/**************************************************************************** Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2009 Valentin Milea Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2011 Zynga Inc. Copyright (c) 2013-2014 Chukong Technologies Inc. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "2d/CCNode.h" #include #include #include #include "base/CCDirector.h" #include "base/CCScheduler.h" #include "base/CCEventDispatcher.h" #include "2d/CCCamera.h" #include "2d/CCActionManager.h" #include "2d/CCScene.h" #include "2d/CCComponent.h" #include "2d/CCComponentContainer.h" #include "renderer/CCGLProgram.h" #include "renderer/CCGLProgramState.h" #include "renderer/CCMaterial.h" #include "math/TransformUtils.h" #include "deprecated/CCString.h" #if CC_USE_PHYSICS #include "physics/CCPhysicsBody.h" #include "physics/CCPhysicsWorld.h" #endif #if CC_NODE_RENDER_SUBPIXEL #define RENDER_IN_SUBPIXEL #else #define RENDER_IN_SUBPIXEL(__ARGS__) (ceil(__ARGS__)) #endif NS_CC_BEGIN bool nodeComparisonLess(Node* n1, Node* n2) { return( n1->getLocalZOrder() < n2->getLocalZOrder() || ( n1->getLocalZOrder() == n2->getLocalZOrder() && n1->getOrderOfArrival() < n2->getOrderOfArrival() ) ); } // FIXME:: Yes, nodes might have a sort problem once every 15 days if the game runs at 60 FPS and each frame sprites are reordered. int Node::s_globalOrderOfArrival = 1; // MARK: Constructor, Destructor, Init Node::Node(void) : _rotationX(0.0f) , _rotationY(0.0f) , _rotationZ_X(0.0f) , _rotationZ_Y(0.0f) , _scaleX(1.0f) , _scaleY(1.0f) , _scaleZ(1.0f) , _positionZ(0.0f) , _usingNormalizedPosition(false) , _normalizedPositionDirty(false) , _skewX(0.0f) , _skewY(0.0f) , _contentSize(Size::ZERO) , _contentSizeDirty(true) , _transformDirty(true) , _inverseDirty(true) , _useAdditionalTransform(false) , _transformUpdated(true) // children (lazy allocs) // lazy alloc , _localZOrder(0) , _globalZOrder(0) , _parent(nullptr) // "whole screen" objects. like Scenes and Layers, should set _ignoreAnchorPointForPosition to true , _tag(Node::INVALID_TAG) , _name("") , _hashOfName(0) // userData is always inited as nil , _userData(nullptr) , _userObject(nullptr) , _glProgramState(nullptr) , _orderOfArrival(0) , _running(false) , _visible(true) , _ignoreAnchorPointForPosition(false) , _reorderChildDirty(false) , _isTransitionFinished(false) #if CC_ENABLE_SCRIPT_BINDING , _updateScriptHandler(0) #endif , _componentContainer(nullptr) #if CC_USE_PHYSICS , _physicsBody(nullptr) , _physicsScaleStartX(1.0f) , _physicsScaleStartY(1.0f) , _physicsRotation(0.0f) , _physicsTransformDirty(true) , _updateTransformFromPhysics(true) , _physicsWorld(nullptr) , _physicsBodyAssociatedWith(0) , _physicsRotationOffset(0.0f) #endif , _displayedOpacity(255) , _realOpacity(255) , _displayedColor(Color3B::WHITE) , _realColor(Color3B::WHITE) , _cascadeColorEnabled(false) , _cascadeOpacityEnabled(false) , _cameraMask(1) { // set default scheduler and actionManager _director = Director::getInstance(); _actionManager = _director->getActionManager(); _actionManager->retain(); _scheduler = _director->getScheduler(); _scheduler->retain(); _eventDispatcher = _director->getEventDispatcher(); _eventDispatcher->retain(); #if CC_ENABLE_SCRIPT_BINDING ScriptEngineProtocol* engine = ScriptEngineManager::getInstance()->getScriptEngine(); _scriptType = engine != nullptr ? engine->getScriptType() : kScriptTypeNone; #endif _transform = _inverse = _additionalTransform = Mat4::IDENTITY; } Node * Node::create() { Node * ret = new (std::nothrow) Node(); if (ret && ret->init()) { ret->autorelease(); } else { CC_SAFE_DELETE(ret); } return ret; } Node::~Node() { CCLOGINFO( "deallocing Node: %p - tag: %i", this, _tag ); #if CC_ENABLE_SCRIPT_BINDING if (_updateScriptHandler) { ScriptEngineManager::getInstance()->getScriptEngine()->removeScriptHandler(_updateScriptHandler); } #endif // User object has to be released before others, since userObject may have a weak reference of this node // It may invoke `node->stopAllAction();` while `_actionManager` is null if the next line is after `CC_SAFE_RELEASE_NULL(_actionManager)`. CC_SAFE_RELEASE_NULL(_userObject); // attributes CC_SAFE_RELEASE_NULL(_glProgramState); for (auto& child : _children) { child->_parent = nullptr; } removeAllComponents(); CC_SAFE_DELETE(_componentContainer); #if CC_USE_PHYSICS setPhysicsBody(nullptr); #endif stopAllActions(); unscheduleAllCallbacks(); CC_SAFE_RELEASE_NULL(_actionManager); CC_SAFE_RELEASE_NULL(_scheduler); _eventDispatcher->removeEventListenersForTarget(this); #if CC_NODE_DEBUG_VERIFY_EVENT_LISTENERS && COCOS2D_DEBUG > 0 _eventDispatcher->debugCheckNodeHasNoEventListenersOnDestruction(this); #endif CCASSERT(!_running, "Node still marked as running on node destruction! Was base class onExit() called in derived class onExit() implementations?"); CC_SAFE_RELEASE(_eventDispatcher); } bool Node::init() { return true; } void Node::cleanup() { #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeJavascript) { if (ScriptEngineManager::sendNodeEventToJS(this, kNodeOnCleanup)) return; } else if (_scriptType == kScriptTypeLua) { ScriptEngineManager::sendNodeEventToLua(this, kNodeOnCleanup); } #endif // #if CC_ENABLE_SCRIPT_BINDING // actions this->stopAllActions(); this->unscheduleAllCallbacks(); // timers for( const auto &child: _children) child->cleanup(); } std::string Node::getDescription() const { return StringUtils::format("reorderChild(this, z); } _eventDispatcher->setDirtyForNode(this); } /// zOrder setter : private method /// used internally to alter the zOrder variable. DON'T call this method manually void Node::_setLocalZOrder(int z) { _localZOrder = z; } void Node::setGlobalZOrder(float globalZOrder) { if (_globalZOrder != globalZOrder) { _globalZOrder = globalZOrder; _eventDispatcher->setDirtyForNode(this); } } /// rotation getter float Node::getRotation() const { CCASSERT(_rotationZ_X == _rotationZ_Y, "CCNode#rotation. RotationX != RotationY. Don't know which one to return"); return _rotationZ_X; } /// rotation setter void Node::setRotation(float rotation) { if (_rotationZ_X == rotation) return; _rotationZ_X = _rotationZ_Y = rotation; _transformUpdated = _transformDirty = _inverseDirty = true; #if CC_USE_PHYSICS if (_physicsWorld && _physicsBodyAssociatedWith > 0) { _physicsWorld->_updateBodyTransform = true; } #endif updateRotationQuat(); } float Node::getRotationSkewX() const { return _rotationZ_X; } void Node::setRotation3D(const Vec3& rotation) { if (_rotationX == rotation.x && _rotationY == rotation.y && _rotationZ_X == rotation.z) return; _transformUpdated = _transformDirty = _inverseDirty = true; _rotationX = rotation.x; _rotationY = rotation.y; // rotation Z is decomposed in 2 to simulate Skew for Flash animations _rotationZ_Y = _rotationZ_X = rotation.z; updateRotationQuat(); #if CC_USE_PHYSICS if (_physicsBody != nullptr) { CCLOG("Node WARNING: PhysicsBody doesn't support setRotation3D"); } #endif } Vec3 Node::getRotation3D() const { // rotation Z is decomposed in 2 to simulate Skew for Flash animations CCASSERT(_rotationZ_X == _rotationZ_Y, "_rotationZ_X != _rotationZ_Y"); return Vec3(_rotationX,_rotationY,_rotationZ_X); } void Node::updateRotationQuat() { // convert Euler angle to quaternion // when _rotationZ_X == _rotationZ_Y, _rotationQuat = RotationZ_X * RotationY * RotationX // when _rotationZ_X != _rotationZ_Y, _rotationQuat = RotationY * RotationX float halfRadx = CC_DEGREES_TO_RADIANS(_rotationX / 2.f), halfRady = CC_DEGREES_TO_RADIANS(_rotationY / 2.f), halfRadz = _rotationZ_X == _rotationZ_Y ? -CC_DEGREES_TO_RADIANS(_rotationZ_X / 2.f) : 0; float coshalfRadx = cosf(halfRadx), sinhalfRadx = sinf(halfRadx), coshalfRady = cosf(halfRady), sinhalfRady = sinf(halfRady), coshalfRadz = cosf(halfRadz), sinhalfRadz = sinf(halfRadz); _rotationQuat.x = sinhalfRadx * coshalfRady * coshalfRadz - coshalfRadx * sinhalfRady * sinhalfRadz; _rotationQuat.y = coshalfRadx * sinhalfRady * coshalfRadz + sinhalfRadx * coshalfRady * sinhalfRadz; _rotationQuat.z = coshalfRadx * coshalfRady * sinhalfRadz - sinhalfRadx * sinhalfRady * coshalfRadz; _rotationQuat.w = coshalfRadx * coshalfRady * coshalfRadz + sinhalfRadx * sinhalfRady * sinhalfRadz; } void Node::updateRotation3D() { //convert quaternion to Euler angle float x = _rotationQuat.x, y = _rotationQuat.y, z = _rotationQuat.z, w = _rotationQuat.w; _rotationX = atan2f(2.f * (w * x + y * z), 1.f - 2.f * (x * x + y * y)); _rotationY = asinf(2.f * (w * y - z * x)); _rotationZ_X = atan2f(2.f * (w * z + x * y), 1.f - 2.f * (y * y + z * z)); _rotationX = CC_RADIANS_TO_DEGREES(_rotationX); _rotationY = CC_RADIANS_TO_DEGREES(_rotationY); _rotationZ_X = _rotationZ_Y = -CC_RADIANS_TO_DEGREES(_rotationZ_X); } void Node::setRotationQuat(const Quaternion& quat) { _rotationQuat = quat; updateRotation3D(); _transformUpdated = _transformDirty = _inverseDirty = true; } Quaternion Node::getRotationQuat() const { return _rotationQuat; } void Node::setRotationSkewX(float rotationX) { if (_rotationZ_X == rotationX) return; #if CC_USE_PHYSICS if (_physicsBody != nullptr) { CCLOG("Node WARNING: PhysicsBody doesn't support setRotationSkewX"); } #endif _rotationZ_X = rotationX; _transformUpdated = _transformDirty = _inverseDirty = true; updateRotationQuat(); } float Node::getRotationSkewY() const { return _rotationZ_Y; } void Node::setRotationSkewY(float rotationY) { if (_rotationZ_Y == rotationY) return; #if CC_USE_PHYSICS if (_physicsBody != nullptr) { CCLOG("Node WARNING: PhysicsBody doesn't support setRotationSkewY"); } #endif _rotationZ_Y = rotationY; _transformUpdated = _transformDirty = _inverseDirty = true; updateRotationQuat(); } /// scale getter float Node::getScale(void) const { CCASSERT( _scaleX == _scaleY, "CCNode#scale. ScaleX != ScaleY. Don't know which one to return"); return _scaleX; } /// scale setter void Node::setScale(float scale) { if (_scaleX == scale && _scaleY == scale && _scaleZ == scale) return; _scaleX = _scaleY = _scaleZ = scale; _transformUpdated = _transformDirty = _inverseDirty = true; #if CC_USE_PHYSICS if (_physicsWorld && _physicsBodyAssociatedWith > 0) { _physicsWorld->_updateBodyTransform = true; } #endif } /// scaleX getter float Node::getScaleX() const { return _scaleX; } /// scale setter void Node::setScale(float scaleX,float scaleY) { if (_scaleX == scaleX && _scaleY == scaleY) return; _scaleX = scaleX; _scaleY = scaleY; _transformUpdated = _transformDirty = _inverseDirty = true; #if CC_USE_PHYSICS if (_physicsWorld && _physicsBodyAssociatedWith > 0) { _physicsWorld->_updateBodyTransform = true; } #endif } /// scaleX setter void Node::setScaleX(float scaleX) { if (_scaleX == scaleX) return; _scaleX = scaleX; _transformUpdated = _transformDirty = _inverseDirty = true; #if CC_USE_PHYSICS if (_physicsWorld && _physicsBodyAssociatedWith > 0) { _physicsWorld->_updateBodyTransform = true; } #endif } /// scaleY getter float Node::getScaleY() const { return _scaleY; } /// scaleY setter void Node::setScaleZ(float scaleZ) { if (_scaleZ == scaleZ) return; #if CC_USE_PHYSICS if (_physicsBody != nullptr) { CCLOG("Node WARNING: PhysicsBody doesn't support setScaleZ"); } #endif _scaleZ = scaleZ; _transformUpdated = _transformDirty = _inverseDirty = true; } /// scaleY getter float Node::getScaleZ() const { return _scaleZ; } /// scaleY setter void Node::setScaleY(float scaleY) { if (_scaleY == scaleY) return; _scaleY = scaleY; _transformUpdated = _transformDirty = _inverseDirty = true; #if CC_USE_PHYSICS if (_physicsWorld && _physicsBodyAssociatedWith > 0) { _physicsWorld->_updateBodyTransform = true; } #endif } /// position getter const Vec2& Node::getPosition() const { return _position; } /// position setter void Node::setPosition(const Vec2& position) { setPosition(position.x, position.y); } void Node::getPosition(float* x, float* y) const { *x = _position.x; *y = _position.y; } void Node::setPosition(float x, float y) { if (_position.x == x && _position.y == y) return; _position.x = x; _position.y = y; _transformUpdated = _transformDirty = _inverseDirty = true; _usingNormalizedPosition = false; #if CC_USE_PHYSICS if (_physicsWorld && _physicsBodyAssociatedWith > 0) { _physicsWorld->_updateBodyTransform = true; } #endif } void Node::setPosition3D(const Vec3& position) { setPositionZ(position.z); setPosition(position.x, position.y); } Vec3 Node::getPosition3D() const { return Vec3(_position.x, _position.y, _positionZ); } float Node::getPositionX() const { return _position.x; } void Node::setPositionX(float x) { setPosition(x, _position.y); } float Node::getPositionY() const { return _position.y; } void Node::setPositionY(float y) { setPosition(_position.x, y); } float Node::getPositionZ() const { return _positionZ; } void Node::setPositionZ(float positionZ) { if (_positionZ == positionZ) return; _transformUpdated = _transformDirty = _inverseDirty = true; _positionZ = positionZ; } /// position getter const Vec2& Node::getNormalizedPosition() const { return _normalizedPosition; } /// position setter void Node::setNormalizedPosition(const Vec2& position) { if (_normalizedPosition.equals(position)) return; _normalizedPosition = position; _usingNormalizedPosition = true; _normalizedPositionDirty = true; _transformUpdated = _transformDirty = _inverseDirty = true; #if CC_USE_PHYSICS if (_physicsWorld && _physicsBodyAssociatedWith > 0) { _physicsWorld->_updateBodyTransform = true; } #endif } ssize_t Node::getChildrenCount() const { return _children.size(); } /// isVisible getter bool Node::isVisible() const { return _visible; } /// isVisible setter void Node::setVisible(bool visible) { if(visible != _visible) { _visible = visible; if(_visible) _transformUpdated = _transformDirty = _inverseDirty = true; } } const Vec2& Node::getAnchorPointInPoints() const { return _anchorPointInPoints; } /// anchorPoint getter const Vec2& Node::getAnchorPoint() const { return _anchorPoint; } void Node::setAnchorPoint(const Vec2& point) { if (! point.equals(_anchorPoint)) { _anchorPoint = point; _anchorPointInPoints.set(_contentSize.width * _anchorPoint.x, _contentSize.height * _anchorPoint.y); _transformUpdated = _transformDirty = _inverseDirty = true; } } /// contentSize getter const Size& Node::getContentSize() const { return _contentSize; } void Node::setContentSize(const Size & size) { if (! size.equals(_contentSize)) { _contentSize = size; _anchorPointInPoints.set(_contentSize.width * _anchorPoint.x, _contentSize.height * _anchorPoint.y); _transformUpdated = _transformDirty = _inverseDirty = _contentSizeDirty = true; } } // isRunning getter bool Node::isRunning() const { return _running; } /// parent setter void Node::setParent(Node * parent) { _parent = parent; _transformUpdated = _transformDirty = _inverseDirty = true; } /// isRelativeAnchorPoint getter bool Node::isIgnoreAnchorPointForPosition() const { return _ignoreAnchorPointForPosition; } /// isRelativeAnchorPoint setter void Node::ignoreAnchorPointForPosition(bool newValue) { if (newValue != _ignoreAnchorPointForPosition) { _ignoreAnchorPointForPosition = newValue; _transformUpdated = _transformDirty = _inverseDirty = true; } } /// tag getter int Node::getTag() const { return _tag; } /// tag setter void Node::setTag(int tag) { _tag = tag ; } std::string Node::getName() const { return _name; } void Node::setName(const std::string& name) { _name = name; std::hash h; _hashOfName = h(name); } /// userData setter void Node::setUserData(void *userData) { _userData = userData; } int Node::getOrderOfArrival() const { return _orderOfArrival; } void Node::setOrderOfArrival(int orderOfArrival) { CCASSERT(orderOfArrival >=0, "Invalid orderOfArrival"); _orderOfArrival = orderOfArrival; } void Node::setUserObject(Ref* userObject) { CC_SAFE_RETAIN(userObject); CC_SAFE_RELEASE(_userObject); _userObject = userObject; } GLProgramState* Node::getGLProgramState() const { return _glProgramState; } void Node::setGLProgramState(cocos2d::GLProgramState* glProgramState) { if (glProgramState != _glProgramState) { CC_SAFE_RELEASE(_glProgramState); _glProgramState = glProgramState; CC_SAFE_RETAIN(_glProgramState); if (_glProgramState) _glProgramState->setNodeBinding(this); } } void Node::setGLProgram(GLProgram* glProgram) { if (_glProgramState == nullptr || (_glProgramState && _glProgramState->getGLProgram() != glProgram)) { CC_SAFE_RELEASE(_glProgramState); _glProgramState = GLProgramState::getOrCreateWithGLProgram(glProgram); _glProgramState->retain(); _glProgramState->setNodeBinding(this); } } GLProgram * Node::getGLProgram() const { return _glProgramState ? _glProgramState->getGLProgram() : nullptr; } Scene* Node::getScene() const { if (!_parent) return nullptr; auto sceneNode = _parent; while (sceneNode->_parent) { sceneNode = sceneNode->_parent; } return dynamic_cast(sceneNode); } Rect Node::getBoundingBox() const { Rect rect(0, 0, _contentSize.width, _contentSize.height); return RectApplyAffineTransform(rect, getNodeToParentAffineTransform()); } // MARK: Children logic // lazy allocs void Node::childrenAlloc() { _children.reserve(4); } Node* Node::getChildByTag(int tag) const { CCASSERT(tag != Node::INVALID_TAG, "Invalid tag"); for (const auto child : _children) { if(child && child->_tag == tag) return child; } return nullptr; } Node* Node::getChildByName(const std::string& name) const { CCASSERT(name.length() != 0, "Invalid name"); std::hash h; size_t hash = h(name); for (const auto& child : _children) { // Different strings may have the same hash code, but can use it to compare first for speed if(child->_hashOfName == hash && child->_name.compare(name) == 0) return child; } return nullptr; } void Node::enumerateChildren(const std::string &name, std::function callback) const { CCASSERT(name.length() != 0, "Invalid name"); CCASSERT(callback != nullptr, "Invalid callback function"); size_t length = name.length(); size_t subStrStartPos = 0; // sub string start index size_t subStrlength = length; // sub string length // Starts with '//'? bool searchRecursively = false; if (length > 2 && name[0] == '/' && name[1] == '/') { searchRecursively = true; subStrStartPos = 2; subStrlength -= 2; } // End with '/..'? bool searchFromParent = false; if (length > 3 && name[length-3] == '/' && name[length-2] == '.' && name[length-1] == '.') { searchFromParent = true; subStrlength -= 3; } // Remove '//', '/..' if exist std::string newName = name.substr(subStrStartPos, subStrlength); if (searchFromParent) { newName.insert(0, "[[:alnum:]]+/"); } if (searchRecursively) { // name is '//xxx' doEnumerateRecursive(this, newName, callback); } else { // name is xxx doEnumerate(newName, callback); } } bool Node::doEnumerateRecursive(const Node* node, const std::string &name, std::function callback) const { bool ret =false; if (node->doEnumerate(name, callback)) { // search itself ret = true; } else { // search its children for (const auto& child : node->getChildren()) { if (doEnumerateRecursive(child, name, callback)) { ret = true; break; } } } return ret; } bool Node::doEnumerate(std::string name, std::function callback) const { // name may be xxx/yyy, should find its parent size_t pos = name.find('/'); std::string searchName = name; bool needRecursive = false; if (pos != name.npos) { searchName = name.substr(0, pos); name.erase(0, pos+1); needRecursive = true; } bool ret = false; for (const auto& child : _children) { if (std::regex_match(child->_name, std::regex(searchName))) { if (!needRecursive) { // terminate enumeration if callback return true if (callback(child)) { ret = true; break; } } else { ret = child->doEnumerate(name, callback); if (ret) break; } } } return ret; } /* "add" logic MUST only be on this method * If a class want's to extend the 'addChild' behavior it only needs * to override this method */ void Node::addChild(Node *child, int localZOrder, int tag) { CCASSERT( child != nullptr, "Argument must be non-nil"); CCASSERT( child->_parent == nullptr, "child already added. It can't be added again"); addChildHelper(child, localZOrder, tag, "", true); } void Node::addChild(Node* child, int localZOrder, const std::string &name) { CCASSERT(child != nullptr, "Argument must be non-nil"); CCASSERT(child->_parent == nullptr, "child already added. It can't be added again"); addChildHelper(child, localZOrder, INVALID_TAG, name, false); } void Node::addChildHelper(Node* child, int localZOrder, int tag, const std::string &name, bool setTag) { if (_children.empty()) { this->childrenAlloc(); } this->insertChild(child, localZOrder); if (setTag) child->setTag(tag); else child->setName(name); child->setParent(this); child->setOrderOfArrival(s_globalOrderOfArrival++); #if CC_USE_PHYSICS _physicsBodyAssociatedWith += child->_physicsBodyAssociatedWith; auto parentNode = this; while (parentNode->_parent) { parentNode = parentNode->_parent; parentNode->_physicsBodyAssociatedWith += child->_physicsBodyAssociatedWith; } auto scene = dynamic_cast(parentNode); // Recursive add children with which have physics body. if (scene && scene->getPhysicsWorld()) { scene->addChildToPhysicsWorld(child); } #endif if( _running ) { child->onEnter(); // prevent onEnterTransitionDidFinish to be called twice when a node is added in onEnter if (_isTransitionFinished) { child->onEnterTransitionDidFinish(); } } if (_cascadeColorEnabled) { updateCascadeColor(); } if (_cascadeOpacityEnabled) { updateCascadeOpacity(); } } void Node::addChild(Node *child, int zOrder) { CCASSERT( child != nullptr, "Argument must be non-nil"); this->addChild(child, zOrder, child->_name); } void Node::addChild(Node *child) { CCASSERT( child != nullptr, "Argument must be non-nil"); this->addChild(child, child->_localZOrder, child->_name); } void Node::removeFromParent() { this->removeFromParentAndCleanup(true); } void Node::removeFromParentAndCleanup(bool cleanup) { if (_parent != nullptr) { _parent->removeChild(this,cleanup); } } /* "remove" logic MUST only be on this method * If a class want's to extend the 'removeChild' behavior it only needs * to override this method */ void Node::removeChild(Node* child, bool cleanup /* = true */) { // explicit nil handling if (_children.empty()) { return; } ssize_t index = _children.getIndex(child); if( index != CC_INVALID_INDEX ) this->detachChild( child, index, cleanup ); } void Node::removeChildByTag(int tag, bool cleanup/* = true */) { CCASSERT( tag != Node::INVALID_TAG, "Invalid tag"); Node *child = this->getChildByTag(tag); if (child == nullptr) { CCLOG("cocos2d: removeChildByTag(tag = %d): child not found!", tag); } else { this->removeChild(child, cleanup); } } void Node::removeChildByName(const std::string &name, bool cleanup) { CCASSERT(name.length() != 0, "Invalid name"); Node *child = this->getChildByName(name); if (child == nullptr) { CCLOG("cocos2d: removeChildByName(name = %s): child not found!", name.c_str()); } else { this->removeChild(child, cleanup); } } void Node::removeAllChildren() { this->removeAllChildrenWithCleanup(true); } #if CC_USE_PHYSICS void Node::removeFromPhysicsWorld() { if (_physicsBody != nullptr) { _physicsBody->removeFromWorld(); } for (auto child : _children) { child->removeFromPhysicsWorld(); } } #endif void Node::removeAllChildrenWithCleanup(bool cleanup) { // not using detachChild improves speed here for (const auto& child : _children) { // IMPORTANT: // -1st do onExit // -2nd cleanup if(_running) { child->onExitTransitionDidStart(); child->onExit(); } #if CC_USE_PHYSICS child->removeFromPhysicsWorld(); #endif if (cleanup) { child->cleanup(); } // set parent nil at the end child->setParent(nullptr); } _children.clear(); } void Node::detachChild(Node *child, ssize_t childIndex, bool doCleanup) { // IMPORTANT: // -1st do onExit // -2nd cleanup if (_running) { child->onExitTransitionDidStart(); child->onExit(); } #if CC_USE_PHYSICS child->removeFromPhysicsWorld(); #endif // If you don't do cleanup, the child's actions will not get removed and the // its scheduledSelectors_ dict will not get released! if (doCleanup) { child->cleanup(); } // set parent nil at the end child->setParent(nullptr); _children.erase(childIndex); } // helper used by reorderChild & add void Node::insertChild(Node* child, int z) { _transformUpdated = true; _reorderChildDirty = true; _children.pushBack(child); child->_localZOrder = z; } void Node::reorderChild(Node *child, int zOrder) { CCASSERT( child != nullptr, "Child must be non-nil"); _reorderChildDirty = true; child->setOrderOfArrival(s_globalOrderOfArrival++); child->_localZOrder = zOrder; } void Node::sortAllChildren() { if (_reorderChildDirty) { std::sort(std::begin(_children), std::end(_children), nodeComparisonLess); _reorderChildDirty = false; } } // MARK: draw / visit void Node::draw() { auto renderer = _director->getRenderer(); draw(renderer, _modelViewTransform, true); } void Node::draw(Renderer* renderer, const Mat4 &transform, uint32_t flags) { } void Node::visit() { auto renderer = _director->getRenderer(); auto& parentTransform = _director->getMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW); visit(renderer, parentTransform, true); } uint32_t Node::processParentFlags(const Mat4& parentTransform, uint32_t parentFlags) { #if CC_USE_PHYSICS if (_physicsBody && _updateTransformFromPhysics) { updateTransformFromPhysics(parentTransform, parentFlags); } #endif if(_usingNormalizedPosition) { CCASSERT(_parent, "setNormalizedPosition() doesn't work with orphan nodes"); if ((parentFlags & FLAGS_CONTENT_SIZE_DIRTY) || _normalizedPositionDirty) { auto& s = _parent->getContentSize(); _position.x = _normalizedPosition.x * s.width; _position.y = _normalizedPosition.y * s.height; _transformUpdated = _transformDirty = _inverseDirty = true; _normalizedPositionDirty = false; } } //remove this two line given that isVisitableByVisitingCamera should not affect the calculation of transform given that we are visiting scene //without involving view and projection matrix. // if (!isVisitableByVisitingCamera()) // return parentFlags; uint32_t flags = parentFlags; flags |= (_transformUpdated ? FLAGS_TRANSFORM_DIRTY : 0); flags |= (_contentSizeDirty ? FLAGS_CONTENT_SIZE_DIRTY : 0); if(flags & FLAGS_DIRTY_MASK) _modelViewTransform = this->transform(parentTransform); #if CC_USE_PHYSICS if (_updateTransformFromPhysics) { _transformUpdated = false; _contentSizeDirty = false; } #else _transformUpdated = false; _contentSizeDirty = false; #endif return flags; } bool Node::isVisitableByVisitingCamera() const { auto camera = Camera::getVisitingCamera(); bool visibleByCamera = camera ? ((unsigned short)camera->getCameraFlag() & _cameraMask) != 0 : true; return visibleByCamera; } void Node::visit(Renderer* renderer, const Mat4 &parentTransform, uint32_t parentFlags) { // quick return if not visible. children won't be drawn. if (!_visible) { return; } uint32_t flags = processParentFlags(parentTransform, parentFlags); // IMPORTANT: // To ease the migration to v3.0, we still support the Mat4 stack, // but it is deprecated and your code should not rely on it _director->pushMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW); _director->loadMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW, _modelViewTransform); bool visibleByCamera = isVisitableByVisitingCamera(); int i = 0; if(!_children.empty()) { sortAllChildren(); // draw children zOrder < 0 for( ; i < _children.size(); i++ ) { auto node = _children.at(i); if (node && node->_localZOrder < 0) node->visit(renderer, _modelViewTransform, flags); else break; } // self draw if (visibleByCamera) this->draw(renderer, _modelViewTransform, flags); for(auto it=_children.cbegin()+i; it != _children.cend(); ++it) (*it)->visit(renderer, _modelViewTransform, flags); } else if (visibleByCamera) { this->draw(renderer, _modelViewTransform, flags); } _director->popMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW); // FIX ME: Why need to set _orderOfArrival to 0?? // Please refer to https://github.com/cocos2d/cocos2d-x/pull/6920 // reset for next frame // _orderOfArrival = 0; } Mat4 Node::transform(const Mat4& parentTransform) { return parentTransform * this->getNodeToParentTransform(); } // MARK: events void Node::onEnter() { if (_onEnterCallback) _onEnterCallback(); if (_componentContainer && !_componentContainer->isEmpty()) { _componentContainer->onEnter(); } #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeJavascript) { if (ScriptEngineManager::sendNodeEventToJS(this, kNodeOnEnter)) return; } #endif _isTransitionFinished = false; for( const auto &child: _children) child->onEnter(); this->resume(); _running = true; #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeLua) { ScriptEngineManager::sendNodeEventToLua(this, kNodeOnEnter); } #endif } void Node::onEnterTransitionDidFinish() { if (_onEnterTransitionDidFinishCallback) _onEnterTransitionDidFinishCallback(); #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeJavascript) { if (ScriptEngineManager::sendNodeEventToJS(this, kNodeOnEnterTransitionDidFinish)) return; } #endif _isTransitionFinished = true; for( const auto &child: _children) child->onEnterTransitionDidFinish(); #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeLua) { ScriptEngineManager::sendNodeEventToLua(this, kNodeOnEnterTransitionDidFinish); } #endif } void Node::onExitTransitionDidStart() { if (_onExitTransitionDidStartCallback) _onExitTransitionDidStartCallback(); #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeJavascript) { if (ScriptEngineManager::sendNodeEventToJS(this, kNodeOnExitTransitionDidStart)) return; } #endif for( const auto &child: _children) child->onExitTransitionDidStart(); #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeLua) { ScriptEngineManager::sendNodeEventToLua(this, kNodeOnExitTransitionDidStart); } #endif } void Node::onExit() { if (_onExitCallback) _onExitCallback(); if (_componentContainer && !_componentContainer->isEmpty()) { _componentContainer->onExit(); } #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeJavascript) { if (ScriptEngineManager::sendNodeEventToJS(this, kNodeOnExit)) return; } #endif this->pause(); _running = false; for( const auto &child: _children) child->onExit(); #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeLua) { ScriptEngineManager::sendNodeEventToLua(this, kNodeOnExit); } #endif } void Node::setEventDispatcher(EventDispatcher* dispatcher) { if (dispatcher != _eventDispatcher) { _eventDispatcher->removeEventListenersForTarget(this); CC_SAFE_RETAIN(dispatcher); CC_SAFE_RELEASE(_eventDispatcher); _eventDispatcher = dispatcher; } } void Node::setActionManager(ActionManager* actionManager) { if( actionManager != _actionManager ) { this->stopAllActions(); CC_SAFE_RETAIN(actionManager); CC_SAFE_RELEASE(_actionManager); _actionManager = actionManager; } } // MARK: actions Action * Node::runAction(Action* action) { CCASSERT( action != nullptr, "Argument must be non-nil"); _actionManager->addAction(action, this, !_running); return action; } void Node::stopAllActions() { _actionManager->removeAllActionsFromTarget(this); } void Node::stopAction(Action* action) { _actionManager->removeAction(action); } void Node::stopActionByTag(int tag) { CCASSERT( tag != Action::INVALID_TAG, "Invalid tag"); _actionManager->removeActionByTag(tag, this); } void Node::stopAllActionsByTag(int tag) { CCASSERT( tag != Action::INVALID_TAG, "Invalid tag"); _actionManager->removeAllActionsByTag(tag, this); } Action * Node::getActionByTag(int tag) { CCASSERT( tag != Action::INVALID_TAG, "Invalid tag"); return _actionManager->getActionByTag(tag, this); } ssize_t Node::getNumberOfRunningActions() const { return _actionManager->getNumberOfRunningActionsInTarget(this); } // MARK: Callbacks void Node::setScheduler(Scheduler* scheduler) { if( scheduler != _scheduler ) { this->unscheduleAllCallbacks(); CC_SAFE_RETAIN(scheduler); CC_SAFE_RELEASE(_scheduler); _scheduler = scheduler; } } bool Node::isScheduled(SEL_SCHEDULE selector) { return _scheduler->isScheduled(selector, this); } bool Node::isScheduled(const std::string &key) { return _scheduler->isScheduled(key, this); } void Node::scheduleUpdate() { scheduleUpdateWithPriority(0); } void Node::scheduleUpdateWithPriority(int priority) { _scheduler->scheduleUpdate(this, priority, !_running); } void Node::scheduleUpdateWithPriorityLua(int nHandler, int priority) { unscheduleUpdate(); #if CC_ENABLE_SCRIPT_BINDING _updateScriptHandler = nHandler; #endif _scheduler->scheduleUpdate(this, priority, !_running); } void Node::unscheduleUpdate() { _scheduler->unscheduleUpdate(this); #if CC_ENABLE_SCRIPT_BINDING if (_updateScriptHandler) { ScriptEngineManager::getInstance()->getScriptEngine()->removeScriptHandler(_updateScriptHandler); _updateScriptHandler = 0; } #endif } void Node::schedule(SEL_SCHEDULE selector) { this->schedule(selector, 0.0f, CC_REPEAT_FOREVER, 0.0f); } void Node::schedule(SEL_SCHEDULE selector, float interval) { this->schedule(selector, interval, CC_REPEAT_FOREVER, 0.0f); } void Node::schedule(SEL_SCHEDULE selector, float interval, unsigned int repeat, float delay) { CCASSERT( selector, "Argument must be non-nil"); CCASSERT( interval >=0, "Argument must be positive"); _scheduler->schedule(selector, this, interval , repeat, delay, !_running); } void Node::schedule(const std::function &callback, const std::string &key) { _scheduler->schedule(callback, this, 0, !_running, key); } void Node::schedule(const std::function &callback, float interval, const std::string &key) { _scheduler->schedule(callback, this, interval, !_running, key); } void Node::schedule(const std::function& callback, float interval, unsigned int repeat, float delay, const std::string &key) { _scheduler->schedule(callback, this, interval, repeat, delay, !_running, key); } void Node::scheduleOnce(SEL_SCHEDULE selector, float delay) { this->schedule(selector, 0.0f, 0, delay); } void Node::scheduleOnce(const std::function &callback, float delay, const std::string &key) { _scheduler->schedule(callback, this, 0, 0, delay, !_running, key); } void Node::unschedule(SEL_SCHEDULE selector) { // explicit null handling if (selector == nullptr) return; _scheduler->unschedule(selector, this); } void Node::unschedule(const std::string &key) { _scheduler->unschedule(key, this); } void Node::unscheduleAllCallbacks() { _scheduler->unscheduleAllForTarget(this); } void Node::resume() { _scheduler->resumeTarget(this); _actionManager->resumeTarget(this); _eventDispatcher->resumeEventListenersForTarget(this); } void Node::pause() { _scheduler->pauseTarget(this); _actionManager->pauseTarget(this); _eventDispatcher->pauseEventListenersForTarget(this); } void Node::resumeSchedulerAndActions() { resume(); } void Node::pauseSchedulerAndActions() { pause(); } // override me void Node::update(float fDelta) { #if CC_ENABLE_SCRIPT_BINDING if (0 != _updateScriptHandler) { //only lua use SchedulerScriptData data(_updateScriptHandler,fDelta); ScriptEvent event(kScheduleEvent,&data); ScriptEngineManager::getInstance()->getScriptEngine()->sendEvent(&event); } #endif if (_componentContainer && !_componentContainer->isEmpty()) { _componentContainer->visit(fDelta); } } // MARK: coordinates AffineTransform Node::getNodeToParentAffineTransform() const { AffineTransform ret; GLToCGAffine(getNodeToParentTransform().m, &ret); return ret; } Mat4 Node::getNodeToParentTransform(Node* ancestor) const { Mat4 t(this->getNodeToParentTransform()); for (Node *p = _parent; p != nullptr && p != ancestor ; p = p->getParent()) { t = p->getNodeToParentTransform() * t; } return t; } AffineTransform Node::getNodeToParentAffineTransform(Node* ancestor) const { AffineTransform t(this->getNodeToParentAffineTransform()); for (Node *p = _parent; p != nullptr && p != ancestor; p = p->getParent()) t = AffineTransformConcat(t, p->getNodeToParentAffineTransform()); return t; } const Mat4& Node::getNodeToParentTransform() const { if (_transformDirty) { // Translate values float x = _position.x; float y = _position.y; float z = _positionZ; if (_ignoreAnchorPointForPosition) { x += _anchorPointInPoints.x; y += _anchorPointInPoints.y; } bool needsSkewMatrix = ( _skewX || _skewY ); Vec2 anchorPoint(_anchorPointInPoints.x * _scaleX, _anchorPointInPoints.y * _scaleY); // caculate real position if (! needsSkewMatrix && !_anchorPointInPoints.isZero()) { x += -anchorPoint.x; y += -anchorPoint.y; } // Build Transform Matrix = translation * rotation * scale Mat4 translation; //move to anchor point first, then rotate Mat4::createTranslation(x + anchorPoint.x, y + anchorPoint.y, z, &translation); Mat4::createRotation(_rotationQuat, &_transform); if (_rotationZ_X != _rotationZ_Y) { // Rotation values // Change rotation code to handle X and Y // If we skew with the exact same value for both x and y then we're simply just rotating float radiansX = -CC_DEGREES_TO_RADIANS(_rotationZ_X); float radiansY = -CC_DEGREES_TO_RADIANS(_rotationZ_Y); float cx = cosf(radiansX); float sx = sinf(radiansX); float cy = cosf(radiansY); float sy = sinf(radiansY); float m0 = _transform.m[0], m1 = _transform.m[1], m4 = _transform.m[4], m5 = _transform.m[5], m8 = _transform.m[8], m9 = _transform.m[9]; _transform.m[0] = cy * m0 - sx * m1, _transform.m[4] = cy * m4 - sx * m5, _transform.m[8] = cy * m8 - sx * m9; _transform.m[1] = sy * m0 + cx * m1, _transform.m[5] = sy * m4 + cx * m5, _transform.m[9] = sy * m8 + cx * m9; } _transform = translation * _transform; //move by (-anchorPoint.x, -anchorPoint.y, 0) after rotation _transform.translate(-anchorPoint.x, -anchorPoint.y, 0); if (_scaleX != 1.f) { _transform.m[0] *= _scaleX, _transform.m[1] *= _scaleX, _transform.m[2] *= _scaleX; } if (_scaleY != 1.f) { _transform.m[4] *= _scaleY, _transform.m[5] *= _scaleY, _transform.m[6] *= _scaleY; } if (_scaleZ != 1.f) { _transform.m[8] *= _scaleZ, _transform.m[9] *= _scaleZ, _transform.m[10] *= _scaleZ; } // FIXME:: Try to inline skew // If skew is needed, apply skew and then anchor point if (needsSkewMatrix) { float skewMatArray[16] = { 1, (float)tanf(CC_DEGREES_TO_RADIANS(_skewY)), 0, 0, (float)tanf(CC_DEGREES_TO_RADIANS(_skewX)), 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; Mat4 skewMatrix(skewMatArray); _transform = _transform * skewMatrix; // adjust anchor point if (!_anchorPointInPoints.isZero()) { // FIXME:: Argh, Mat4 needs a "translate" method. // FIXME:: Although this is faster than multiplying a vec4 * mat4 _transform.m[12] += _transform.m[0] * -_anchorPointInPoints.x + _transform.m[4] * -_anchorPointInPoints.y; _transform.m[13] += _transform.m[1] * -_anchorPointInPoints.x + _transform.m[5] * -_anchorPointInPoints.y; } } if (_useAdditionalTransform) { _transform = _transform * _additionalTransform; } _transformDirty = false; } return _transform; } void Node::setNodeToParentTransform(const Mat4& transform) { _transform = transform; _transformDirty = false; _transformUpdated = true; } void Node::setAdditionalTransform(const AffineTransform& additionalTransform) { Mat4 tmp; CGAffineToGL(additionalTransform, tmp.m); setAdditionalTransform(&tmp); } void Node::setAdditionalTransform(Mat4* additionalTransform) { if (additionalTransform == nullptr) { _useAdditionalTransform = false; } else { _additionalTransform = *additionalTransform; _useAdditionalTransform = true; } _transformUpdated = _transformDirty = _inverseDirty = true; } AffineTransform Node::getParentToNodeAffineTransform() const { AffineTransform ret; GLToCGAffine(getParentToNodeTransform().m,&ret); return ret; } const Mat4& Node::getParentToNodeTransform() const { if ( _inverseDirty ) { _inverse = getNodeToParentTransform().getInversed(); _inverseDirty = false; } return _inverse; } AffineTransform Node::getNodeToWorldAffineTransform() const { return this->getNodeToParentAffineTransform(nullptr); } Mat4 Node::getNodeToWorldTransform() const { return this->getNodeToParentTransform(nullptr); } AffineTransform Node::getWorldToNodeAffineTransform() const { return AffineTransformInvert(this->getNodeToWorldAffineTransform()); } Mat4 Node::getWorldToNodeTransform() const { return getNodeToWorldTransform().getInversed(); } Vec2 Node::convertToNodeSpace(const Vec2& worldPoint) const { Mat4 tmp = getWorldToNodeTransform(); Vec3 vec3(worldPoint.x, worldPoint.y, 0); Vec3 ret; tmp.transformPoint(vec3,&ret); return Vec2(ret.x, ret.y); } Vec2 Node::convertToWorldSpace(const Vec2& nodePoint) const { Mat4 tmp = getNodeToWorldTransform(); Vec3 vec3(nodePoint.x, nodePoint.y, 0); Vec3 ret; tmp.transformPoint(vec3,&ret); return Vec2(ret.x, ret.y); } Vec2 Node::convertToNodeSpaceAR(const Vec2& worldPoint) const { Vec2 nodePoint(convertToNodeSpace(worldPoint)); return nodePoint - _anchorPointInPoints; } Vec2 Node::convertToWorldSpaceAR(const Vec2& nodePoint) const { return convertToWorldSpace(nodePoint + _anchorPointInPoints); } Vec2 Node::convertToWindowSpace(const Vec2& nodePoint) const { Vec2 worldPoint(this->convertToWorldSpace(nodePoint)); return _director->convertToUI(worldPoint); } // convenience methods which take a Touch instead of Vec2 Vec2 Node::convertTouchToNodeSpace(Touch *touch) const { return this->convertToNodeSpace(touch->getLocation()); } Vec2 Node::convertTouchToNodeSpaceAR(Touch *touch) const { Vec2 point = touch->getLocation(); return this->convertToNodeSpaceAR(point); } void Node::updateTransform() { // Recursively iterate over children for( const auto &child: _children) child->updateTransform(); } // MARK: components Component* Node::getComponent(const std::string& name) { if (_componentContainer) return _componentContainer->get(name); return nullptr; } bool Node::addComponent(Component *component) { // lazy alloc if (!_componentContainer) _componentContainer = new (std::nothrow) ComponentContainer(this); return _componentContainer->add(component); } bool Node::removeComponent(const std::string& name) { if (_componentContainer) return _componentContainer->remove(name); return false; } bool Node::removeComponent(Component *component) { if (_componentContainer) { return _componentContainer->remove(component); } return false; } void Node::removeAllComponents() { if (_componentContainer) _componentContainer->removeAll(); } #if CC_USE_PHYSICS // MARK: Physics void Node::setPhysicsBody(PhysicsBody* body) { if (_physicsBody == body) { return; } if (_physicsBody) { _physicsBody->removeFromWorld(); _physicsBody->_node = nullptr; _physicsBody->release(); _physicsBody = nullptr; _physicsBodyAssociatedWith--; auto parentNode = this; while (parentNode->_parent) { parentNode = parentNode->_parent; parentNode->_physicsBodyAssociatedWith--; } } if (body) { if (body->getNode()) { body->getNode()->setPhysicsBody(nullptr); } body->_node = this; body->retain(); _physicsBody = body; _physicsScaleStartX = _scaleX; _physicsScaleStartY = _scaleY; _physicsRotationOffset = _rotationZ_X; _physicsBodyAssociatedWith++; auto parentNode = this; while (parentNode->_parent) { parentNode = parentNode->_parent; parentNode->_physicsBodyAssociatedWith++; } auto scene = dynamic_cast(parentNode); if (scene && scene->getPhysicsWorld()) { _physicsTransformDirty = true; scene->getPhysicsWorld()->addBody(body); } } } void Node::updatePhysicsBodyTransform(const Mat4& parentTransform, uint32_t parentFlags, float parentScaleX, float parentScaleY) { _updateTransformFromPhysics = false; auto flags = processParentFlags(parentTransform, parentFlags); _updateTransformFromPhysics = true; auto scaleX = parentScaleX * _scaleX; auto scaleY = parentScaleY * _scaleY; if (_parent) { _physicsRotation = _parent->_physicsRotation + _rotationZ_X; } if (_physicsBody && ((flags & FLAGS_DIRTY_MASK) || _physicsTransformDirty)) { _physicsTransformDirty = false; Vec3 vec3(_contentSize.width * 0.5f, _contentSize.height * 0.5f, 0); Vec3 ret; _modelViewTransform.transformPoint(vec3, &ret); _physicsBody->setPosition(Vec2(ret.x, ret.y)); parentTransform.getInversed().transformPoint(&ret); _offsetX = ret.x - _position.x; _offsetY = ret.y - _position.y; _physicsBody->setScale(scaleX / _physicsScaleStartX, scaleY / _physicsScaleStartY); _physicsBody->setRotation(_physicsRotation - _physicsRotationOffset); } for (auto node : _children) { node->updatePhysicsBodyTransform(_modelViewTransform, flags, scaleX, scaleY); } } void Node::updateTransformFromPhysics(const Mat4& parentTransform, uint32_t parentFlags) { auto& newPosition = _physicsBody->getPosition(); auto& recordedPosition = _physicsBody->_recordedPosition; auto updateBodyTransform = _physicsWorld->_updateBodyTransform; if (parentFlags || recordedPosition.x != newPosition.x || recordedPosition.y != newPosition.y) { recordedPosition = newPosition; Vec3 vec3(newPosition.x, newPosition.y, 0); Vec3 ret; parentTransform.getInversed().transformPoint(vec3, &ret); setPosition(ret.x - _offsetX, ret.y - _offsetY); } _physicsRotation = _physicsBody->getRotation(); setRotation(_physicsRotation - _parent->_physicsRotation + _physicsRotationOffset); _physicsWorld->_updateBodyTransform = updateBodyTransform; } #endif //CC_USE_PHYSICS // MARK: Opacity and Color GLubyte Node::getOpacity(void) const { return _realOpacity; } GLubyte Node::getDisplayedOpacity() const { return _displayedOpacity; } void Node::setOpacity(GLubyte opacity) { _displayedOpacity = _realOpacity = opacity; updateCascadeOpacity(); } void Node::updateDisplayedOpacity(GLubyte parentOpacity) { _displayedOpacity = _realOpacity * parentOpacity/255.0; updateColor(); if (_cascadeOpacityEnabled) { for(const auto& child : _children) { child->updateDisplayedOpacity(_displayedOpacity); } } } bool Node::isCascadeOpacityEnabled(void) const { return _cascadeOpacityEnabled; } void Node::setCascadeOpacityEnabled(bool cascadeOpacityEnabled) { if (_cascadeOpacityEnabled == cascadeOpacityEnabled) { return; } _cascadeOpacityEnabled = cascadeOpacityEnabled; if (cascadeOpacityEnabled) { updateCascadeOpacity(); } else { disableCascadeOpacity(); } } void Node::updateCascadeOpacity() { GLubyte parentOpacity = 255; if (_parent != nullptr && _parent->isCascadeOpacityEnabled()) { parentOpacity = _parent->getDisplayedOpacity(); } updateDisplayedOpacity(parentOpacity); } void Node::disableCascadeOpacity() { _displayedOpacity = _realOpacity; for(const auto& child : _children) { child->updateDisplayedOpacity(255); } } const Color3B& Node::getColor(void) const { return _realColor; } const Color3B& Node::getDisplayedColor() const { return _displayedColor; } void Node::setColor(const Color3B& color) { _displayedColor = _realColor = color; updateCascadeColor(); } void Node::updateDisplayedColor(const Color3B& parentColor) { _displayedColor.r = _realColor.r * parentColor.r/255.0; _displayedColor.g = _realColor.g * parentColor.g/255.0; _displayedColor.b = _realColor.b * parentColor.b/255.0; updateColor(); if (_cascadeColorEnabled) { for(const auto &child : _children) { child->updateDisplayedColor(_displayedColor); } } } bool Node::isCascadeColorEnabled(void) const { return _cascadeColorEnabled; } void Node::setCascadeColorEnabled(bool cascadeColorEnabled) { if (_cascadeColorEnabled == cascadeColorEnabled) { return; } _cascadeColorEnabled = cascadeColorEnabled; if (_cascadeColorEnabled) { updateCascadeColor(); } else { disableCascadeColor(); } } void Node::updateCascadeColor() { Color3B parentColor = Color3B::WHITE; if (_parent && _parent->isCascadeColorEnabled()) { parentColor = _parent->getDisplayedColor(); } updateDisplayedColor(parentColor); } void Node::disableCascadeColor() { for(const auto& child : _children) { child->updateDisplayedColor(Color3B::WHITE); } } // MARK: Camera void Node::setCameraMask(unsigned short mask, bool applyChildren) { _cameraMask = mask; if (applyChildren) { for (const auto& child : _children) { child->setCameraMask(mask, applyChildren); } } } // MARK: Deprecated __NodeRGBA::__NodeRGBA() { CCLOG("NodeRGBA deprecated."); } NS_CC_END