axmol/thirdparty/openal/alc/effects/modulator.cpp

194 lines
6.0 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Chris Robinson.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <cstdlib>
#include <iterator>
#include "alc/effects/base.h"
#include "almalloc.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "core/ambidefs.h"
#include "core/bufferline.h"
#include "core/context.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effectslot.h"
#include "core/filters/biquad.h"
#include "core/mixer.h"
#include "intrusive_ptr.h"
namespace {
using uint = unsigned int;
#define MAX_UPDATE_SAMPLES 128
#define WAVEFORM_FRACBITS 24
#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS)
#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1)
inline float Sin(uint index)
{
constexpr float scale{al::numbers::pi_v<float>*2.0f / WAVEFORM_FRACONE};
return std::sin(static_cast<float>(index) * scale);
}
inline float Saw(uint index)
{ return static_cast<float>(index)*(2.0f/WAVEFORM_FRACONE) - 1.0f; }
inline float Square(uint index)
{ return static_cast<float>(static_cast<int>((index>>(WAVEFORM_FRACBITS-2))&2) - 1); }
inline float One(uint) { return 1.0f; }
template<float (&func)(uint)>
void Modulate(float *RESTRICT dst, uint index, const uint step, size_t todo)
{
for(size_t i{0u};i < todo;i++)
{
index += step;
index &= WAVEFORM_FRACMASK;
dst[i] = func(index);
}
}
struct ModulatorState final : public EffectState {
void (*mGetSamples)(float*RESTRICT, uint, const uint, size_t){};
uint mIndex{0};
uint mStep{1};
struct {
uint mTargetChannel{InvalidChannelIndex};
BiquadFilter mFilter;
float mCurrentGain{};
float mTargetGain{};
} mChans[MaxAmbiChannels];
void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
const EffectTarget target) override;
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
const al::span<FloatBufferLine> samplesOut) override;
DEF_NEWDEL(ModulatorState)
};
void ModulatorState::deviceUpdate(const DeviceBase*, const BufferStorage*)
{
for(auto &e : mChans)
{
e.mTargetChannel = InvalidChannelIndex;
e.mFilter.clear();
e.mCurrentGain = 0.0f;
}
}
void ModulatorState::update(const ContextBase *context, const EffectSlot *slot,
const EffectProps *props, const EffectTarget target)
{
const DeviceBase *device{context->mDevice};
const float step{props->Modulator.Frequency / static_cast<float>(device->Frequency)};
mStep = fastf2u(clampf(step*WAVEFORM_FRACONE, 0.0f, float{WAVEFORM_FRACONE-1}));
if(mStep == 0)
mGetSamples = Modulate<One>;
else if(props->Modulator.Waveform == ModulatorWaveform::Sinusoid)
mGetSamples = Modulate<Sin>;
else if(props->Modulator.Waveform == ModulatorWaveform::Sawtooth)
mGetSamples = Modulate<Saw>;
else /*if(props->Modulator.Waveform == ModulatorWaveform::Square)*/
mGetSamples = Modulate<Square>;
float f0norm{props->Modulator.HighPassCutoff / static_cast<float>(device->Frequency)};
f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f);
/* Bandwidth value is constant in octaves. */
mChans[0].mFilter.setParamsFromBandwidth(BiquadType::HighPass, f0norm, 1.0f, 0.75f);
for(size_t i{1u};i < slot->Wet.Buffer.size();++i)
mChans[i].mFilter.copyParamsFrom(mChans[0].mFilter);
mOutTarget = target.Main->Buffer;
auto set_channel = [this](size_t idx, uint outchan, float outgain)
{
mChans[idx].mTargetChannel = outchan;
mChans[idx].mTargetGain = outgain;
};
target.Main->setAmbiMixParams(slot->Wet, slot->Gain, set_channel);
}
void ModulatorState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
for(size_t base{0u};base < samplesToDo;)
{
alignas(16) float modsamples[MAX_UPDATE_SAMPLES];
const size_t td{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)};
mGetSamples(modsamples, mIndex, mStep, td);
mIndex += static_cast<uint>(mStep * td);
mIndex &= WAVEFORM_FRACMASK;
auto chandata = std::begin(mChans);
for(const auto &input : samplesIn)
{
const size_t outidx{chandata->mTargetChannel};
if(outidx != InvalidChannelIndex)
{
alignas(16) float temps[MAX_UPDATE_SAMPLES];
chandata->mFilter.process({&input[base], td}, temps);
for(size_t i{0u};i < td;i++)
temps[i] *= modsamples[i];
MixSamples({temps, td}, samplesOut[outidx].data()+base, chandata->mCurrentGain,
chandata->mTargetGain, samplesToDo-base);
}
++chandata;
}
base += td;
}
}
struct ModulatorStateFactory final : public EffectStateFactory {
al::intrusive_ptr<EffectState> create() override
{ return al::intrusive_ptr<EffectState>{new ModulatorState{}}; }
};
} // namespace
EffectStateFactory *ModulatorStateFactory_getFactory()
{
static ModulatorStateFactory ModulatorFactory{};
return &ModulatorFactory;
}