axmol/3rdparty/box2d/include/box2d/b2_distance.h

172 lines
4.7 KiB
C++

// MIT License
// Copyright (c) 2019 Erin Catto
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef B2_DISTANCE_H
#define B2_DISTANCE_H
#include "b2_api.h"
#include "b2_math.h"
class b2Shape;
/// A distance proxy is used by the GJK algorithm.
/// It encapsulates any shape.
struct B2_API b2DistanceProxy
{
b2DistanceProxy() : m_vertices(nullptr), m_count(0), m_radius(0.0f) {}
/// Initialize the proxy using the given shape. The shape
/// must remain in scope while the proxy is in use.
void Set(const b2Shape* shape, int32 index);
/// Initialize the proxy using a vertex cloud and radius. The vertices
/// must remain in scope while the proxy is in use.
void Set(const b2Vec2* vertices, int32 count, float radius);
/// Get the supporting vertex index in the given direction.
int32 GetSupport(const b2Vec2& d) const;
/// Get the supporting vertex in the given direction.
const b2Vec2& GetSupportVertex(const b2Vec2& d) const;
/// Get the vertex count.
int32 GetVertexCount() const;
/// Get a vertex by index. Used by b2Distance.
const b2Vec2& GetVertex(int32 index) const;
b2Vec2 m_buffer[2];
const b2Vec2* m_vertices;
int32 m_count;
float m_radius;
};
/// Used to warm start b2Distance.
/// Set count to zero on first call.
struct B2_API b2SimplexCache
{
float metric; ///< length or area
uint16 count;
uint8 indexA[3]; ///< vertices on shape A
uint8 indexB[3]; ///< vertices on shape B
};
/// Input for b2Distance.
/// You have to option to use the shape radii
/// in the computation. Even
struct B2_API b2DistanceInput
{
b2DistanceProxy proxyA;
b2DistanceProxy proxyB;
b2Transform transformA;
b2Transform transformB;
bool useRadii;
};
/// Output for b2Distance.
struct B2_API b2DistanceOutput
{
b2Vec2 pointA; ///< closest point on shapeA
b2Vec2 pointB; ///< closest point on shapeB
float distance;
int32 iterations; ///< number of GJK iterations used
};
/// Compute the closest points between two shapes. Supports any combination of:
/// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output.
/// On the first call set b2SimplexCache.count to zero.
B2_API void b2Distance(b2DistanceOutput* output,
b2SimplexCache* cache,
const b2DistanceInput* input);
/// Input parameters for b2ShapeCast
struct B2_API b2ShapeCastInput
{
b2DistanceProxy proxyA;
b2DistanceProxy proxyB;
b2Transform transformA;
b2Transform transformB;
b2Vec2 translationB;
};
/// Output results for b2ShapeCast
struct B2_API b2ShapeCastOutput
{
b2Vec2 point;
b2Vec2 normal;
float lambda;
int32 iterations;
};
/// Perform a linear shape cast of shape B moving and shape A fixed. Determines the hit point, normal, and translation fraction.
/// @returns true if hit, false if there is no hit or an initial overlap
B2_API bool b2ShapeCast(b2ShapeCastOutput* output, const b2ShapeCastInput* input);
//////////////////////////////////////////////////////////////////////////
inline int32 b2DistanceProxy::GetVertexCount() const
{
return m_count;
}
inline const b2Vec2& b2DistanceProxy::GetVertex(int32 index) const
{
b2Assert(0 <= index && index < m_count);
return m_vertices[index];
}
inline int32 b2DistanceProxy::GetSupport(const b2Vec2& d) const
{
int32 bestIndex = 0;
float bestValue = b2Dot(m_vertices[0], d);
for (int32 i = 1; i < m_count; ++i)
{
float value = b2Dot(m_vertices[i], d);
if (value > bestValue)
{
bestIndex = i;
bestValue = value;
}
}
return bestIndex;
}
inline const b2Vec2& b2DistanceProxy::GetSupportVertex(const b2Vec2& d) const
{
int32 bestIndex = 0;
float bestValue = b2Dot(m_vertices[0], d);
for (int32 i = 1; i < m_count; ++i)
{
float value = b2Dot(m_vertices[i], d);
if (value > bestValue)
{
bestIndex = i;
bestValue = value;
}
}
return m_vertices[bestIndex];
}
#endif