duration, const Vec3& dstAngle3D) { if (ActionInterval::initWithDuration(duration)) { _dstAngle = dstAngle3D; _is3D = true; return true; } return false; } RotateTo* RotateTo::clone(void) const { // no copy constructor auto a = new (std::nothrow) RotateTo(); if(_is3D) a->initWithDuration(_duration, _dstAngle); else a->initWithDuration(_duration, _dstAngle.x, _dstAngle.y); a->autorelease(); return a; } void RotateTo::calculateAngles(float &startAngle, float &diffAngle, float dstAngle) { if (startAngle > 0) { startAngle = fmodf(startAngle, 360.0f); } else { startAngle = fmodf(startAngle, -360.0f); } diffAngle = dstAngle - startAngle; if (diffAngle > 180) { diffAngle -= 360; } if (diffAngle < -180) { diffAngle += 360; } } void RotateTo::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); if (_is3D) { _startAngle = _target->getRotation3D(); } else { _startAngle.x = _target->getRotationSkewX(); _startAngle.y = _target->getRotationSkewY(); } calculateAngles(_startAngle.x, _diffAngle.x, _dstAngle.x); calculateAngles(_startAngle.y, _diffAngle.y, _dstAngle.y); calculateAngles(_startAngle.z, _diffAngle.z, _dstAngle.z); } void RotateTo::update(float time) { if (_target) { if(_is3D) { _target->setRotation3D(Vec3( _startAngle.x + _diffAngle.x * time, _startAngle.y + _diffAngle.y * time, _startAngle.z + _diffAngle.z * time )); } else { #if CC_USE_PHYSICS if (_startAngle.x == _startAngle.y && _diffAngle.x == _diffAngle.y) { _target->setRotation(_startAngle.x + _diffAngle.x * time); } else { // _startAngle.x != _startAngle.y || _diffAngle.x != _diffAngle.y if (_target->getPhysicsBody() != nullptr) { CCLOG("RotateTo WARNING: PhysicsBody doesn't support skew rotation"); } _target->setRotationSkewX(_startAngle.x + _diffAngle.x * time); _target->setRotationSkewY(_startAngle.y + _diffAngle.y * time); } #else _target->setRotationSkewX(_startAngle.x + _diffAngle.x * time); _target->setRotationSkewY(_startAngle.y + _diffAngle.y * time); #endif // CC_USE_PHYSICS } } } RotateTo *RotateTo::reverse() const { CCASSERT(false, "RotateTo doesn't support the 'reverse' method"); return nullptr; } // // RotateBy // RotateBy* RotateBy::create(float duration, float deltaAngle) { RotateBy *rotateBy = new (std::nothrow) RotateBy(); rotateBy->initWithDuration(duration, deltaAngle); rotateBy->autorelease(); return rotateBy; } RotateBy* RotateBy::create(float duration, float deltaAngleX, float deltaAngleY) { RotateBy *rotateBy = new (std::nothrow) RotateBy(); rotateBy->initWithDuration(duration, deltaAngleX, deltaAngleY); rotateBy->autorelease(); return rotateBy; } RotateBy* RotateBy::create(float duration, const Vec3& deltaAngle3D) { RotateBy *rotateBy = new (std::nothrow) RotateBy(); rotateBy->initWithDuration(duration, deltaAngle3D); rotateBy->autorelease(); return rotateBy; } RotateBy::RotateBy() : _is3D(false) { } bool RotateBy::initWithDuration(float duration, float deltaAngle) { if (ActionInterval::initWithDuration(duration)) { _deltaAngle.x = _deltaAngle.y = deltaAngle; return true; } return false; } bool RotateBy::initWithDuration(float duration, float deltaAngleX, float deltaAngleY) { if (ActionInterval::initWithDuration(duration)) { _deltaAngle.x = deltaAngleX; _deltaAngle.y = deltaAngleY; return true; } return false; } bool RotateBy::initWithDuration(float duration, const Vec3& deltaAngle3D) { if (ActionInterval::initWithDuration(duration)) { _deltaAngle = deltaAngle3D; _is3D = true; return true; } return false; } RotateBy* RotateBy::clone() const { // no copy constructor auto a = new (std::nothrow) RotateBy(); if(_is3D) a->initWithDuration(_duration, _deltaAngle); else a->initWithDuration(_duration, _deltaAngle.x, _deltaAngle.y); a->autorelease(); return a; } void RotateBy::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); if(_is3D) { _startAngle = target->getRotation3D(); } else { _startAngle.x = target->getRotationSkewX(); _startAngle.y = target->getRotationSkewY(); } } void RotateBy::update(float time) { // FIXME: shall I add % 360 if (_target) { if(_is3D) { Vec3 v; v.x = _startAngle.x + _deltaAngle.x * time; v.y = _startAngle.y + _deltaAngle.y * time; v.z = _startAngle.z + _deltaAngle.z * time; _target->setRotation3D(v); } else { #if CC_USE_PHYSICS if (_startAngle.x == _startAngle.y && _deltaAngle.x == _deltaAngle.y) { _target->setRotation(_startAngle.x + _deltaAngle.x * time); } else { // _startAngle.x != _startAngle.y || _deltaAngle.x != _deltaAngle.y if (_target->getPhysicsBody() != nullptr) { CCLOG("RotateBy WARNING: PhysicsBody doesn't support skew rotation"); } _target->setRotationSkewX(_startAngle.x + _deltaAngle.x * time); _target->setRotationSkewY(_startAngle.y + _deltaAngle.y * time); } #else _target->setRotationSkewX(_startAngle.x + _deltaAngle.x * time); _target->setRotationSkewY(_startAngle.y + _deltaAngle.y * time); #endif // CC_USE_PHYSICS } } } RotateBy* RotateBy::reverse() const { if(_is3D) { Vec3 v; v.x = - _deltaAngle.x; v.y = - _deltaAngle.y; v.z = - _deltaAngle.z; return RotateBy::create(_duration, v); } else { return RotateBy::create(_duration, -_deltaAngle.x, -_deltaAngle.y); } } // // MoveBy // MoveBy* MoveBy::create(float duration, const Vec2& deltaPosition) { MoveBy *ret = new (std::nothrow) MoveBy(); ret->initWithDuration(duration, deltaPosition); ret->autorelease(); return ret; } bool MoveBy::initWithDuration(float duration, const Vec2& deltaPosition) { if (ActionInterval::initWithDuration(duration)) { _positionDelta = deltaPosition; return true; } return false; } MoveBy* MoveBy::clone() const { // no copy constructor auto a = new (std::nothrow) MoveBy(); a->initWithDuration(_duration, _positionDelta); a->autorelease(); return a; } void MoveBy::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); _previousPosition = _startPosition = target->getPosition(); } MoveBy* MoveBy::reverse() const { return MoveBy::create(_duration, Vec2( -_positionDelta.x, -_positionDelta.y)); } void MoveBy::update(float t) { if (_target) { #if CC_ENABLE_STACKABLE_ACTIONS Vec2 currentPos = _target->getPosition(); Vec2 diff = currentPos - _previousPosition; _startPosition = _startPosition + diff; Vec2 newPos = _startPosition + (_positionDelta * t); _target->setPosition(newPos); _previousPosition = newPos; #else _target->setPosition(_startPosition + _positionDelta * t); #endif // CC_ENABLE_STACKABLE_ACTIONS } } // // MoveTo // MoveTo* MoveTo::create(float duration, const Vec2& position) { MoveTo *ret = new (std::nothrow) MoveTo(); ret->initWithDuration(duration, position); ret->autorelease(); return ret; } bool MoveTo::initWithDuration(float duration, const Vec2& position) { if (ActionInterval::initWithDuration(duration)) { _endPosition = position; return true; } return false; } MoveTo* MoveTo::clone() const { // no copy constructor auto a = new (std::nothrow) MoveTo(); a->initWithDuration(_duration, _endPosition); a->autorelease(); return a; } void MoveTo::startWithTarget(Node *target) { MoveBy::startWithTarget(target); _positionDelta = _endPosition - target->getPosition(); } // // SkewTo // SkewTo* SkewTo::create(float t, float sx, float sy) { SkewTo *skewTo = new (std::nothrow) SkewTo(); if (skewTo) { if (skewTo->initWithDuration(t, sx, sy)) { skewTo->autorelease(); } else { CC_SAFE_DELETE(skewTo); } } return skewTo; } bool SkewTo::initWithDuration(float t, float sx, float sy) { bool bRet = false; if (ActionInterval::initWithDuration(t)) { _endSkewX = sx; _endSkewY = sy; bRet = true; } return bRet; } SkewTo* SkewTo::clone() const { // no copy constructor auto a = new (std::nothrow) SkewTo(); a->initWithDuration(_duration, _endSkewX, _endSkewY); a->autorelease(); return a; } SkewTo* SkewTo::reverse() const { CCASSERT(false, "reverse() not supported in SkewTo"); return nullptr; } void SkewTo::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); _startSkewX = target->getSkewX(); if (_startSkewX > 0) { _startSkewX = fmodf(_startSkewX, 180.f); } else { _startSkewX = fmodf(_startSkewX, -180.f); } _deltaX = _endSkewX - _startSkewX; if (_deltaX > 180) { _deltaX -= 360; } if (_deltaX < -180) { _deltaX += 360; } _startSkewY = target->getSkewY(); if (_startSkewY > 0) { _startSkewY = fmodf(_startSkewY, 360.f); } else { _startSkewY = fmodf(_startSkewY, -360.f); } _deltaY = _endSkewY - _startSkewY; if (_deltaY > 180) { _deltaY -= 360; } if (_deltaY < -180) { _deltaY += 360; } } void SkewTo::update(float t) { _target->setSkewX(_startSkewX + _deltaX * t); _target->setSkewY(_startSkewY + _deltaY * t); } SkewTo::SkewTo() : _skewX(0.0) , _skewY(0.0) , _startSkewX(0.0) , _startSkewY(0.0) , _endSkewX(0.0) , _endSkewY(0.0) , _deltaX(0.0) , _deltaY(0.0) { } // // SkewBy // SkewBy* SkewBy::create(float t, float sx, float sy) { SkewBy *skewBy = new (std::nothrow) SkewBy(); if (skewBy) { if (skewBy->initWithDuration(t, sx, sy)) { skewBy->autorelease(); } else { CC_SAFE_DELETE(skewBy); } } return skewBy; } SkewBy * SkewBy::clone() const { // no copy constructor auto a = new (std::nothrow) SkewBy(); a->initWithDuration(_duration, _skewX, _skewY); a->autorelease(); return a; } bool SkewBy::initWithDuration(float t, float deltaSkewX, float deltaSkewY) { bool ret = false; if (SkewTo::initWithDuration(t, deltaSkewX, deltaSkewY)) { _skewX = deltaSkewX; _skewY = deltaSkewY; ret = true; } return ret; } void SkewBy::startWithTarget(Node *target) { SkewTo::startWithTarget(target); _deltaX = _skewX; _deltaY = _skewY; _endSkewX = _startSkewX + _deltaX; _endSkewY = _startSkewY + _deltaY; } SkewBy* SkewBy::reverse() const { return SkewBy::create(_duration, -_skewX, -_skewY); } // // JumpBy // JumpBy* JumpBy::create(float duration, const Vec2& position, float height, int jumps) { JumpBy *jumpBy = new (std::nothrow) JumpBy(); jumpBy->initWithDuration(duration, position, height, jumps); jumpBy->autorelease(); return jumpBy; } bool JumpBy::initWithDuration(float duration, const Vec2& position, float height, int jumps) { CCASSERT(jumps>=0, "Number of jumps must be >= 0"); if (ActionInterval::initWithDuration(duration) && jumps>=0) { _delta = position; _height = height; _jumps = jumps; return true; } return false; } JumpBy* JumpBy::clone() const { // no copy constructor auto a = new (std::nothrow) JumpBy(); a->initWithDuration(_duration, _delta, _height, _jumps); a->autorelease(); return a; } void JumpBy::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); _previousPos = _startPosition = target->getPosition(); } void JumpBy::update(float t) { // parabolic jump (since v0.8.2) if (_target) { float frac = fmodf( t * _jumps, 1.0f ); float y = _height * 4 * frac * (1 - frac); y += _delta.y * t; float x = _delta.x * t; #if CC_ENABLE_STACKABLE_ACTIONS Vec2 currentPos = _target->getPosition(); Vec2 diff = currentPos - _previousPos; _startPosition = diff + _startPosition; Vec2 newPos = _startPosition + Vec2(x,y); _target->setPosition(newPos); _previousPos = newPos; #else _target->setPosition(_startPosition + Vec2(x,y)); #endif // !CC_ENABLE_STACKABLE_ACTIONS } } JumpBy* JumpBy::reverse() const { return JumpBy::create(_duration, Vec2(-_delta.x, -_delta.y), _height, _jumps); } // // JumpTo // JumpTo* JumpTo::create(float duration, const Vec2& position, float height, int jumps) { JumpTo *jumpTo = new (std::nothrow) JumpTo(); jumpTo->initWithDuration(duration, position, height, jumps); jumpTo->autorelease(); return jumpTo; } JumpTo* JumpTo::clone() const { // no copy constructor auto a = new (std::nothrow) JumpTo(); a->initWithDuration(_duration, _delta, _height, _jumps); a->autorelease(); return a; } JumpTo* JumpTo::reverse() const { CCASSERT(false, "reverse() not supported in JumpTo"); return nullptr; } void JumpTo::startWithTarget(Node *target) { JumpBy::startWithTarget(target); _delta = Vec2(_delta.x - _startPosition.x, _delta.y - _startPosition.y); } // Bezier cubic formula: // ((1 - t) + t)3 = 1 // Expands to ... // (1 - t)3 + 3t(1-t)2 + 3t2(1 - t) + t3 = 1 static inline float bezierat( float a, float b, float c, float d, float t ) { return (powf(1-t,3) * a + 3*t*(powf(1-t,2))*b + 3*powf(t,2)*(1-t)*c + powf(t,3)*d ); } // // BezierBy // BezierBy* BezierBy::create(float t, const ccBezierConfig& c) { BezierBy *bezierBy = new (std::nothrow) BezierBy(); bezierBy->initWithDuration(t, c); bezierBy->autorelease(); return bezierBy; } bool BezierBy::initWithDuration(float t, const ccBezierConfig& c) { if (ActionInterval::initWithDuration(t)) { _config = c; return true; } return false; } void BezierBy::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); _previousPosition = _startPosition = target->getPosition(); } BezierBy* BezierBy::clone() const { // no copy constructor auto a = new (std::nothrow) BezierBy(); a->initWithDuration(_duration, _config); a->autorelease(); return a; } void BezierBy::update(float time) { if (_target) { float xa = 0; float xb = _config.controlPoint_1.x; float xc = _config.controlPoint_2.x; float xd = _config.endPosition.x; float ya = 0; float yb = _config.controlPoint_1.y; float yc = _config.controlPoint_2.y; float yd = _config.endPosition.y; float x = bezierat(xa, xb, xc, xd, time); float y = bezierat(ya, yb, yc, yd, time); #if CC_ENABLE_STACKABLE_ACTIONS Vec2 currentPos = _target->getPosition(); Vec2 diff = currentPos - _previousPosition; _startPosition = _startPosition + diff; Vec2 newPos = _startPosition + Vec2(x,y); _target->setPosition(newPos); _previousPosition = newPos; #else _target->setPosition( _startPosition + Vec2(x,y)); #endif // !CC_ENABLE_STACKABLE_ACTIONS } } BezierBy* BezierBy::reverse() const { ccBezierConfig r; r.endPosition = -_config.endPosition; r.controlPoint_1 = _config.controlPoint_2 + (-_config.endPosition); r.controlPoint_2 = _config.controlPoint_1 + (-_config.endPosition); BezierBy *action = BezierBy::create(_duration, r); return action; } // // BezierTo // BezierTo* BezierTo::create(float t, const ccBezierConfig& c) { BezierTo *bezierTo = new (std::nothrow) BezierTo(); bezierTo->initWithDuration(t, c); bezierTo->autorelease(); return bezierTo; } bool BezierTo::initWithDuration(float t, const ccBezierConfig &c) { if (ActionInterval::initWithDuration(t)) { _toConfig = c; return true; } return false; } BezierTo* BezierTo::clone() const { // no copy constructor auto a = new (std::nothrow) BezierTo(); a->initWithDuration(_duration, _toConfig); a->autorelease(); return a; } void BezierTo::startWithTarget(Node *target) { BezierBy::startWithTarget(target); _config.controlPoint_1 = _toConfig.controlPoint_1 - _startPosition; _config.controlPoint_2 = _toConfig.controlPoint_2 - _startPosition; _config.endPosition = _toConfig.endPosition - _startPosition; } BezierTo* BezierTo::reverse() const { CCASSERT(false, "CCBezierTo doesn't support the 'reverse' method"); return nullptr; } // // ScaleTo // ScaleTo* ScaleTo::create(float duration, float s) { ScaleTo *scaleTo = new (std::nothrow) ScaleTo(); scaleTo->initWithDuration(duration, s); scaleTo->autorelease(); return scaleTo; } ScaleTo* ScaleTo::create(float duration, float sx, float sy) { ScaleTo *scaleTo = new (std::nothrow) ScaleTo(); scaleTo->initWithDuration(duration, sx, sy); scaleTo->autorelease(); return scaleTo; } ScaleTo* ScaleTo::create(float duration, float sx, float sy, float sz) { ScaleTo *scaleTo = new (std::nothrow) ScaleTo(); scaleTo->initWithDuration(duration, sx, sy, sz); scaleTo->autorelease(); return scaleTo; } bool ScaleTo::initWithDuration(float duration, float s) { if (ActionInterval::initWithDuration(duration)) { _endScaleX = s; _endScaleY = s; _endScaleZ = s; return true; } return false; } bool ScaleTo::initWithDuration(float duration, float sx, float sy) { if (ActionInterval::initWithDuration(duration)) { _endScaleX = sx; _endScaleY = sy; _endScaleZ = 1.f; return true; } return false; } bool ScaleTo::initWithDuration(float duration, float sx, float sy, float sz) { if (ActionInterval::initWithDuration(duration)) { _endScaleX = sx; _endScaleY = sy; _endScaleZ = sz; return true; } return false; } ScaleTo* ScaleTo::clone() const { // no copy constructor auto a = new (std::nothrow) ScaleTo(); a->initWithDuration(_duration, _endScaleX, _endScaleY, _endScaleZ); a->autorelease(); return a; } ScaleTo* ScaleTo::reverse() const { CCASSERT(false, "reverse() not supported in ScaleTo"); return nullptr; } void ScaleTo::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); _startScaleX = target->getScaleX(); _startScaleY = target->getScaleY(); _startScaleZ = target->getScaleZ(); _deltaX = _endScaleX - _startScaleX; _deltaY = _endScaleY - _startScaleY; _deltaZ = _endScaleZ - _startScaleZ; } void ScaleTo::update(float time) { if (_target) { _target->setScaleX(_startScaleX + _deltaX * time); _target->setScaleY(_startScaleY + _deltaY * time); _target->setScaleZ(_startScaleZ + _deltaZ * time); } } // // ScaleBy // ScaleBy* ScaleBy::create(float duration, float s) { ScaleBy *scaleBy = new (std::nothrow) ScaleBy(); scaleBy->initWithDuration(duration, s); scaleBy->autorelease(); return scaleBy; } ScaleBy* ScaleBy::create(float duration, float sx, float sy) { ScaleBy *scaleBy = new (std::nothrow) ScaleBy(); scaleBy->initWithDuration(duration, sx, sy, 1.f); scaleBy->autorelease(); return scaleBy; } ScaleBy* ScaleBy::create(float duration, float sx, float sy, float sz) { ScaleBy *scaleBy = new (std::nothrow) ScaleBy(); scaleBy->initWithDuration(duration, sx, sy, sz); scaleBy->autorelease(); return scaleBy; } ScaleBy* ScaleBy::clone() const { // no copy constructor auto a = new (std::nothrow) ScaleBy(); a->initWithDuration(_duration, _endScaleX, _endScaleY, _endScaleZ); a->autorelease(); return a; } void ScaleBy::startWithTarget(Node *target) { ScaleTo::startWithTarget(target); _deltaX = _startScaleX * _endScaleX - _startScaleX; _deltaY = _startScaleY * _endScaleY - _startScaleY; _deltaZ = _startScaleZ * _endScaleZ - _startScaleZ; } ScaleBy* ScaleBy::reverse() const { return ScaleBy::create(_duration, 1 / _endScaleX, 1 / _endScaleY, 1/ _endScaleZ); } // // Blink // Blink* Blink::create(float duration, int blinks) { Blink *blink = new (std::nothrow) Blink(); blink->initWithDuration(duration, blinks); blink->autorelease(); return blink; } bool Blink::initWithDuration(float duration, int blinks) { CCASSERT(blinks>=0, "blinks should be >= 0"); if (ActionInterval::initWithDuration(duration) && blinks>=0) { _times = blinks; return true; } return false; } void Blink::stop() { _target->setVisible(_originalState); ActionInterval::stop(); } void Blink::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); _originalState = target->isVisible(); } Blink* Blink::clone(void) const { // no copy constructor auto a = new (std::nothrow) Blink(); a->initWithDuration(_duration, _times); a->autorelease(); return a; } void Blink::update(float time) { if (_target && ! isDone()) { float slice = 1.0f / _times; float m = fmodf(time, slice); _target->setVisible(m > slice / 2 ? true : false); } } Blink* Blink::reverse() const { return Blink::create(_duration, _times); } // // FadeIn // FadeIn* FadeIn::create(float d) { FadeIn* action = new (std::nothrow) FadeIn(); action->initWithDuration(d,255.0f); action->autorelease(); return action; } FadeIn* FadeIn::clone() const { // no copy constructor auto a = new (std::nothrow) FadeIn(); a->initWithDuration(_duration,255.0f); a->autorelease(); return a; } void FadeIn::setReverseAction(cocos2d::FadeTo *ac) { _reverseAction = ac; } FadeTo* FadeIn::reverse() const { auto action = FadeOut::create(_duration); action->setReverseAction(const_cast(this)); return action; } void FadeIn::startWithTarget(cocos2d::Node *target) { ActionInterval::startWithTarget(target); if (nullptr != _reverseAction) { this->_toOpacity = this->_reverseAction->_fromOpacity; }else{ _toOpacity = 255.0f; } if (target) { _fromOpacity = target->getOpacity(); } } // // FadeOut // FadeOut* FadeOut::create(float d) { FadeOut* action = new (std::nothrow) FadeOut(); action->initWithDuration(d,0.0f); action->autorelease(); return action; } FadeOut* FadeOut::clone() const { // no copy constructor auto a = new (std::nothrow) FadeOut(); a->initWithDuration(_duration,0.0f); a->autorelease(); return a; } void FadeOut::startWithTarget(cocos2d::Node *target) { ActionInterval::startWithTarget(target); if (nullptr != _reverseAction) { _toOpacity = _reverseAction->_fromOpacity; }else{ _toOpacity = 0.0f; } if (target) { _fromOpacity = target->getOpacity(); } } void FadeOut::setReverseAction(cocos2d::FadeTo *ac) { _reverseAction = ac; } FadeTo* FadeOut::reverse() const { auto action = FadeIn::create(_duration); action->setReverseAction(const_cast(this)); return action; } // // FadeTo // FadeTo* FadeTo::create(float duration, GLubyte opacity) { FadeTo *fadeTo = new (std::nothrow) FadeTo(); fadeTo->initWithDuration(duration, opacity); fadeTo->autorelease(); return fadeTo; } bool FadeTo::initWithDuration(float duration, GLubyte opacity) { if (ActionInterval::initWithDuration(duration)) { _toOpacity = opacity; return true; } return false; } FadeTo* FadeTo::clone() const { // no copy constructor auto a = new (std::nothrow) FadeTo(); a->initWithDuration(_duration, _toOpacity); a->autorelease(); return a; } FadeTo* FadeTo::reverse() const { CCASSERT(false, "reverse() not supported in FadeTo"); return nullptr; } void FadeTo::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); if (target) { _fromOpacity = target->getOpacity(); } /*_fromOpacity = target->getOpacity();*/ } void FadeTo::update(float time) { if (_target) { _target->setOpacity((GLubyte)(_fromOpacity + (_toOpacity - _fromOpacity) * time)); } /*_target->setOpacity((GLubyte)(_fromOpacity + (_toOpacity - _fromOpacity) * time));*/ } // // TintTo // TintTo* TintTo::create(float duration, GLubyte red, GLubyte green, GLubyte blue) { TintTo *tintTo = new (std::nothrow) TintTo(); tintTo->initWithDuration(duration, red, green, blue); tintTo->autorelease(); return tintTo; } bool TintTo::initWithDuration(float duration, GLubyte red, GLubyte green, GLubyte blue) { if (ActionInterval::initWithDuration(duration)) { _to = Color3B(red, green, blue); return true; } return false; } TintTo* TintTo::clone() const { // no copy constructor auto a = new (std::nothrow) TintTo(); a->initWithDuration(_duration, _to.r, _to.g, _to.b); a->autorelease(); return a; } TintTo* TintTo::reverse() const { CCASSERT(false, "reverse() not supported in TintTo"); return nullptr; } void TintTo::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); if (_target) { _from = _target->getColor(); } /*_from = target->getColor();*/ } void TintTo::update(float time) { if (_target) { _target->setColor(Color3B(GLubyte(_from.r + (_to.r - _from.r) * time), (GLubyte)(_from.g + (_to.g - _from.g) * time), (GLubyte)(_from.b + (_to.b - _from.b) * time))); } } // // TintBy // TintBy* TintBy::create(float duration, GLshort deltaRed, GLshort deltaGreen, GLshort deltaBlue) { TintBy *tintBy = new (std::nothrow) TintBy(); tintBy->initWithDuration(duration, deltaRed, deltaGreen, deltaBlue); tintBy->autorelease(); return tintBy; } bool TintBy::initWithDuration(float duration, GLshort deltaRed, GLshort deltaGreen, GLshort deltaBlue) { if (ActionInterval::initWithDuration(duration)) { _deltaR = deltaRed; _deltaG = deltaGreen; _deltaB = deltaBlue; return true; } return false; } TintBy* TintBy::clone() const { // no copy constructor auto a = new (std::nothrow) TintBy(); a->initWithDuration(_duration, (GLubyte)_deltaR, (GLubyte)_deltaG, (GLubyte)_deltaB); a->autorelease(); return a; } void TintBy::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); if (target) { Color3B color = target->getColor(); _fromR = color.r; _fromG = color.g; _fromB = color.b; } } void TintBy::update(float time) { if (_target) { _target->setColor(Color3B((GLubyte)(_fromR + _deltaR * time), (GLubyte)(_fromG + _deltaG * time), (GLubyte)(_fromB + _deltaB * time))); } } TintBy* TintBy::reverse() const { return TintBy::create(_duration, -_deltaR, -_deltaG, -_deltaB); } // // DelayTime // DelayTime* DelayTime::create(float d) { DelayTime* action = new (std::nothrow) DelayTime(); action->initWithDuration(d); action->autorelease(); return action; } DelayTime* DelayTime::clone() const { // no copy constructor auto a = new (std::nothrow) DelayTime(); a->initWithDuration(_duration); a->autorelease(); return a; } void DelayTime::update(float time) { CC_UNUSED_PARAM(time); return; } DelayTime* DelayTime::reverse() const { return DelayTime::create(_duration); } // // ReverseTime // ReverseTime* ReverseTime::create(FiniteTimeAction *action) { // casting to prevent warnings ReverseTime *reverseTime = new (std::nothrow) ReverseTime(); reverseTime->initWithAction( action->clone() ); reverseTime->autorelease(); return reverseTime; } bool ReverseTime::initWithAction(FiniteTimeAction *action) { CCASSERT(action != nullptr, ""); CCASSERT(action != _other, ""); if (ActionInterval::initWithDuration(action->getDuration())) { // Don't leak if action is reused CC_SAFE_RELEASE(_other); _other = action; action->retain(); return true; } return false; } ReverseTime* ReverseTime::clone() const { // no copy constructor auto a = new (std::nothrow) ReverseTime(); a->initWithAction( _other->clone() ); a->autorelease(); return a; } ReverseTime::ReverseTime() : _other(nullptr) { } ReverseTime::~ReverseTime() { CC_SAFE_RELEASE(_other); } void ReverseTime::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); _other->startWithTarget(target); } void ReverseTime::stop(void) { _other->stop(); ActionInterval::stop(); } void ReverseTime::update(float time) { if (_other) { _other->update(1 - time); } } ReverseTime* ReverseTime::reverse() const { // FIXME: This looks like a bug return (ReverseTime*)_other->clone(); } // // Animate // Animate* Animate::create(Animation *animation) { Animate *animate = new (std::nothrow) Animate(); animate->initWithAnimation(animation); animate->autorelease(); return animate; } Animate::Animate() : _splitTimes(new std::vector) , _nextFrame(0) , _origFrame(nullptr) , _executedLoops(0) , _animation(nullptr) , _frameDisplayedEvent(nullptr) { } Animate::~Animate() { CC_SAFE_RELEASE(_animation); CC_SAFE_RELEASE(_origFrame); CC_SAFE_DELETE(_splitTimes); CC_SAFE_RELEASE(_frameDisplayedEvent); } bool Animate::initWithAnimation(Animation* animation) { CCASSERT( animation!=nullptr, "Animate: argument Animation must be non-nullptr"); float singleDuration = animation->getDuration(); if ( ActionInterval::initWithDuration(singleDuration * animation->getLoops() ) ) { _nextFrame = 0; setAnimation(animation); _origFrame = nullptr; _executedLoops = 0; _splitTimes->reserve(animation->getFrames().size()); float accumUnitsOfTime = 0; float newUnitOfTimeValue = singleDuration / animation->getTotalDelayUnits(); auto& frames = animation->getFrames(); for (auto& frame : frames) { float value = (accumUnitsOfTime * newUnitOfTimeValue) / singleDuration; accumUnitsOfTime += frame->getDelayUnits(); _splitTimes->push_back(value); } return true; } return false; } void Animate::setAnimation(cocos2d::Animation *animation) { if (_animation != animation) { CC_SAFE_RETAIN(animation); CC_SAFE_RELEASE(_animation); _animation = animation; } } Animate* Animate::clone() const { // no copy constructor auto a = new (std::nothrow) Animate(); a->initWithAnimation(_animation->clone()); a->autorelease(); return a; } void Animate::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); Sprite *sprite = static_cast(target); CC_SAFE_RELEASE(_origFrame); if (_animation->getRestoreOriginalFrame()) { _origFrame = sprite->getSpriteFrame(); _origFrame->retain(); } _nextFrame = 0; _executedLoops = 0; } void Animate::stop() { if (_animation->getRestoreOriginalFrame() && _target) { static_cast(_target)->setSpriteFrame(_origFrame); } ActionInterval::stop(); } void Animate::update(float t) { // if t==1, ignore. Animation should finish with t==1 if( t < 1.0f ) { t *= _animation->getLoops(); // new loop? If so, reset frame counter unsigned int loopNumber = (unsigned int)t; if( loopNumber > _executedLoops ) { _nextFrame = 0; _executedLoops++; } // new t for animations t = fmodf(t, 1.0f); } auto& frames = _animation->getFrames(); auto numberOfFrames = frames.size(); SpriteFrame *frameToDisplay = nullptr; for( int i=_nextFrame; i < numberOfFrames; i++ ) { float splitTime = _splitTimes->at(i); if( splitTime <= t ) { AnimationFrame* frame = frames.at(i); frameToDisplay = frame->getSpriteFrame(); static_cast(_target)->setSpriteFrame(frameToDisplay); const ValueMap& dict = frame->getUserInfo(); if ( !dict.empty() ) { if (_frameDisplayedEvent == nullptr) _frameDisplayedEvent = new (std::nothrow) EventCustom(AnimationFrameDisplayedNotification); _frameDisplayedEventInfo.target = _target; _frameDisplayedEventInfo.userInfo = &dict; _frameDisplayedEvent->setUserData(&_frameDisplayedEventInfo); Director::getInstance()->getEventDispatcher()->dispatchEvent(_frameDisplayedEvent); } _nextFrame = i+1; } // Issue 1438. Could be more than one frame per tick, due to low frame rate or frame delta < 1/FPS else { break; } } } Animate* Animate::reverse() const { auto oldArray = _animation->getFrames(); Vector newArray(oldArray.size()); if (oldArray.size() > 0) { for (auto iter = oldArray.crbegin(); iter != oldArray.crend(); ++iter) { AnimationFrame* animFrame = *iter; if (!animFrame) { break; } newArray.pushBack(animFrame->clone()); } } Animation *newAnim = Animation::create(newArray, _animation->getDelayPerUnit(), _animation->getLoops()); newAnim->setRestoreOriginalFrame(_animation->getRestoreOriginalFrame()); return Animate::create(newAnim); } // TargetedAction TargetedAction::TargetedAction() : _action(nullptr) , _forcedTarget(nullptr) { } TargetedAction::~TargetedAction() { CC_SAFE_RELEASE(_forcedTarget); CC_SAFE_RELEASE(_action); } TargetedAction* TargetedAction::create(Node* target, FiniteTimeAction* action) { TargetedAction* p = new (std::nothrow) TargetedAction(); p->initWithTarget(target, action); p->autorelease(); return p; } bool TargetedAction::initWithTarget(Node* target, FiniteTimeAction* action) { if(ActionInterval::initWithDuration(action->getDuration())) { CC_SAFE_RETAIN(target); _forcedTarget = target; CC_SAFE_RETAIN(action); _action = action; return true; } return false; } TargetedAction* TargetedAction::clone() const { // no copy constructor auto a = new (std::nothrow) TargetedAction(); // win32 : use the _other's copy object. a->initWithTarget(_forcedTarget, _action->clone()); a->autorelease(); return a; } TargetedAction* TargetedAction::reverse() const { // just reverse the internal action auto a = new (std::nothrow) TargetedAction(); a->initWithTarget(_forcedTarget, _action->reverse()); a->autorelease(); return a; } void TargetedAction::startWithTarget(Node *target) { ActionInterval::startWithTarget(target); _action->startWithTarget(_forcedTarget); } void TargetedAction::stop() { _action->stop(); } void TargetedAction::update(float time) { _action->update(time); } void TargetedAction::setForcedTarget(Node* forcedTarget) { if( _forcedTarget != forcedTarget ) { CC_SAFE_RETAIN(forcedTarget); CC_SAFE_RELEASE(_forcedTarget); _forcedTarget = forcedTarget; } } NS_CC_END