axmol/core/renderer/backend/metal/ShaderModuleMTL.mm

347 lines
12 KiB
Plaintext

/****************************************************************************
Copyright (c) 2018-2019 Xiamen Yaji Software Co., Ltd.
https://axmolengine.github.io/
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "ShaderModuleMTL.h"
#include "DeviceMTL.h"
#include "yasio/ibstream.hpp"
#include "yasio/sz.hpp"
#include "glslcc/sgs-spec.h"
NS_AX_BACKEND_BEGIN
struct SLCReflectContext {
sgs_chunk_refl* refl;
yasio::fast_ibstream_view* data;
};
ShaderModuleMTL::ShaderModuleMTL(id<MTLDevice> mtlDevice, ShaderStage stage, std::string_view source)
: ShaderModule(stage)
{
yasio::fast_ibstream_view ibs(source.data(), source.length());
uint32_t fourccId = ibs.read<uint32_t>();
if(fourccId != SGS_CHUNK) {
assert(false);
return;
}
auto sgs_size = ibs.read<uint32_t>(); // always 0, doesn't matter
struct sgs_chunk chunk;
ibs.read_bytes(&chunk, static_cast<int>(sizeof(chunk)));
std::string_view mslCode;
do {
fourccId = ibs.read<uint32_t>();
if(fourccId != SGS_CHUNK_STAG) {
assert(false);
return; // error
}
auto stage_size = ibs.read<uint32_t>(); // stage_size
auto stage_id = ibs.read<uint32_t>(); // stage_id
ShaderStage ref_stage = (ShaderStage)-1;
if (stage_id == SGS_STAGE_VERTEX)
ref_stage = ShaderStage::VERTEX;
else if(stage_id == SGS_STAGE_FRAGMENT)
ref_stage = ShaderStage::FRAGMENT;
assert(ref_stage == stage);
int code_size = 0;
fourccId = ibs.read<uint32_t>();
if (fourccId == SGS_CHUNK_CODE) {
code_size = ibs.read<int>();
mslCode = ibs.read_bytes(code_size);
}
else if(fourccId == SGS_CHUNK_DATA) {
code_size = ibs.read<int>();
mslCode = ibs.read_bytes(code_size);
}
else {
// no text or binary code chunk
assert(false);
}
sgs_chunk_refl refl;
size_t refl_size = 0;
if(!ibs.eof()) { // try read reflect info
fourccId = ibs.read<uint32_t>();
if(fourccId == SGS_CHUNK_REFL) {
/*
REFL: Reflection data for the shader stage
struct sgs_chunk_refl: reflection data header
struct sgs_refl_input[]: array of vertex-shader input attributes (see sgs_chunk_refl for number of inputs)
struct sgs_refl_uniformbuffer[]: array of uniform buffer objects (see sgs_chunk_refl for number of uniform buffers)
struct sgs_refl_texture[]: array of texture objects (see sgs_chunk_refl for number of textures)
struct sgs_refl_texture[]: array of storage image objects (see sgs_chunk_refl for number of storage images)
struct sgs_refl_buffer[]: array of storage buffer objects (see sgs_chunk_refl for number of storage buffers)
*/
refl_size = ibs.read<uint32_t>();
ibs.read_bytes(&refl, static_cast<int>(sizeof(refl)));
SLCReflectContext context{&refl, &ibs};
// refl_inputs
parseAttibute(&context);
// refl_uniformbuffers
parseUniform(&context);
// refl_textures
parseTexture(&context);
// refl_storage_images: ignore
ibs.advance(refl.num_storage_images * sizeof(sgs_refl_texture));
// refl_storage_buffers: ignore
ibs.advance(refl.num_storage_buffers * sizeof(sgs_refl_buffer));
}
else {
ibs.advance(-4); // move readptr back 4 bytes
}
}
assert(ibs.eof());
} while(false); // iterator stages, current only 1 stage
auto metalShader = mslCode.data();
NSString* shader = [NSString stringWithUTF8String:metalShader];
NSError* error;
id<MTLLibrary> library = [mtlDevice newLibraryWithSource:shader options:nil error:&error];
if (!library)
{
NSLog(@"Can not compile metal shader: %@", error);
NSLog(@"%s", metalShader);
assert(false);
return;
}
_mtlFunction = [library newFunctionWithName:@"main0"];
if (!_mtlFunction)
{
NSLog(@"metal shader is ---------------");
NSLog(@"%s", metalShader);
// NSLog(@"%s", glslopt_get_log(glslShader));
assert(false);
}
/*
=== attrib: a_position, location: 0
=== attrib: a_color, location: 1
=== attrib: a_texCoord, location: 2
*/
auto vertexAttribs = [_mtlFunction vertexAttributes];
for (MTLVertexAttribute* attrib in vertexAttribs) {
std::string attribName = [[attrib name] UTF8String];
int index = static_cast<int>([attrib attributeIndex]);
auto& attrinfo = _attributeInfo[attribName];
// !!!Fix attrib location due to glslcc reorder attribs, but reflect info not sync
if (index != attrinfo.location) {
attrinfo.location = index;
ax::print("=== Fix attrib: %s, location from %d to %d", attribName.c_str(), (int)attrinfo.location, index);
}
}
setBuiltinUniformLocation();
setBuiltinAttributeLocation();
[library release];
}
ShaderModuleMTL::~ShaderModuleMTL()
{
[_mtlFunction release];
}
void ShaderModuleMTL::parseAttibute(SLCReflectContext* context)
{
for(int i = 0; i < context->refl->num_inputs; ++i) {
sgs_refl_input attrib{0};
context->data->read_bytes(&attrib, sizeof(attrib));
AttributeBindInfo attributeInfo;
attributeInfo.attributeName = attrib.name;
attributeInfo.location = attrib.loc;
_attributeInfo[attributeInfo.attributeName] = attributeInfo;
}
}
void ShaderModuleMTL::parseUniform(SLCReflectContext* context)
{
_uniformBufferSize = 0;
for(int i = 0; i < context->refl->num_uniform_buffers; ++i) {
sgs_refl_ub ub{0};
context->data->read_bytes(&ub, sizeof(ub));
for(int k = 0; k < ub.num_members; ++k) {
sgs_refl_ub_member ubm {0};
context->data->read_bytes(&ubm, sizeof(ubm));
auto location = YASIO_SZ_ALIGN(ubm.offset, 16); // align offset
auto alignedSize = YASIO_SZ_ALIGN(ubm.size_bytes, 16); // align sizeBytes
UniformInfo uniform;
uniform.count = ubm.array_size;
uniform.location = location;
uniform.size = ubm.size_bytes; // ubm.size_bytes; // nextLocation - location;
uniform.bufferOffset = location;
uniform.needConvert = (ubm.format == SGS_VERTEXFORMAT_FLOAT3) ? true : false;
// TODO: store basicType in sgs or optimize uniform buffer store
uniform.type = (ubm.format != SGS_VERTEXFORMAT_INT && ubm.format != SGS_VERTEXFORMAT_INT2
&& ubm.format != SGS_VERTEXFORMAT_INT3 && ubm.format != SGS_VERTEXFORMAT_INT4) ? SGS_VERTEXFORMAT_FLOAT : SGS_VERTEXFORMAT_INT;
uniform.isMatrix = ubm.format == SGS_VERTEXFORMAT_MAT4 || ubm.format == SGS_VERTEXFORMAT_MAT3 || ubm.format == SGS_VERTEXFORMAT_MAT34 || ubm.format == SGS_VERTEXFORMAT_MAT43;
_uniformInfos[ubm.name] = uniform;
_activeUniformInfos[location] = uniform;
if (_maxLocation < location)
_maxLocation = (location + 1);
_uniformBufferSize += alignedSize;
}
}
}
void ShaderModuleMTL::parseTexture(SLCReflectContext* context)
{
for(int i = 0; i < context->refl->num_textures; ++i) {
sgs_refl_texture texinfo {0};
context->data->read_bytes(&texinfo, sizeof(texinfo));
UniformInfo uniform;
uniform.count = -1;
uniform.location = texinfo.binding;
_uniformInfos[texinfo.name] = uniform;
}
}
int ShaderModuleMTL::getUniformLocation(Uniform name) const
{
return _uniformLocation[name];
}
int ShaderModuleMTL::getUniformLocation(std::string_view name) const
{
auto iter = _uniformInfos.find(name);
if (iter != _uniformInfos.end())
{
return iter->second.location;
}
else
return -1;
}
void ShaderModuleMTL::setBuiltinUniformLocation()
{
std::fill(_uniformLocation, _uniformLocation + UNIFORM_MAX, -1);
/// u_mvpMatrix
auto iter = _uniformInfos.find(UNIFORM_NAME_MVP_MATRIX);
if (iter != _uniformInfos.end())
{
_uniformLocation[Uniform::MVP_MATRIX] = iter->second.location;
}
/// u_textColor
iter = _uniformInfos.find(UNIFORM_NAME_TEXT_COLOR);
if (iter != _uniformInfos.end())
{
_uniformLocation[Uniform::TEXT_COLOR] = iter->second.location;
}
/// u_effectColor
iter = _uniformInfos.find(UNIFORM_NAME_EFFECT_COLOR);
if (iter != _uniformInfos.end())
{
_uniformLocation[Uniform::EFFECT_COLOR] = iter->second.location;
}
/// u_effectType
iter = _uniformInfos.find(UNIFORM_NAME_EFFECT_TYPE);
if (iter != _uniformInfos.end())
{
_uniformLocation[Uniform::EFFECT_TYPE] = iter->second.location;
}
/// u_tex0
iter = _uniformInfos.find(UNIFORM_NAME_TEXTURE);
if (iter != _uniformInfos.end())
{
_uniformLocation[Uniform::TEXTURE] = iter->second.location;
}
/// u_tex1
iter = _uniformInfos.find(UNIFORM_NAME_TEXTURE1);
if (iter != _uniformInfos.end())
{
_uniformLocation[Uniform::TEXTURE1] = iter->second.location;
}
}
int ShaderModuleMTL::getAttributeLocation(Attribute name) const
{
return _attributeLocation[name];
}
int ShaderModuleMTL::getAttributeLocation(std::string_view name)
{
auto iter = _attributeInfo.find(name);
if (iter != _attributeInfo.end())
return _attributeInfo[name].location;
else
return -1;
}
void ShaderModuleMTL::setBuiltinAttributeLocation()
{
std::fill(_attributeLocation, _attributeLocation + ATTRIBUTE_MAX, -1);
/// a_position
auto iter = _attributeInfo.find(ATTRIBUTE_NAME_POSITION);
if (iter != _attributeInfo.end())
{
_attributeLocation[Attribute::POSITION] = iter->second.location;
}
/// a_color
iter = _attributeInfo.find(ATTRIBUTE_NAME_COLOR);
if (iter != _attributeInfo.end())
{
_attributeLocation[Attribute::COLOR] = iter->second.location;
}
/// a_texCoord
iter = _attributeInfo.find(ATTRIBUTE_NAME_TEXCOORD);
if (iter != _attributeInfo.end())
{
_attributeLocation[Attribute::TEXCOORD] = iter->second.location;
}
/// a_normal
iter = _attributeInfo.find(ATTRIBUTE_NAME_NORMAL);
if (iter != _attributeInfo.end())
{
_attributeLocation[Attribute::NORMAL] = iter->second.location;
}
}
NS_AX_BACKEND_END