mirror of https://github.com/axmolengine/axmol.git
56 lines
1.9 KiB
C++
56 lines
1.9 KiB
C++
/*
|
|
* Copyright (c) 2007-2009 Erin Catto http://www.gphysics.com
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include <Box2D/Common/b2Math.h>
|
|
|
|
const b2Vec2 b2Vec2_zero(0.0f, 0.0f);
|
|
const b2Mat22 b2Mat22_identity(1.0f, 0.0f, 0.0f, 1.0f);
|
|
const b2Transform b2Transform_identity(b2Vec2_zero, b2Mat22_identity);
|
|
|
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
|
/// than computing the inverse in one-shot cases.
|
|
b2Vec3 b2Mat33::Solve33(const b2Vec3& b) const
|
|
{
|
|
float32 det = b2Dot(col1, b2Cross(col2, col3));
|
|
if (det != 0.0f)
|
|
{
|
|
det = 1.0f / det;
|
|
}
|
|
b2Vec3 x;
|
|
x.x = det * b2Dot(b, b2Cross(col2, col3));
|
|
x.y = det * b2Dot(col1, b2Cross(b, col3));
|
|
x.z = det * b2Dot(col1, b2Cross(col2, b));
|
|
return x;
|
|
}
|
|
|
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
|
/// than computing the inverse in one-shot cases.
|
|
b2Vec2 b2Mat33::Solve22(const b2Vec2& b) const
|
|
{
|
|
float32 a11 = col1.x, a12 = col2.x, a21 = col1.y, a22 = col2.y;
|
|
float32 det = a11 * a22 - a12 * a21;
|
|
if (det != 0.0f)
|
|
{
|
|
det = 1.0f / det;
|
|
}
|
|
b2Vec2 x;
|
|
x.x = det * (a22 * b.x - a12 * b.y);
|
|
x.y = det * (a11 * b.y - a21 * b.x);
|
|
return x;
|
|
}
|