axmol/thirdparty/box2d/include/box2d/b2_weld_joint.h

134 lines
4.0 KiB
C++

// MIT License
// Copyright (c) 2019 Erin Catto
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef B2_WELD_JOINT_H
#define B2_WELD_JOINT_H
#include "b2_api.h"
#include "b2_joint.h"
/// Weld joint definition. You need to specify local anchor points
/// where they are attached and the relative body angle. The position
/// of the anchor points is important for computing the reaction torque.
struct B2_API b2WeldJointDef : public b2JointDef
{
b2WeldJointDef()
{
type = e_weldJoint;
localAnchorA.Set(0.0f, 0.0f);
localAnchorB.Set(0.0f, 0.0f);
referenceAngle = 0.0f;
stiffness = 0.0f;
damping = 0.0f;
}
/// Initialize the bodies, anchors, reference angle, stiffness, and damping.
/// @param bodyA the first body connected by this joint
/// @param bodyB the second body connected by this joint
/// @param anchor the point of connection in world coordinates
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The bodyB angle minus bodyA angle in the reference state (radians).
float referenceAngle;
/// The rotational stiffness in N*m
/// Disable softness with a value of 0
float stiffness;
/// The rotational damping in N*m*s
float damping;
};
/// A weld joint essentially glues two bodies together. A weld joint may
/// distort somewhat because the island constraint solver is approximate.
class B2_API b2WeldJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const override;
b2Vec2 GetAnchorB() const override;
b2Vec2 GetReactionForce(float inv_dt) const override;
float GetReactionTorque(float inv_dt) const override;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// Get the reference angle.
float GetReferenceAngle() const { return m_referenceAngle; }
/// Set/get stiffness in N*m
void SetStiffness(float hz) { m_stiffness = hz; }
float GetStiffness() const { return m_stiffness; }
/// Set/get damping in N*m*s
void SetDamping(float damping) { m_damping = damping; }
float GetDamping() const { return m_damping; }
/// Dump to b2Log
void Dump() override;
protected:
friend class b2Joint;
b2WeldJoint(const b2WeldJointDef* def);
void InitVelocityConstraints(const b2SolverData& data) override;
void SolveVelocityConstraints(const b2SolverData& data) override;
bool SolvePositionConstraints(const b2SolverData& data) override;
float m_stiffness;
float m_damping;
float m_bias;
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
float m_referenceAngle;
float m_gamma;
b2Vec3 m_impulse;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_rA;
b2Vec2 m_rB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float m_invMassA;
float m_invMassB;
float m_invIA;
float m_invIB;
b2Mat33 m_mass;
};
#endif