axmol/thirdparty/clipper2/clipper.offset.cpp

472 lines
14 KiB
C++

/*******************************************************************************
* Author : Angus Johnson *
* Version : Clipper2 - ver.1.0.3 *
* Date : 20 August 2022 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2022 *
* Purpose : Path Offset (Inflate/Shrink) *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
#include <cmath>
#include "clipper.h"
#include "clipper.offset.h"
namespace Clipper2Lib {
const double default_arc_tolerance = 0.25;
const double floating_point_tolerance = 1e-12;
//------------------------------------------------------------------------------
// Miscellaneous methods
//------------------------------------------------------------------------------
Paths64::size_type GetLowestPolygonIdx(const Paths64& paths)
{
Paths64::size_type result = 0;
Point64 lp = Point64(static_cast<int64_t>(0),
std::numeric_limits<int64_t>::min());
for (Paths64::size_type i = 0 ; i < paths.size(); ++i)
for (const Point64& p : paths[i])
if (p.y > lp.y || (p.y == lp.y && p.x < lp.x))
{
result = i;
lp = p;
}
return result;
}
PointD GetUnitNormal(const Point64& pt1, const Point64& pt2)
{
double dx, dy, inverse_hypot;
if (pt1 == pt2) return PointD(0.0, 0.0);
dx = static_cast<double>(pt2.x - pt1.x);
dy = static_cast<double>(pt2.y - pt1.y);
inverse_hypot = 1.0 / hypot(dx, dy);
dx *= inverse_hypot;
dy *= inverse_hypot;
return PointD(dy, -dx);
}
inline bool AlmostZero(double value, double epsilon = 0.001)
{
return std::fabs(value) < epsilon;
}
inline double Hypot(double x, double y)
{
//see https://stackoverflow.com/a/32436148/359538
return std::sqrt(x * x + y * y);
}
inline PointD NormalizeVector(const PointD& vec)
{
double h = Hypot(vec.x, vec.y);
if (AlmostZero(h)) return PointD(0,0);
double inverseHypot = 1 / h;
return PointD(vec.x * inverseHypot, vec.y * inverseHypot);
}
inline PointD GetAvgUnitVector(const PointD& vec1, const PointD& vec2)
{
return NormalizeVector(PointD(vec1.x + vec2.x, vec1.y + vec2.y));
}
inline bool IsClosedPath(EndType et)
{
return et == EndType::Polygon || et == EndType::Joined;
}
//------------------------------------------------------------------------------
// ClipperOffset methods
//------------------------------------------------------------------------------
void ClipperOffset::AddPath(const Path64& path, JoinType jt_, EndType et_)
{
Paths64 paths;
paths.push_back(path);
AddPaths(paths, jt_, et_);
}
void ClipperOffset::AddPaths(const Paths64 &paths, JoinType jt_, EndType et_)
{
if (paths.size() == 0) return;
groups_.push_back(PathGroup(paths, jt_, et_));
}
void ClipperOffset::AddPath(const Clipper2Lib::PathD& path, JoinType jt_, EndType et_)
{
PathsD paths;
paths.push_back(path);
AddPaths(paths, jt_, et_);
}
void ClipperOffset::AddPaths(const PathsD& paths, JoinType jt_, EndType et_)
{
if (paths.size() == 0) return;
groups_.push_back(PathGroup(PathsDToPaths64(paths), jt_, et_));
}
void ClipperOffset::BuildNormals(const Path64& path)
{
norms.clear();
norms.reserve(path.size());
if (path.size() == 0) return;
Path64::const_iterator path_iter, path_last_iter = --path.cend();
for (path_iter = path.cbegin(); path_iter != path_last_iter; ++path_iter)
norms.push_back(GetUnitNormal(*path_iter,*(path_iter +1)));
norms.push_back(GetUnitNormal(*path_last_iter, *(path.cbegin())));
}
inline PointD TranslatePoint(const PointD& pt, double dx, double dy)
{
return PointD(pt.x + dx, pt.y + dy);
}
inline PointD ReflectPoint(const PointD& pt, const PointD& pivot)
{
return PointD(pivot.x + (pivot.x - pt.x), pivot.y + (pivot.y - pt.y));
}
PointD IntersectPoint(const PointD& pt1a, const PointD& pt1b,
const PointD& pt2a, const PointD& pt2b)
{
if (pt1a.x == pt1b.x) //vertical
{
if (pt2a.x == pt2b.x) return PointD(0, 0);
double m2 = (pt2b.y - pt2a.y) / (pt2b.x - pt2a.x);
double b2 = pt2a.y - m2 * pt2a.x;
return PointD(pt1a.x, m2 * pt1a.x + b2);
}
else if (pt2a.x == pt2b.x) //vertical
{
double m1 = (pt1b.y - pt1a.y) / (pt1b.x - pt1a.x);
double b1 = pt1a.y - m1 * pt1a.x;
return PointD(pt2a.x, m1 * pt2a.x + b1);
}
else
{
double m1 = (pt1b.y - pt1a.y) / (pt1b.x - pt1a.x);
double b1 = pt1a.y - m1 * pt1a.x;
double m2 = (pt2b.y - pt2a.y) / (pt2b.x - pt2a.x);
double b2 = pt2a.y - m2 * pt2a.x;
if (m1 == m2) return PointD(0, 0);
double x = (b2 - b1) / (m1 - m2);
return PointD(x, m1 * x + b1);
}
}
void ClipperOffset::DoSquare(PathGroup& group, const Path64& path, size_t j, size_t k)
{
// square off at delta distance from original vertex
PointD vec, pt, ptQ, pt1, pt2, pt3, pt4;
// using the reciprocal of unit normals (as unit vectors)
// get the average unit vector ...
vec = GetAvgUnitVector(
PointD(-norms[k].y, norms[k].x),
PointD(norms[j].y, -norms[j].x));
// now offset the original vertex delta units along unit vector
ptQ = PointD(path[j]);
ptQ = TranslatePoint(ptQ, delta_ * vec.x, delta_ * vec.y);
// get perpendicular vertices
pt1 = TranslatePoint(ptQ, delta_ * vec.y, delta_ * -vec.x);
pt2 = TranslatePoint(ptQ, delta_ * -vec.y, delta_ * vec.x);
// get 2 vertices along one edge offset
pt3.x = path[k].x + norms[k].x * delta_;
pt3.y = path[k].y + norms[k].y * delta_;
pt4.x = path[j].x + norms[k].x * delta_;
pt4.y = path[j].y + norms[k].y * delta_;
// get the intersection point
pt = IntersectPoint(pt1, pt2, pt3, pt4);
group.path_.push_back(Point64(pt));
//get the second intersect point through reflecion
group.path_.push_back(Point64(ReflectPoint(pt, ptQ)));
}
void ClipperOffset::DoMiter(PathGroup& group, const Path64& path, size_t j, size_t k, double cos_a)
{
double q = delta_ / (cos_a + 1);
group.path_.push_back(Point64(
path[j].x + (norms[k].x + norms[j].x) * q,
path[j].y + (norms[k].y + norms[j].y) * q));
}
void ClipperOffset::DoRound(PathGroup& group, const Point64& pt,
const PointD& norm1, const PointD& norm2, double angle)
{
//even though angle may be negative this is a convex join
PointD pt2 = PointD(norm2.x * delta_, norm2.y * delta_);
int steps = static_cast<int>(std::round(steps_per_rad_ * std::abs(angle) + 0.501));
group.path_.push_back(Point64(pt.x + pt2.x, pt.y + pt2.y));
double step_sin = std::sin(angle / steps);
double step_cos = std::cos(angle / steps);
for (int i = 0; i < steps; i++)
{
pt2 = PointD(pt2.x * step_cos - step_sin * pt2.y,
pt2.x * step_sin + pt2.y * step_cos);
group.path_.push_back(Point64(pt.x + pt2.x, pt.y + pt2.y));
}
pt2 = PointD(norm1.x * delta_, norm1.y * delta_);
group.path_.push_back(Point64(pt.x + pt2.x, pt.y + pt2.y));
}
void ClipperOffset::OffsetPoint(PathGroup& group, Path64& path, size_t j, size_t& k)
{
//A: angle between adjoining edges (on left side WRT winding direction).
//A == 0 deg (or A == 360 deg): collinear edges heading in same direction
//A == 180 deg: collinear edges heading in opposite directions (i.e. a 'spike')
//sin(A) < 0: convex on left.
//cos(A) > 0: angles on both left and right sides > 90 degrees
double sin_a = norms[k].x * norms[j].y - norms[j].x * norms[k].y;
if (sin_a > 1.0) sin_a = 1.0;
else if (sin_a < -1.0) sin_a = -1.0;
if (AlmostZero(sin_a) || (sin_a * delta_ < 0)) // a concave offset
{
Point64 p1 = Point64(
path[j].x + norms[k].x * delta_,
path[j].y + norms[k].y * delta_);
Point64 p2 = Point64(
path[j].x + norms[j].x * delta_,
path[j].y + norms[j].y * delta_);
group.path_.push_back(p1);
if (p1 != p2)
{
group.path_.push_back(path[j]); // this aids with clipping removal later
group.path_.push_back(p2);
}
}
else
{
// convex offsets here ...
double cos_a = DotProduct(norms[j], norms[k]);
switch (join_type_)
{
case JoinType::Miter:
// see offset_triginometry3.svg
if (1 + cos_a < temp_lim_) DoSquare(group, path, j, k);
else DoMiter(group, path, j, k, cos_a);
break;
case JoinType::Square:
// angles >= 90 deg. don't need squaring
if (cos_a >= 0) DoMiter(group, path, j, k, cos_a);
else DoSquare(group, path, j, k);
break;
default:
DoRound(group, path[j], norms[j], norms[k], std::atan2(sin_a, cos_a));
break;
}
}
k = j;
}
void ClipperOffset::OffsetPolygon(PathGroup& group, Path64& path)
{
group.path_.clear();
for (Path64::size_type i = 0, j = path.size() -1; i < path.size(); j = i, ++i)
OffsetPoint(group, path, i, j);
group.paths_out_.push_back(group.path_);
}
void ClipperOffset::OffsetOpenJoined(PathGroup& group, Path64& path)
{
OffsetPolygon(group, path);
std::reverse(path.begin(), path.end());
BuildNormals(path);
OffsetPolygon(group, path);
}
void ClipperOffset::OffsetOpenPath(PathGroup& group, Path64& path, EndType end_type)
{
group.path_.clear();
for (Path64::size_type i = 1, j = 0; i < path.size() -1; j = i, ++i)
OffsetPoint(group, path, i, j);
PathD::size_type j = norms.size() - 1, k = j - 1;
norms[j] = PointD(-norms[k].x, -norms[k].y);
switch (end_type)
{
case EndType::Butt:
group.path_.push_back(Point64(
path[j].x + norms[k].x * delta_,
path[j].y + norms[k].y * delta_));
group.path_.push_back(Point64(
path[j].x - norms[k].x * delta_,
path[j].y - norms[k].y * delta_));
break;
case EndType::Round:
DoRound(group, path[j], norms[j], norms[k], PI);
break;
default:
DoSquare(group, path, j, k);
break;
}
//reverse normals ...
for (size_t i = k; i > 0; i--)
norms[i] = PointD(-norms[i - 1].x, -norms[i - 1].y);
norms[0] = PointD(-norms[1].x, -norms[1].y);
for (size_t i = k; i > 0; i--)
OffsetPoint(group, path, i, j);
//now cap the start ...
switch (end_type)
{
case EndType::Butt:
group.path_.push_back(Point64(
path[0].x + norms[1].x * delta_,
path[0].y + norms[1].y * delta_));
group.path_.push_back(Point64(
path[0].x - norms[1].x * delta_,
path[0].y - norms[1].y * delta_));
break;
case EndType::Round:
DoRound(group, path[0], norms[0], norms[1], PI);
break;
default:
DoSquare(group, path, 0, 1);
break;
}
group.paths_out_.push_back(group.path_);
}
void ClipperOffset::DoGroupOffset(PathGroup& group, double delta)
{
if (group.end_type_ != EndType::Polygon) delta = std::abs(delta) / 2;
bool isClosedPaths = IsClosedPath(group.end_type_);
if (isClosedPaths)
{
//the lowermost polygon must be an outer polygon. So we can use that as the
//designated orientation for outer polygons (needed for tidy-up clipping)
Paths64::size_type lowestIdx = GetLowestPolygonIdx(group.paths_in_);
// nb: don't use the default orientation here ...
double area = Area(group.paths_in_[lowestIdx]);
if (area == 0) return;
group.is_reversed_ = (area < 0);
if (group.is_reversed_) delta = -delta;
}
else
group.is_reversed_ = false;
delta_ = delta;
double absDelta = std::abs(delta_);
join_type_ = group.join_type_;
double arcTol = (arc_tolerance_ > floating_point_tolerance ? arc_tolerance_
: std::log10(2 + absDelta) * default_arc_tolerance); // empirically derived
//calculate a sensible number of steps (for 360 deg for the given offset
if (group.join_type_ == JoinType::Round || group.end_type_ == EndType::Round)
{
steps_per_rad_ = PI / std::acos(1 - arcTol / absDelta) / (PI *2);
}
bool is_closed_path = IsClosedPath(group.end_type_);
Paths64::const_iterator path_iter;
for(path_iter = group.paths_in_.cbegin(); path_iter != group.paths_in_.cend(); ++path_iter)
{
Path64 path = StripDuplicates(*path_iter, is_closed_path);
Path64::size_type cnt = path.size();
if (cnt == 0) continue;
if (cnt == 1) // single point - only valid with open paths
{
group.path_ = Path64();
//single vertex so build a circle or square ...
if (group.join_type_ == JoinType::Round)
{
double radius = absDelta;
if (group.end_type_ == EndType::Polygon) radius *= 0.5;
group.path_ = Ellipse(path[0], radius, radius);
}
else
{
group.path_.reserve(4);
group.path_.push_back(Point64(path[0].x - delta_, path[0].y - delta_));
group.path_.push_back(Point64(path[0].x + delta_, path[0].y - delta_));
group.path_.push_back(Point64(path[0].x + delta_, path[0].y + delta_));
group.path_.push_back(Point64(path[0].x - delta_, path[0].y + delta_));
}
group.paths_out_.push_back(group.path_);
}
else
{
BuildNormals(path);
if (group.end_type_ == EndType::Polygon) OffsetPolygon(group, path);
else if (group.end_type_ == EndType::Joined) OffsetOpenJoined(group, path);
else OffsetOpenPath(group, path, group.end_type_);
}
}
if (!merge_groups_)
{
//clean up self-intersections ...
Clipper64 c;
c.PreserveCollinear = false;
//the solution should retain the orientation of the input
c.ReverseSolution = reverse_solution_ != group.is_reversed_;
c.AddSubject(group.paths_out_);
if (group.is_reversed_)
c.Execute(ClipType::Union, FillRule::Negative, group.paths_out_);
else
c.Execute(ClipType::Union, FillRule::Positive, group.paths_out_);
}
solution.reserve(solution.size() + group.paths_out_.size());
copy(group.paths_out_.begin(), group.paths_out_.end(), back_inserter(solution));
group.paths_out_.clear();
}
Paths64 ClipperOffset::Execute(double delta)
{
solution.clear();
if (std::abs(delta) < default_arc_tolerance)
{
for (const PathGroup& group : groups_)
{
solution.reserve(solution.size() + group.paths_in_.size());
copy(group.paths_in_.begin(), group.paths_in_.end(), back_inserter(solution));
}
return solution;
}
temp_lim_ = (miter_limit_ <= 1) ?
2.0 :
2.0 / (miter_limit_ * miter_limit_);
std::vector<PathGroup>::iterator groups_iter;
for (groups_iter = groups_.begin();
groups_iter != groups_.end(); ++groups_iter)
{
DoGroupOffset(*groups_iter, delta);
}
if (merge_groups_ && groups_.size() > 0)
{
//clean up self-intersections ...
Clipper64 c;
c.PreserveCollinear = false;
//the solution should retain the orientation of the input
c.ReverseSolution = reverse_solution_ != groups_[0].is_reversed_;
c.AddSubject(solution);
if (groups_[0].is_reversed_)
c.Execute(ClipType::Union, FillRule::Negative, solution);
else
c.Execute(ClipType::Union, FillRule::Positive, solution);
}
return solution;
}
} // namespace