mirror of https://github.com/axmolengine/axmol.git
2258 lines
57 KiB
C++
2258 lines
57 KiB
C++
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#include "DetourCommon.h"
|
|
#include "DetourMath.h"
|
|
#include "DetourStatus.h"
|
|
#include "DetourAssert.h"
|
|
#include "DetourTileCacheBuilder.h"
|
|
#include <string.h>
|
|
|
|
dtTileCacheAlloc::~dtTileCacheAlloc()
|
|
{
|
|
// Defined out of line to fix the weak v-tables warning
|
|
}
|
|
|
|
dtTileCacheCompressor::~dtTileCacheCompressor()
|
|
{
|
|
// Defined out of line to fix the weak v-tables warning
|
|
}
|
|
|
|
template<class T> class dtFixedArray
|
|
{
|
|
dtTileCacheAlloc* m_alloc;
|
|
T* m_ptr;
|
|
const int m_size;
|
|
inline void operator=(dtFixedArray<T>& p);
|
|
public:
|
|
inline dtFixedArray(dtTileCacheAlloc* a, const int s) : m_alloc(a), m_ptr((T*)a->alloc(sizeof(T)*s)), m_size(s) {}
|
|
inline ~dtFixedArray() { if (m_alloc) m_alloc->free(m_ptr); }
|
|
inline operator T*() { return m_ptr; }
|
|
inline int size() const { return m_size; }
|
|
};
|
|
|
|
inline int getDirOffsetX(int dir)
|
|
{
|
|
const int offset[4] = { -1, 0, 1, 0, };
|
|
return offset[dir&0x03];
|
|
}
|
|
|
|
inline int getDirOffsetY(int dir)
|
|
{
|
|
const int offset[4] = { 0, 1, 0, -1 };
|
|
return offset[dir&0x03];
|
|
}
|
|
|
|
static const int MAX_VERTS_PER_POLY = 6; // TODO: use the DT_VERTS_PER_POLYGON
|
|
static const int MAX_REM_EDGES = 48; // TODO: make this an expression.
|
|
|
|
|
|
|
|
dtTileCacheContourSet* dtAllocTileCacheContourSet(dtTileCacheAlloc* alloc)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
dtTileCacheContourSet* cset = (dtTileCacheContourSet*)alloc->alloc(sizeof(dtTileCacheContourSet));
|
|
memset(cset, 0, sizeof(dtTileCacheContourSet));
|
|
return cset;
|
|
}
|
|
|
|
void dtFreeTileCacheContourSet(dtTileCacheAlloc* alloc, dtTileCacheContourSet* cset)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
if (!cset) return;
|
|
for (int i = 0; i < cset->nconts; ++i)
|
|
alloc->free(cset->conts[i].verts);
|
|
alloc->free(cset->conts);
|
|
alloc->free(cset);
|
|
}
|
|
|
|
dtTileCachePolyMesh* dtAllocTileCachePolyMesh(dtTileCacheAlloc* alloc)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
dtTileCachePolyMesh* lmesh = (dtTileCachePolyMesh*)alloc->alloc(sizeof(dtTileCachePolyMesh));
|
|
memset(lmesh, 0, sizeof(dtTileCachePolyMesh));
|
|
return lmesh;
|
|
}
|
|
|
|
void dtFreeTileCachePolyMesh(dtTileCacheAlloc* alloc, dtTileCachePolyMesh* lmesh)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
if (!lmesh) return;
|
|
alloc->free(lmesh->verts);
|
|
alloc->free(lmesh->polys);
|
|
alloc->free(lmesh->flags);
|
|
alloc->free(lmesh->areas);
|
|
alloc->free(lmesh);
|
|
}
|
|
|
|
|
|
|
|
struct dtLayerSweepSpan
|
|
{
|
|
unsigned short ns; // number samples
|
|
unsigned char id; // region id
|
|
unsigned char nei; // neighbour id
|
|
};
|
|
|
|
static const int DT_LAYER_MAX_NEIS = 16;
|
|
|
|
struct dtLayerMonotoneRegion
|
|
{
|
|
int area;
|
|
unsigned char neis[DT_LAYER_MAX_NEIS];
|
|
unsigned char nneis;
|
|
unsigned char regId;
|
|
unsigned char areaId;
|
|
};
|
|
|
|
struct dtTempContour
|
|
{
|
|
inline dtTempContour(unsigned char* vbuf, const int nvbuf,
|
|
unsigned short* pbuf, const int npbuf) :
|
|
verts(vbuf), nverts(0), cverts(nvbuf),
|
|
poly(pbuf), npoly(0), cpoly(npbuf)
|
|
{
|
|
}
|
|
unsigned char* verts;
|
|
int nverts;
|
|
int cverts;
|
|
unsigned short* poly;
|
|
int npoly;
|
|
int cpoly;
|
|
};
|
|
|
|
|
|
|
|
|
|
inline bool overlapRangeExl(const unsigned short amin, const unsigned short amax,
|
|
const unsigned short bmin, const unsigned short bmax)
|
|
{
|
|
return (amin >= bmax || amax <= bmin) ? false : true;
|
|
}
|
|
|
|
static void addUniqueLast(unsigned char* a, unsigned char& an, unsigned char v)
|
|
{
|
|
const int n = (int)an;
|
|
if (n > 0 && a[n-1] == v) return;
|
|
a[an] = v;
|
|
an++;
|
|
}
|
|
|
|
inline bool isConnected(const dtTileCacheLayer& layer,
|
|
const int ia, const int ib, const int walkableClimb)
|
|
{
|
|
if (layer.areas[ia] != layer.areas[ib]) return false;
|
|
if (dtAbs((int)layer.heights[ia] - (int)layer.heights[ib]) > walkableClimb) return false;
|
|
return true;
|
|
}
|
|
|
|
static bool canMerge(unsigned char oldRegId, unsigned char newRegId, const dtLayerMonotoneRegion* regs, const int nregs)
|
|
{
|
|
int count = 0;
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
const dtLayerMonotoneRegion& reg = regs[i];
|
|
if (reg.regId != oldRegId) continue;
|
|
const int nnei = (int)reg.nneis;
|
|
for (int j = 0; j < nnei; ++j)
|
|
{
|
|
if (regs[reg.neis[j]].regId == newRegId)
|
|
count++;
|
|
}
|
|
}
|
|
return count == 1;
|
|
}
|
|
|
|
|
|
dtStatus dtBuildTileCacheRegions(dtTileCacheAlloc* alloc,
|
|
dtTileCacheLayer& layer,
|
|
const int walkableClimb)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
memset(layer.regs,0xff,sizeof(unsigned char)*w*h);
|
|
|
|
const int nsweeps = w;
|
|
dtFixedArray<dtLayerSweepSpan> sweeps(alloc, nsweeps);
|
|
if (!sweeps)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(sweeps,0,sizeof(dtLayerSweepSpan)*nsweeps);
|
|
|
|
// Partition walkable area into monotone regions.
|
|
unsigned char prevCount[256];
|
|
unsigned char regId = 0;
|
|
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
if (regId > 0)
|
|
memset(prevCount,0,sizeof(unsigned char)*regId);
|
|
unsigned char sweepId = 0;
|
|
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x + y*w;
|
|
if (layer.areas[idx] == DT_TILECACHE_NULL_AREA) continue;
|
|
|
|
unsigned char sid = 0xff;
|
|
|
|
// -x
|
|
const int xidx = (x-1)+y*w;
|
|
if (x > 0 && isConnected(layer, idx, xidx, walkableClimb))
|
|
{
|
|
if (layer.regs[xidx] != 0xff)
|
|
sid = layer.regs[xidx];
|
|
}
|
|
|
|
if (sid == 0xff)
|
|
{
|
|
sid = sweepId++;
|
|
sweeps[sid].nei = 0xff;
|
|
sweeps[sid].ns = 0;
|
|
}
|
|
|
|
// -y
|
|
const int yidx = x+(y-1)*w;
|
|
if (y > 0 && isConnected(layer, idx, yidx, walkableClimb))
|
|
{
|
|
const unsigned char nr = layer.regs[yidx];
|
|
if (nr != 0xff)
|
|
{
|
|
// Set neighbour when first valid neighbour is encoutered.
|
|
if (sweeps[sid].ns == 0)
|
|
sweeps[sid].nei = nr;
|
|
|
|
if (sweeps[sid].nei == nr)
|
|
{
|
|
// Update existing neighbour
|
|
sweeps[sid].ns++;
|
|
prevCount[nr]++;
|
|
}
|
|
else
|
|
{
|
|
// This is hit if there is nore than one neighbour.
|
|
// Invalidate the neighbour.
|
|
sweeps[sid].nei = 0xff;
|
|
}
|
|
}
|
|
}
|
|
|
|
layer.regs[idx] = sid;
|
|
}
|
|
|
|
// Create unique ID.
|
|
for (int i = 0; i < sweepId; ++i)
|
|
{
|
|
// If the neighbour is set and there is only one continuous connection to it,
|
|
// the sweep will be merged with the previous one, else new region is created.
|
|
if (sweeps[i].nei != 0xff && (unsigned short)prevCount[sweeps[i].nei] == sweeps[i].ns)
|
|
{
|
|
sweeps[i].id = sweeps[i].nei;
|
|
}
|
|
else
|
|
{
|
|
if (regId == 255)
|
|
{
|
|
// Region ID's overflow.
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
}
|
|
sweeps[i].id = regId++;
|
|
}
|
|
}
|
|
|
|
// Remap local sweep ids to region ids.
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
if (layer.regs[idx] != 0xff)
|
|
layer.regs[idx] = sweeps[layer.regs[idx]].id;
|
|
}
|
|
}
|
|
|
|
// Allocate and init layer regions.
|
|
const int nregs = (int)regId;
|
|
dtFixedArray<dtLayerMonotoneRegion> regs(alloc, nregs);
|
|
if (!regs)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
memset(regs, 0, sizeof(dtLayerMonotoneRegion)*nregs);
|
|
for (int i = 0; i < nregs; ++i)
|
|
regs[i].regId = 0xff;
|
|
|
|
// Find region neighbours.
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
const unsigned char ri = layer.regs[idx];
|
|
if (ri == 0xff)
|
|
continue;
|
|
|
|
// Update area.
|
|
regs[ri].area++;
|
|
regs[ri].areaId = layer.areas[idx];
|
|
|
|
// Update neighbours
|
|
const int ymi = x+(y-1)*w;
|
|
if (y > 0 && isConnected(layer, idx, ymi, walkableClimb))
|
|
{
|
|
const unsigned char rai = layer.regs[ymi];
|
|
if (rai != 0xff && rai != ri)
|
|
{
|
|
addUniqueLast(regs[ri].neis, regs[ri].nneis, rai);
|
|
addUniqueLast(regs[rai].neis, regs[rai].nneis, ri);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < nregs; ++i)
|
|
regs[i].regId = (unsigned char)i;
|
|
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
dtLayerMonotoneRegion& reg = regs[i];
|
|
|
|
int merge = -1;
|
|
int mergea = 0;
|
|
for (int j = 0; j < (int)reg.nneis; ++j)
|
|
{
|
|
const unsigned char nei = reg.neis[j];
|
|
dtLayerMonotoneRegion& regn = regs[nei];
|
|
if (reg.regId == regn.regId)
|
|
continue;
|
|
if (reg.areaId != regn.areaId)
|
|
continue;
|
|
if (regn.area > mergea)
|
|
{
|
|
if (canMerge(reg.regId, regn.regId, regs, nregs))
|
|
{
|
|
mergea = regn.area;
|
|
merge = (int)nei;
|
|
}
|
|
}
|
|
}
|
|
if (merge != -1)
|
|
{
|
|
const unsigned char oldId = reg.regId;
|
|
const unsigned char newId = regs[merge].regId;
|
|
for (int j = 0; j < nregs; ++j)
|
|
if (regs[j].regId == oldId)
|
|
regs[j].regId = newId;
|
|
}
|
|
}
|
|
|
|
// Compact ids.
|
|
unsigned char remap[256];
|
|
memset(remap, 0, 256);
|
|
// Find number of unique regions.
|
|
regId = 0;
|
|
for (int i = 0; i < nregs; ++i)
|
|
remap[regs[i].regId] = 1;
|
|
for (int i = 0; i < 256; ++i)
|
|
if (remap[i])
|
|
remap[i] = regId++;
|
|
// Remap ids.
|
|
for (int i = 0; i < nregs; ++i)
|
|
regs[i].regId = remap[regs[i].regId];
|
|
|
|
layer.regCount = regId;
|
|
|
|
for (int i = 0; i < w*h; ++i)
|
|
{
|
|
if (layer.regs[i] != 0xff)
|
|
layer.regs[i] = regs[layer.regs[i]].regId;
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
static bool appendVertex(dtTempContour& cont, const int x, const int y, const int z, const int r)
|
|
{
|
|
// Try to merge with existing segments.
|
|
if (cont.nverts > 1)
|
|
{
|
|
unsigned char* pa = &cont.verts[(cont.nverts-2)*4];
|
|
unsigned char* pb = &cont.verts[(cont.nverts-1)*4];
|
|
if ((int)pb[3] == r)
|
|
{
|
|
if (pa[0] == pb[0] && (int)pb[0] == x)
|
|
{
|
|
// The verts are aligned aling x-axis, update z.
|
|
pb[1] = (unsigned char)y;
|
|
pb[2] = (unsigned char)z;
|
|
return true;
|
|
}
|
|
else if (pa[2] == pb[2] && (int)pb[2] == z)
|
|
{
|
|
// The verts are aligned aling z-axis, update x.
|
|
pb[0] = (unsigned char)x;
|
|
pb[1] = (unsigned char)y;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add new point.
|
|
if (cont.nverts+1 > cont.cverts)
|
|
return false;
|
|
|
|
unsigned char* v = &cont.verts[cont.nverts*4];
|
|
v[0] = (unsigned char)x;
|
|
v[1] = (unsigned char)y;
|
|
v[2] = (unsigned char)z;
|
|
v[3] = (unsigned char)r;
|
|
cont.nverts++;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static unsigned char getNeighbourReg(dtTileCacheLayer& layer,
|
|
const int ax, const int ay, const int dir)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int ia = ax + ay*w;
|
|
|
|
const unsigned char con = layer.cons[ia] & 0xf;
|
|
const unsigned char portal = layer.cons[ia] >> 4;
|
|
const unsigned char mask = (unsigned char)(1<<dir);
|
|
|
|
if ((con & mask) == 0)
|
|
{
|
|
// No connection, return portal or hard edge.
|
|
if (portal & mask)
|
|
return 0xf8 + (unsigned char)dir;
|
|
return 0xff;
|
|
}
|
|
|
|
const int bx = ax + getDirOffsetX(dir);
|
|
const int by = ay + getDirOffsetY(dir);
|
|
const int ib = bx + by*w;
|
|
|
|
return layer.regs[ib];
|
|
}
|
|
|
|
static bool walkContour(dtTileCacheLayer& layer, int x, int y, dtTempContour& cont)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
cont.nverts = 0;
|
|
|
|
int startX = x;
|
|
int startY = y;
|
|
int startDir = -1;
|
|
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
const int dir = (i+3)&3;
|
|
unsigned char rn = getNeighbourReg(layer, x, y, dir);
|
|
if (rn != layer.regs[x+y*w])
|
|
{
|
|
startDir = dir;
|
|
break;
|
|
}
|
|
}
|
|
if (startDir == -1)
|
|
return true;
|
|
|
|
int dir = startDir;
|
|
const int maxIter = w*h;
|
|
|
|
int iter = 0;
|
|
while (iter < maxIter)
|
|
{
|
|
unsigned char rn = getNeighbourReg(layer, x, y, dir);
|
|
|
|
int nx = x;
|
|
int ny = y;
|
|
int ndir = dir;
|
|
|
|
if (rn != layer.regs[x+y*w])
|
|
{
|
|
// Solid edge.
|
|
int px = x;
|
|
int pz = y;
|
|
switch(dir)
|
|
{
|
|
case 0: pz++; break;
|
|
case 1: px++; pz++; break;
|
|
case 2: px++; break;
|
|
}
|
|
|
|
// Try to merge with previous vertex.
|
|
if (!appendVertex(cont, px, (int)layer.heights[x+y*w], pz,rn))
|
|
return false;
|
|
|
|
ndir = (dir+1) & 0x3; // Rotate CW
|
|
}
|
|
else
|
|
{
|
|
// Move to next.
|
|
nx = x + getDirOffsetX(dir);
|
|
ny = y + getDirOffsetY(dir);
|
|
ndir = (dir+3) & 0x3; // Rotate CCW
|
|
}
|
|
|
|
if (iter > 0 && x == startX && y == startY && dir == startDir)
|
|
break;
|
|
|
|
x = nx;
|
|
y = ny;
|
|
dir = ndir;
|
|
|
|
iter++;
|
|
}
|
|
|
|
// Remove last vertex if it is duplicate of the first one.
|
|
unsigned char* pa = &cont.verts[(cont.nverts-1)*4];
|
|
unsigned char* pb = &cont.verts[0];
|
|
if (pa[0] == pb[0] && pa[2] == pb[2])
|
|
cont.nverts--;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static float distancePtSeg(const int x, const int z,
|
|
const int px, const int pz,
|
|
const int qx, const int qz)
|
|
{
|
|
float pqx = (float)(qx - px);
|
|
float pqz = (float)(qz - pz);
|
|
float dx = (float)(x - px);
|
|
float dz = (float)(z - pz);
|
|
float d = pqx*pqx + pqz*pqz;
|
|
float t = pqx*dx + pqz*dz;
|
|
if (d > 0)
|
|
t /= d;
|
|
if (t < 0)
|
|
t = 0;
|
|
else if (t > 1)
|
|
t = 1;
|
|
|
|
dx = px + t*pqx - x;
|
|
dz = pz + t*pqz - z;
|
|
|
|
return dx*dx + dz*dz;
|
|
}
|
|
|
|
static void simplifyContour(dtTempContour& cont, const float maxError)
|
|
{
|
|
cont.npoly = 0;
|
|
|
|
for (int i = 0; i < cont.nverts; ++i)
|
|
{
|
|
int j = (i+1) % cont.nverts;
|
|
// Check for start of a wall segment.
|
|
unsigned char ra = cont.verts[j*4+3];
|
|
unsigned char rb = cont.verts[i*4+3];
|
|
if (ra != rb)
|
|
cont.poly[cont.npoly++] = (unsigned short)i;
|
|
}
|
|
if (cont.npoly < 2)
|
|
{
|
|
// If there is no transitions at all,
|
|
// create some initial points for the simplification process.
|
|
// Find lower-left and upper-right vertices of the contour.
|
|
int llx = cont.verts[0];
|
|
int llz = cont.verts[2];
|
|
int lli = 0;
|
|
int urx = cont.verts[0];
|
|
int urz = cont.verts[2];
|
|
int uri = 0;
|
|
for (int i = 1; i < cont.nverts; ++i)
|
|
{
|
|
int x = cont.verts[i*4+0];
|
|
int z = cont.verts[i*4+2];
|
|
if (x < llx || (x == llx && z < llz))
|
|
{
|
|
llx = x;
|
|
llz = z;
|
|
lli = i;
|
|
}
|
|
if (x > urx || (x == urx && z > urz))
|
|
{
|
|
urx = x;
|
|
urz = z;
|
|
uri = i;
|
|
}
|
|
}
|
|
cont.npoly = 0;
|
|
cont.poly[cont.npoly++] = (unsigned short)lli;
|
|
cont.poly[cont.npoly++] = (unsigned short)uri;
|
|
}
|
|
|
|
// Add points until all raw points are within
|
|
// error tolerance to the simplified shape.
|
|
for (int i = 0; i < cont.npoly; )
|
|
{
|
|
int ii = (i+1) % cont.npoly;
|
|
|
|
const int ai = (int)cont.poly[i];
|
|
const int ax = (int)cont.verts[ai*4+0];
|
|
const int az = (int)cont.verts[ai*4+2];
|
|
|
|
const int bi = (int)cont.poly[ii];
|
|
const int bx = (int)cont.verts[bi*4+0];
|
|
const int bz = (int)cont.verts[bi*4+2];
|
|
|
|
// Find maximum deviation from the segment.
|
|
float maxd = 0;
|
|
int maxi = -1;
|
|
int ci, cinc, endi;
|
|
|
|
// Traverse the segment in lexilogical order so that the
|
|
// max deviation is calculated similarly when traversing
|
|
// opposite segments.
|
|
if (bx > ax || (bx == ax && bz > az))
|
|
{
|
|
cinc = 1;
|
|
ci = (ai+cinc) % cont.nverts;
|
|
endi = bi;
|
|
}
|
|
else
|
|
{
|
|
cinc = cont.nverts-1;
|
|
ci = (bi+cinc) % cont.nverts;
|
|
endi = ai;
|
|
}
|
|
|
|
// Tessellate only outer edges or edges between areas.
|
|
while (ci != endi)
|
|
{
|
|
float d = distancePtSeg(cont.verts[ci*4+0], cont.verts[ci*4+2], ax, az, bx, bz);
|
|
if (d > maxd)
|
|
{
|
|
maxd = d;
|
|
maxi = ci;
|
|
}
|
|
ci = (ci+cinc) % cont.nverts;
|
|
}
|
|
|
|
|
|
// If the max deviation is larger than accepted error,
|
|
// add new point, else continue to next segment.
|
|
if (maxi != -1 && maxd > (maxError*maxError))
|
|
{
|
|
cont.npoly++;
|
|
for (int j = cont.npoly-1; j > i; --j)
|
|
cont.poly[j] = cont.poly[j-1];
|
|
cont.poly[i+1] = (unsigned short)maxi;
|
|
}
|
|
else
|
|
{
|
|
++i;
|
|
}
|
|
}
|
|
|
|
// Remap vertices
|
|
int start = 0;
|
|
for (int i = 1; i < cont.npoly; ++i)
|
|
if (cont.poly[i] < cont.poly[start])
|
|
start = i;
|
|
|
|
cont.nverts = 0;
|
|
for (int i = 0; i < cont.npoly; ++i)
|
|
{
|
|
const int j = (start+i) % cont.npoly;
|
|
unsigned char* src = &cont.verts[cont.poly[j]*4];
|
|
unsigned char* dst = &cont.verts[cont.nverts*4];
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
cont.nverts++;
|
|
}
|
|
}
|
|
|
|
static unsigned char getCornerHeight(dtTileCacheLayer& layer,
|
|
const int x, const int y, const int z,
|
|
const int walkableClimb,
|
|
bool& shouldRemove)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
int n = 0;
|
|
|
|
unsigned char portal = 0xf;
|
|
unsigned char height = 0;
|
|
unsigned char preg = 0xff;
|
|
bool allSameReg = true;
|
|
|
|
for (int dz = -1; dz <= 0; ++dz)
|
|
{
|
|
for (int dx = -1; dx <= 0; ++dx)
|
|
{
|
|
const int px = x+dx;
|
|
const int pz = z+dz;
|
|
if (px >= 0 && pz >= 0 && px < w && pz < h)
|
|
{
|
|
const int idx = px + pz*w;
|
|
const int lh = (int)layer.heights[idx];
|
|
if (dtAbs(lh-y) <= walkableClimb && layer.areas[idx] != DT_TILECACHE_NULL_AREA)
|
|
{
|
|
height = dtMax(height, (unsigned char)lh);
|
|
portal &= (layer.cons[idx] >> 4);
|
|
if (preg != 0xff && preg != layer.regs[idx])
|
|
allSameReg = false;
|
|
preg = layer.regs[idx];
|
|
n++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int portalCount = 0;
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
if (portal & (1<<dir))
|
|
portalCount++;
|
|
|
|
shouldRemove = false;
|
|
if (n > 1 && portalCount == 1 && allSameReg)
|
|
{
|
|
shouldRemove = true;
|
|
}
|
|
|
|
return height;
|
|
}
|
|
|
|
|
|
// TODO: move this somewhere else, once the layer meshing is done.
|
|
dtStatus dtBuildTileCacheContours(dtTileCacheAlloc* alloc,
|
|
dtTileCacheLayer& layer,
|
|
const int walkableClimb, const float maxError,
|
|
dtTileCacheContourSet& lcset)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
|
|
lcset.nconts = layer.regCount;
|
|
lcset.conts = (dtTileCacheContour*)alloc->alloc(sizeof(dtTileCacheContour)*lcset.nconts);
|
|
if (!lcset.conts)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(lcset.conts, 0, sizeof(dtTileCacheContour)*lcset.nconts);
|
|
|
|
// Allocate temp buffer for contour tracing.
|
|
const int maxTempVerts = (w+h)*2 * 2; // Twice around the layer.
|
|
|
|
dtFixedArray<unsigned char> tempVerts(alloc, maxTempVerts*4);
|
|
if (!tempVerts)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
dtFixedArray<unsigned short> tempPoly(alloc, maxTempVerts);
|
|
if (!tempPoly)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
dtTempContour temp(tempVerts, maxTempVerts, tempPoly, maxTempVerts);
|
|
|
|
// Find contours.
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
const unsigned char ri = layer.regs[idx];
|
|
if (ri == 0xff)
|
|
continue;
|
|
|
|
dtTileCacheContour& cont = lcset.conts[ri];
|
|
|
|
if (cont.nverts > 0)
|
|
continue;
|
|
|
|
cont.reg = ri;
|
|
cont.area = layer.areas[idx];
|
|
|
|
if (!walkContour(layer, x, y, temp))
|
|
{
|
|
// Too complex contour.
|
|
// Note: If you hit here ofte, try increasing 'maxTempVerts'.
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
simplifyContour(temp, maxError);
|
|
|
|
// Store contour.
|
|
cont.nverts = temp.nverts;
|
|
if (cont.nverts > 0)
|
|
{
|
|
cont.verts = (unsigned char*)alloc->alloc(sizeof(unsigned char)*4*temp.nverts);
|
|
if (!cont.verts)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
for (int i = 0, j = temp.nverts-1; i < temp.nverts; j=i++)
|
|
{
|
|
unsigned char* dst = &cont.verts[j*4];
|
|
unsigned char* v = &temp.verts[j*4];
|
|
unsigned char* vn = &temp.verts[i*4];
|
|
unsigned char nei = vn[3]; // The neighbour reg is stored at segment vertex of a segment.
|
|
bool shouldRemove = false;
|
|
unsigned char lh = getCornerHeight(layer, (int)v[0], (int)v[1], (int)v[2],
|
|
walkableClimb, shouldRemove);
|
|
|
|
dst[0] = v[0];
|
|
dst[1] = lh;
|
|
dst[2] = v[2];
|
|
|
|
// Store portal direction and remove status to the fourth component.
|
|
dst[3] = 0x0f;
|
|
if (nei != 0xff && nei >= 0xf8)
|
|
dst[3] = nei - 0xf8;
|
|
if (shouldRemove)
|
|
dst[3] |= 0x80;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
static const int VERTEX_BUCKET_COUNT2 = (1<<8);
|
|
|
|
inline int computeVertexHash2(int x, int y, int z)
|
|
{
|
|
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
|
|
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
|
|
const unsigned int h3 = 0xcb1ab31f;
|
|
unsigned int n = h1 * x + h2 * y + h3 * z;
|
|
return (int)(n & (VERTEX_BUCKET_COUNT2-1));
|
|
}
|
|
|
|
static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z,
|
|
unsigned short* verts, unsigned short* firstVert, unsigned short* nextVert, int& nv)
|
|
{
|
|
int bucket = computeVertexHash2(x, 0, z);
|
|
unsigned short i = firstVert[bucket];
|
|
|
|
while (i != DT_TILECACHE_NULL_IDX)
|
|
{
|
|
const unsigned short* v = &verts[i*3];
|
|
if (v[0] == x && v[2] == z && (dtAbs(v[1] - y) <= 2))
|
|
return i;
|
|
i = nextVert[i]; // next
|
|
}
|
|
|
|
// Could not find, create new.
|
|
i = (unsigned short)nv; nv++;
|
|
unsigned short* v = &verts[i*3];
|
|
v[0] = x;
|
|
v[1] = y;
|
|
v[2] = z;
|
|
nextVert[i] = firstVert[bucket];
|
|
firstVert[bucket] = i;
|
|
|
|
return (unsigned short)i;
|
|
}
|
|
|
|
|
|
struct rcEdge
|
|
{
|
|
unsigned short vert[2];
|
|
unsigned short polyEdge[2];
|
|
unsigned short poly[2];
|
|
};
|
|
|
|
static bool buildMeshAdjacency(dtTileCacheAlloc* alloc,
|
|
unsigned short* polys, const int npolys,
|
|
const unsigned short* verts, const int nverts,
|
|
const dtTileCacheContourSet& lcset)
|
|
{
|
|
// Based on code by Eric Lengyel from:
|
|
// https://web.archive.org/web/20080704083314/http://www.terathon.com/code/edges.php
|
|
|
|
const int maxEdgeCount = npolys*MAX_VERTS_PER_POLY;
|
|
dtFixedArray<unsigned short> firstEdge(alloc, nverts + maxEdgeCount);
|
|
if (!firstEdge)
|
|
return false;
|
|
unsigned short* nextEdge = firstEdge + nverts;
|
|
int edgeCount = 0;
|
|
|
|
dtFixedArray<rcEdge> edges(alloc, maxEdgeCount);
|
|
if (!edges)
|
|
return false;
|
|
|
|
for (int i = 0; i < nverts; i++)
|
|
firstEdge[i] = DT_TILECACHE_NULL_IDX;
|
|
|
|
for (int i = 0; i < npolys; ++i)
|
|
{
|
|
unsigned short* t = &polys[i*MAX_VERTS_PER_POLY*2];
|
|
for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
|
|
{
|
|
if (t[j] == DT_TILECACHE_NULL_IDX) break;
|
|
unsigned short v0 = t[j];
|
|
unsigned short v1 = (j+1 >= MAX_VERTS_PER_POLY || t[j+1] == DT_TILECACHE_NULL_IDX) ? t[0] : t[j+1];
|
|
if (v0 < v1)
|
|
{
|
|
rcEdge& edge = edges[edgeCount];
|
|
edge.vert[0] = v0;
|
|
edge.vert[1] = v1;
|
|
edge.poly[0] = (unsigned short)i;
|
|
edge.polyEdge[0] = (unsigned short)j;
|
|
edge.poly[1] = (unsigned short)i;
|
|
edge.polyEdge[1] = 0xff;
|
|
// Insert edge
|
|
nextEdge[edgeCount] = firstEdge[v0];
|
|
firstEdge[v0] = (unsigned short)edgeCount;
|
|
edgeCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < npolys; ++i)
|
|
{
|
|
unsigned short* t = &polys[i*MAX_VERTS_PER_POLY*2];
|
|
for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
|
|
{
|
|
if (t[j] == DT_TILECACHE_NULL_IDX) break;
|
|
unsigned short v0 = t[j];
|
|
unsigned short v1 = (j+1 >= MAX_VERTS_PER_POLY || t[j+1] == DT_TILECACHE_NULL_IDX) ? t[0] : t[j+1];
|
|
if (v0 > v1)
|
|
{
|
|
bool found = false;
|
|
for (unsigned short e = firstEdge[v1]; e != DT_TILECACHE_NULL_IDX; e = nextEdge[e])
|
|
{
|
|
rcEdge& edge = edges[e];
|
|
if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1])
|
|
{
|
|
edge.poly[1] = (unsigned short)i;
|
|
edge.polyEdge[1] = (unsigned short)j;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
{
|
|
// Matching edge not found, it is an open edge, add it.
|
|
rcEdge& edge = edges[edgeCount];
|
|
edge.vert[0] = v1;
|
|
edge.vert[1] = v0;
|
|
edge.poly[0] = (unsigned short)i;
|
|
edge.polyEdge[0] = (unsigned short)j;
|
|
edge.poly[1] = (unsigned short)i;
|
|
edge.polyEdge[1] = 0xff;
|
|
// Insert edge
|
|
nextEdge[edgeCount] = firstEdge[v1];
|
|
firstEdge[v1] = (unsigned short)edgeCount;
|
|
edgeCount++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark portal edges.
|
|
for (int i = 0; i < lcset.nconts; ++i)
|
|
{
|
|
dtTileCacheContour& cont = lcset.conts[i];
|
|
if (cont.nverts < 3)
|
|
continue;
|
|
|
|
for (int j = 0, k = cont.nverts-1; j < cont.nverts; k=j++)
|
|
{
|
|
const unsigned char* va = &cont.verts[k*4];
|
|
const unsigned char* vb = &cont.verts[j*4];
|
|
const unsigned char dir = va[3] & 0xf;
|
|
if (dir == 0xf)
|
|
continue;
|
|
|
|
if (dir == 0 || dir == 2)
|
|
{
|
|
// Find matching vertical edge
|
|
const unsigned short x = (unsigned short)va[0];
|
|
unsigned short zmin = (unsigned short)va[2];
|
|
unsigned short zmax = (unsigned short)vb[2];
|
|
if (zmin > zmax)
|
|
dtSwap(zmin, zmax);
|
|
|
|
for (int m = 0; m < edgeCount; ++m)
|
|
{
|
|
rcEdge& e = edges[m];
|
|
// Skip connected edges.
|
|
if (e.poly[0] != e.poly[1])
|
|
continue;
|
|
const unsigned short* eva = &verts[e.vert[0]*3];
|
|
const unsigned short* evb = &verts[e.vert[1]*3];
|
|
if (eva[0] == x && evb[0] == x)
|
|
{
|
|
unsigned short ezmin = eva[2];
|
|
unsigned short ezmax = evb[2];
|
|
if (ezmin > ezmax)
|
|
dtSwap(ezmin, ezmax);
|
|
if (overlapRangeExl(zmin,zmax, ezmin, ezmax))
|
|
{
|
|
// Reuse the other polyedge to store dir.
|
|
e.polyEdge[1] = dir;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Find matching vertical edge
|
|
const unsigned short z = (unsigned short)va[2];
|
|
unsigned short xmin = (unsigned short)va[0];
|
|
unsigned short xmax = (unsigned short)vb[0];
|
|
if (xmin > xmax)
|
|
dtSwap(xmin, xmax);
|
|
for (int m = 0; m < edgeCount; ++m)
|
|
{
|
|
rcEdge& e = edges[m];
|
|
// Skip connected edges.
|
|
if (e.poly[0] != e.poly[1])
|
|
continue;
|
|
const unsigned short* eva = &verts[e.vert[0]*3];
|
|
const unsigned short* evb = &verts[e.vert[1]*3];
|
|
if (eva[2] == z && evb[2] == z)
|
|
{
|
|
unsigned short exmin = eva[0];
|
|
unsigned short exmax = evb[0];
|
|
if (exmin > exmax)
|
|
dtSwap(exmin, exmax);
|
|
if (overlapRangeExl(xmin,xmax, exmin, exmax))
|
|
{
|
|
// Reuse the other polyedge to store dir.
|
|
e.polyEdge[1] = dir;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Store adjacency
|
|
for (int i = 0; i < edgeCount; ++i)
|
|
{
|
|
const rcEdge& e = edges[i];
|
|
if (e.poly[0] != e.poly[1])
|
|
{
|
|
unsigned short* p0 = &polys[e.poly[0]*MAX_VERTS_PER_POLY*2];
|
|
unsigned short* p1 = &polys[e.poly[1]*MAX_VERTS_PER_POLY*2];
|
|
p0[MAX_VERTS_PER_POLY + e.polyEdge[0]] = e.poly[1];
|
|
p1[MAX_VERTS_PER_POLY + e.polyEdge[1]] = e.poly[0];
|
|
}
|
|
else if (e.polyEdge[1] != 0xff)
|
|
{
|
|
unsigned short* p0 = &polys[e.poly[0]*MAX_VERTS_PER_POLY*2];
|
|
p0[MAX_VERTS_PER_POLY + e.polyEdge[0]] = 0x8000 | (unsigned short)e.polyEdge[1];
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
|
|
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
|
|
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
|
|
|
|
inline int area2(const unsigned char* a, const unsigned char* b, const unsigned char* c)
|
|
{
|
|
return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) - ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]);
|
|
}
|
|
|
|
// Exclusive or: true iff exactly one argument is true.
|
|
// The arguments are negated to ensure that they are 0/1
|
|
// values. Then the bitwise Xor operator may apply.
|
|
// (This idea is due to Michael Baldwin.)
|
|
inline bool xorb(bool x, bool y)
|
|
{
|
|
return !x ^ !y;
|
|
}
|
|
|
|
// Returns true iff c is strictly to the left of the directed
|
|
// line through a to b.
|
|
inline bool left(const unsigned char* a, const unsigned char* b, const unsigned char* c)
|
|
{
|
|
return area2(a, b, c) < 0;
|
|
}
|
|
|
|
inline bool leftOn(const unsigned char* a, const unsigned char* b, const unsigned char* c)
|
|
{
|
|
return area2(a, b, c) <= 0;
|
|
}
|
|
|
|
inline bool collinear(const unsigned char* a, const unsigned char* b, const unsigned char* c)
|
|
{
|
|
return area2(a, b, c) == 0;
|
|
}
|
|
|
|
// Returns true iff ab properly intersects cd: they share
|
|
// a point interior to both segments. The properness of the
|
|
// intersection is ensured by using strict leftness.
|
|
static bool intersectProp(const unsigned char* a, const unsigned char* b,
|
|
const unsigned char* c, const unsigned char* d)
|
|
{
|
|
// Eliminate improper cases.
|
|
if (collinear(a,b,c) || collinear(a,b,d) ||
|
|
collinear(c,d,a) || collinear(c,d,b))
|
|
return false;
|
|
|
|
return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
|
|
}
|
|
|
|
// Returns T iff (a,b,c) are collinear and point c lies
|
|
// on the closed segement ab.
|
|
static bool between(const unsigned char* a, const unsigned char* b, const unsigned char* c)
|
|
{
|
|
if (!collinear(a, b, c))
|
|
return false;
|
|
// If ab not vertical, check betweenness on x; else on y.
|
|
if (a[0] != b[0])
|
|
return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
|
|
else
|
|
return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
|
|
}
|
|
|
|
// Returns true iff segments ab and cd intersect, properly or improperly.
|
|
static bool intersect(const unsigned char* a, const unsigned char* b,
|
|
const unsigned char* c, const unsigned char* d)
|
|
{
|
|
if (intersectProp(a, b, c, d))
|
|
return true;
|
|
else if (between(a, b, c) || between(a, b, d) ||
|
|
between(c, d, a) || between(c, d, b))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static bool vequal(const unsigned char* a, const unsigned char* b)
|
|
{
|
|
return a[0] == b[0] && a[2] == b[2];
|
|
}
|
|
|
|
// Returns T iff (v_i, v_j) is a proper internal *or* external
|
|
// diagonal of P, *ignoring edges incident to v_i and v_j*.
|
|
static bool diagonalie(int i, int j, int n, const unsigned char* verts, const unsigned short* indices)
|
|
{
|
|
const unsigned char* d0 = &verts[(indices[i] & 0x7fff) * 4];
|
|
const unsigned char* d1 = &verts[(indices[j] & 0x7fff) * 4];
|
|
|
|
// For each edge (k,k+1) of P
|
|
for (int k = 0; k < n; k++)
|
|
{
|
|
int k1 = next(k, n);
|
|
// Skip edges incident to i or j
|
|
if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
|
|
{
|
|
const unsigned char* p0 = &verts[(indices[k] & 0x7fff) * 4];
|
|
const unsigned char* p1 = &verts[(indices[k1] & 0x7fff) * 4];
|
|
|
|
if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
|
|
continue;
|
|
|
|
if (intersect(d0, d1, p0, p1))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns true iff the diagonal (i,j) is strictly internal to the
|
|
// polygon P in the neighborhood of the i endpoint.
|
|
static bool inCone(int i, int j, int n, const unsigned char* verts, const unsigned short* indices)
|
|
{
|
|
const unsigned char* pi = &verts[(indices[i] & 0x7fff) * 4];
|
|
const unsigned char* pj = &verts[(indices[j] & 0x7fff) * 4];
|
|
const unsigned char* pi1 = &verts[(indices[next(i, n)] & 0x7fff) * 4];
|
|
const unsigned char* pin1 = &verts[(indices[prev(i, n)] & 0x7fff) * 4];
|
|
|
|
// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
|
|
if (leftOn(pin1, pi, pi1))
|
|
return left(pi, pj, pin1) && left(pj, pi, pi1);
|
|
// Assume (i-1,i,i+1) not collinear.
|
|
// else P[i] is reflex.
|
|
return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
|
|
}
|
|
|
|
// Returns T iff (v_i, v_j) is a proper internal
|
|
// diagonal of P.
|
|
static bool diagonal(int i, int j, int n, const unsigned char* verts, const unsigned short* indices)
|
|
{
|
|
return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
|
|
}
|
|
|
|
static int triangulate(int n, const unsigned char* verts, unsigned short* indices, unsigned short* tris)
|
|
{
|
|
int ntris = 0;
|
|
unsigned short* dst = tris;
|
|
|
|
// The last bit of the index is used to indicate if the vertex can be removed.
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
int i1 = next(i, n);
|
|
int i2 = next(i1, n);
|
|
if (diagonal(i, i2, n, verts, indices))
|
|
indices[i1] |= 0x8000;
|
|
}
|
|
|
|
while (n > 3)
|
|
{
|
|
int minLen = -1;
|
|
int mini = -1;
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
int i1 = next(i, n);
|
|
if (indices[i1] & 0x8000)
|
|
{
|
|
const unsigned char* p0 = &verts[(indices[i] & 0x7fff) * 4];
|
|
const unsigned char* p2 = &verts[(indices[next(i1, n)] & 0x7fff) * 4];
|
|
|
|
const int dx = (int)p2[0] - (int)p0[0];
|
|
const int dz = (int)p2[2] - (int)p0[2];
|
|
const int len = dx*dx + dz*dz;
|
|
if (minLen < 0 || len < minLen)
|
|
{
|
|
minLen = len;
|
|
mini = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mini == -1)
|
|
{
|
|
// Should not happen.
|
|
/* printf("mini == -1 ntris=%d n=%d\n", ntris, n);
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
printf("%d ", indices[i] & 0x0fffffff);
|
|
}
|
|
printf("\n");*/
|
|
return -ntris;
|
|
}
|
|
|
|
int i = mini;
|
|
int i1 = next(i, n);
|
|
int i2 = next(i1, n);
|
|
|
|
*dst++ = indices[i] & 0x7fff;
|
|
*dst++ = indices[i1] & 0x7fff;
|
|
*dst++ = indices[i2] & 0x7fff;
|
|
ntris++;
|
|
|
|
// Removes P[i1] by copying P[i+1]...P[n-1] left one index.
|
|
n--;
|
|
for (int k = i1; k < n; k++)
|
|
indices[k] = indices[k+1];
|
|
|
|
if (i1 >= n) i1 = 0;
|
|
i = prev(i1,n);
|
|
// Update diagonal flags.
|
|
if (diagonal(prev(i, n), i1, n, verts, indices))
|
|
indices[i] |= 0x8000;
|
|
else
|
|
indices[i] &= 0x7fff;
|
|
|
|
if (diagonal(i, next(i1, n), n, verts, indices))
|
|
indices[i1] |= 0x8000;
|
|
else
|
|
indices[i1] &= 0x7fff;
|
|
}
|
|
|
|
// Append the remaining triangle.
|
|
*dst++ = indices[0] & 0x7fff;
|
|
*dst++ = indices[1] & 0x7fff;
|
|
*dst++ = indices[2] & 0x7fff;
|
|
ntris++;
|
|
|
|
return ntris;
|
|
}
|
|
|
|
|
|
static int countPolyVerts(const unsigned short* p)
|
|
{
|
|
for (int i = 0; i < MAX_VERTS_PER_POLY; ++i)
|
|
if (p[i] == DT_TILECACHE_NULL_IDX)
|
|
return i;
|
|
return MAX_VERTS_PER_POLY;
|
|
}
|
|
|
|
inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c)
|
|
{
|
|
return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) -
|
|
((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0;
|
|
}
|
|
|
|
static int getPolyMergeValue(unsigned short* pa, unsigned short* pb,
|
|
const unsigned short* verts, int& ea, int& eb)
|
|
{
|
|
const int na = countPolyVerts(pa);
|
|
const int nb = countPolyVerts(pb);
|
|
|
|
// If the merged polygon would be too big, do not merge.
|
|
if (na+nb-2 > MAX_VERTS_PER_POLY)
|
|
return -1;
|
|
|
|
// Check if the polygons share an edge.
|
|
ea = -1;
|
|
eb = -1;
|
|
|
|
for (int i = 0; i < na; ++i)
|
|
{
|
|
unsigned short va0 = pa[i];
|
|
unsigned short va1 = pa[(i+1) % na];
|
|
if (va0 > va1)
|
|
dtSwap(va0, va1);
|
|
for (int j = 0; j < nb; ++j)
|
|
{
|
|
unsigned short vb0 = pb[j];
|
|
unsigned short vb1 = pb[(j+1) % nb];
|
|
if (vb0 > vb1)
|
|
dtSwap(vb0, vb1);
|
|
if (va0 == vb0 && va1 == vb1)
|
|
{
|
|
ea = i;
|
|
eb = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// No common edge, cannot merge.
|
|
if (ea == -1 || eb == -1)
|
|
return -1;
|
|
|
|
// Check to see if the merged polygon would be convex.
|
|
unsigned short va, vb, vc;
|
|
|
|
va = pa[(ea+na-1) % na];
|
|
vb = pa[ea];
|
|
vc = pb[(eb+2) % nb];
|
|
if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
|
|
return -1;
|
|
|
|
va = pb[(eb+nb-1) % nb];
|
|
vb = pb[eb];
|
|
vc = pa[(ea+2) % na];
|
|
if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
|
|
return -1;
|
|
|
|
va = pa[ea];
|
|
vb = pa[(ea+1)%na];
|
|
|
|
int dx = (int)verts[va*3+0] - (int)verts[vb*3+0];
|
|
int dy = (int)verts[va*3+2] - (int)verts[vb*3+2];
|
|
|
|
return dx*dx + dy*dy;
|
|
}
|
|
|
|
static void mergePolys(unsigned short* pa, unsigned short* pb, int ea, int eb)
|
|
{
|
|
unsigned short tmp[MAX_VERTS_PER_POLY*2];
|
|
|
|
const int na = countPolyVerts(pa);
|
|
const int nb = countPolyVerts(pb);
|
|
|
|
// Merge polygons.
|
|
memset(tmp, 0xff, sizeof(unsigned short)*MAX_VERTS_PER_POLY*2);
|
|
int n = 0;
|
|
// Add pa
|
|
for (int i = 0; i < na-1; ++i)
|
|
tmp[n++] = pa[(ea+1+i) % na];
|
|
// Add pb
|
|
for (int i = 0; i < nb-1; ++i)
|
|
tmp[n++] = pb[(eb+1+i) % nb];
|
|
|
|
memcpy(pa, tmp, sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
}
|
|
|
|
|
|
static void pushFront(unsigned short v, unsigned short* arr, int& an)
|
|
{
|
|
an++;
|
|
for (int i = an-1; i > 0; --i)
|
|
arr[i] = arr[i-1];
|
|
arr[0] = v;
|
|
}
|
|
|
|
static void pushBack(unsigned short v, unsigned short* arr, int& an)
|
|
{
|
|
arr[an] = v;
|
|
an++;
|
|
}
|
|
|
|
static bool canRemoveVertex(dtTileCachePolyMesh& mesh, const unsigned short rem)
|
|
{
|
|
// Count number of polygons to remove.
|
|
int numTouchedVerts = 0;
|
|
int numRemainingEdges = 0;
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
const int nv = countPolyVerts(p);
|
|
int numRemoved = 0;
|
|
int numVerts = 0;
|
|
for (int j = 0; j < nv; ++j)
|
|
{
|
|
if (p[j] == rem)
|
|
{
|
|
numTouchedVerts++;
|
|
numRemoved++;
|
|
}
|
|
numVerts++;
|
|
}
|
|
if (numRemoved)
|
|
{
|
|
numRemainingEdges += numVerts-(numRemoved+1);
|
|
}
|
|
}
|
|
|
|
// There would be too few edges remaining to create a polygon.
|
|
// This can happen for example when a tip of a triangle is marked
|
|
// as deletion, but there are no other polys that share the vertex.
|
|
// In this case, the vertex should not be removed.
|
|
if (numRemainingEdges <= 2)
|
|
return false;
|
|
|
|
// Check that there is enough memory for the test.
|
|
const int maxEdges = numTouchedVerts*2;
|
|
if (maxEdges > MAX_REM_EDGES)
|
|
return false;
|
|
|
|
// Find edges which share the removed vertex.
|
|
unsigned short edges[MAX_REM_EDGES];
|
|
int nedges = 0;
|
|
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
const int nv = countPolyVerts(p);
|
|
|
|
// Collect edges which touches the removed vertex.
|
|
for (int j = 0, k = nv-1; j < nv; k = j++)
|
|
{
|
|
if (p[j] == rem || p[k] == rem)
|
|
{
|
|
// Arrange edge so that a=rem.
|
|
int a = p[j], b = p[k];
|
|
if (b == rem)
|
|
dtSwap(a,b);
|
|
|
|
// Check if the edge exists
|
|
bool exists = false;
|
|
for (int m = 0; m < nedges; ++m)
|
|
{
|
|
unsigned short* e = &edges[m*3];
|
|
if (e[1] == b)
|
|
{
|
|
// Exists, increment vertex share count.
|
|
e[2]++;
|
|
exists = true;
|
|
}
|
|
}
|
|
// Add new edge.
|
|
if (!exists)
|
|
{
|
|
unsigned short* e = &edges[nedges*3];
|
|
e[0] = (unsigned short)a;
|
|
e[1] = (unsigned short)b;
|
|
e[2] = 1;
|
|
nedges++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// There should be no more than 2 open edges.
|
|
// This catches the case that two non-adjacent polygons
|
|
// share the removed vertex. In that case, do not remove the vertex.
|
|
int numOpenEdges = 0;
|
|
for (int i = 0; i < nedges; ++i)
|
|
{
|
|
if (edges[i*3+2] < 2)
|
|
numOpenEdges++;
|
|
}
|
|
if (numOpenEdges > 2)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static dtStatus removeVertex(dtTileCachePolyMesh& mesh, const unsigned short rem, const int maxTris)
|
|
{
|
|
// Count number of polygons to remove.
|
|
int numRemovedVerts = 0;
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
const int nv = countPolyVerts(p);
|
|
for (int j = 0; j < nv; ++j)
|
|
{
|
|
if (p[j] == rem)
|
|
numRemovedVerts++;
|
|
}
|
|
}
|
|
|
|
int nedges = 0;
|
|
unsigned short edges[MAX_REM_EDGES*3];
|
|
int nhole = 0;
|
|
unsigned short hole[MAX_REM_EDGES];
|
|
int nharea = 0;
|
|
unsigned short harea[MAX_REM_EDGES];
|
|
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
const int nv = countPolyVerts(p);
|
|
bool hasRem = false;
|
|
for (int j = 0; j < nv; ++j)
|
|
if (p[j] == rem) hasRem = true;
|
|
if (hasRem)
|
|
{
|
|
// Collect edges which does not touch the removed vertex.
|
|
for (int j = 0, k = nv-1; j < nv; k = j++)
|
|
{
|
|
if (p[j] != rem && p[k] != rem)
|
|
{
|
|
if (nedges >= MAX_REM_EDGES)
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
unsigned short* e = &edges[nedges*3];
|
|
e[0] = p[k];
|
|
e[1] = p[j];
|
|
e[2] = mesh.areas[i];
|
|
nedges++;
|
|
}
|
|
}
|
|
// Remove the polygon.
|
|
unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*MAX_VERTS_PER_POLY*2];
|
|
memcpy(p,p2,sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
memset(p+MAX_VERTS_PER_POLY,0xff,sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
mesh.areas[i] = mesh.areas[mesh.npolys-1];
|
|
mesh.npolys--;
|
|
--i;
|
|
}
|
|
}
|
|
|
|
// Remove vertex.
|
|
for (int i = (int)rem; i < mesh.nverts - 1; ++i)
|
|
{
|
|
mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0];
|
|
mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1];
|
|
mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2];
|
|
}
|
|
mesh.nverts--;
|
|
|
|
// Adjust indices to match the removed vertex layout.
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
const int nv = countPolyVerts(p);
|
|
for (int j = 0; j < nv; ++j)
|
|
if (p[j] > rem) p[j]--;
|
|
}
|
|
for (int i = 0; i < nedges; ++i)
|
|
{
|
|
if (edges[i*3+0] > rem) edges[i*3+0]--;
|
|
if (edges[i*3+1] > rem) edges[i*3+1]--;
|
|
}
|
|
|
|
if (nedges == 0)
|
|
return DT_SUCCESS;
|
|
|
|
// Start with one vertex, keep appending connected
|
|
// segments to the start and end of the hole.
|
|
pushBack(edges[0], hole, nhole);
|
|
pushBack(edges[2], harea, nharea);
|
|
|
|
while (nedges)
|
|
{
|
|
bool match = false;
|
|
|
|
for (int i = 0; i < nedges; ++i)
|
|
{
|
|
const unsigned short ea = edges[i*3+0];
|
|
const unsigned short eb = edges[i*3+1];
|
|
const unsigned short a = edges[i*3+2];
|
|
bool add = false;
|
|
if (hole[0] == eb)
|
|
{
|
|
// The segment matches the beginning of the hole boundary.
|
|
if (nhole >= MAX_REM_EDGES)
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
pushFront(ea, hole, nhole);
|
|
pushFront(a, harea, nharea);
|
|
add = true;
|
|
}
|
|
else if (hole[nhole-1] == ea)
|
|
{
|
|
// The segment matches the end of the hole boundary.
|
|
if (nhole >= MAX_REM_EDGES)
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
pushBack(eb, hole, nhole);
|
|
pushBack(a, harea, nharea);
|
|
add = true;
|
|
}
|
|
if (add)
|
|
{
|
|
// The edge segment was added, remove it.
|
|
edges[i*3+0] = edges[(nedges-1)*3+0];
|
|
edges[i*3+1] = edges[(nedges-1)*3+1];
|
|
edges[i*3+2] = edges[(nedges-1)*3+2];
|
|
--nedges;
|
|
match = true;
|
|
--i;
|
|
}
|
|
}
|
|
|
|
if (!match)
|
|
break;
|
|
}
|
|
|
|
|
|
unsigned short tris[MAX_REM_EDGES*3];
|
|
unsigned char tverts[MAX_REM_EDGES*3];
|
|
unsigned short tpoly[MAX_REM_EDGES*3];
|
|
|
|
// Generate temp vertex array for triangulation.
|
|
for (int i = 0; i < nhole; ++i)
|
|
{
|
|
const unsigned short pi = hole[i];
|
|
tverts[i*4+0] = (unsigned char)mesh.verts[pi*3+0];
|
|
tverts[i*4+1] = (unsigned char)mesh.verts[pi*3+1];
|
|
tverts[i*4+2] = (unsigned char)mesh.verts[pi*3+2];
|
|
tverts[i*4+3] = 0;
|
|
tpoly[i] = (unsigned short)i;
|
|
}
|
|
|
|
// Triangulate the hole.
|
|
int ntris = triangulate(nhole, tverts, tpoly, tris);
|
|
if (ntris < 0)
|
|
{
|
|
// TODO: issue warning!
|
|
ntris = -ntris;
|
|
}
|
|
|
|
if (ntris > MAX_REM_EDGES)
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
|
|
unsigned short polys[MAX_REM_EDGES*MAX_VERTS_PER_POLY];
|
|
unsigned char pareas[MAX_REM_EDGES];
|
|
|
|
// Build initial polygons.
|
|
int npolys = 0;
|
|
memset(polys, 0xff, ntris*MAX_VERTS_PER_POLY*sizeof(unsigned short));
|
|
for (int j = 0; j < ntris; ++j)
|
|
{
|
|
unsigned short* t = &tris[j*3];
|
|
if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
|
|
{
|
|
polys[npolys*MAX_VERTS_PER_POLY+0] = hole[t[0]];
|
|
polys[npolys*MAX_VERTS_PER_POLY+1] = hole[t[1]];
|
|
polys[npolys*MAX_VERTS_PER_POLY+2] = hole[t[2]];
|
|
pareas[npolys] = (unsigned char)harea[t[0]];
|
|
npolys++;
|
|
}
|
|
}
|
|
if (!npolys)
|
|
return DT_SUCCESS;
|
|
|
|
// Merge polygons.
|
|
int maxVertsPerPoly = MAX_VERTS_PER_POLY;
|
|
if (maxVertsPerPoly > 3)
|
|
{
|
|
for (;;)
|
|
{
|
|
// Find best polygons to merge.
|
|
int bestMergeVal = 0;
|
|
int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
|
|
|
|
for (int j = 0; j < npolys-1; ++j)
|
|
{
|
|
unsigned short* pj = &polys[j*MAX_VERTS_PER_POLY];
|
|
for (int k = j+1; k < npolys; ++k)
|
|
{
|
|
unsigned short* pk = &polys[k*MAX_VERTS_PER_POLY];
|
|
int ea, eb;
|
|
int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb);
|
|
if (v > bestMergeVal)
|
|
{
|
|
bestMergeVal = v;
|
|
bestPa = j;
|
|
bestPb = k;
|
|
bestEa = ea;
|
|
bestEb = eb;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bestMergeVal > 0)
|
|
{
|
|
// Found best, merge.
|
|
unsigned short* pa = &polys[bestPa*MAX_VERTS_PER_POLY];
|
|
unsigned short* pb = &polys[bestPb*MAX_VERTS_PER_POLY];
|
|
mergePolys(pa, pb, bestEa, bestEb);
|
|
memcpy(pb, &polys[(npolys-1)*MAX_VERTS_PER_POLY], sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
pareas[bestPb] = pareas[npolys-1];
|
|
npolys--;
|
|
}
|
|
else
|
|
{
|
|
// Could not merge any polygons, stop.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Store polygons.
|
|
for (int i = 0; i < npolys; ++i)
|
|
{
|
|
if (mesh.npolys >= maxTris) break;
|
|
unsigned short* p = &mesh.polys[mesh.npolys*MAX_VERTS_PER_POLY*2];
|
|
memset(p,0xff,sizeof(unsigned short)*MAX_VERTS_PER_POLY*2);
|
|
for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
|
|
p[j] = polys[i*MAX_VERTS_PER_POLY+j];
|
|
mesh.areas[mesh.npolys] = pareas[i];
|
|
mesh.npolys++;
|
|
if (mesh.npolys > maxTris)
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
|
|
dtStatus dtBuildTileCachePolyMesh(dtTileCacheAlloc* alloc,
|
|
dtTileCacheContourSet& lcset,
|
|
dtTileCachePolyMesh& mesh)
|
|
{
|
|
dtAssert(alloc);
|
|
|
|
int maxVertices = 0;
|
|
int maxTris = 0;
|
|
int maxVertsPerCont = 0;
|
|
for (int i = 0; i < lcset.nconts; ++i)
|
|
{
|
|
// Skip null contours.
|
|
if (lcset.conts[i].nverts < 3) continue;
|
|
maxVertices += lcset.conts[i].nverts;
|
|
maxTris += lcset.conts[i].nverts - 2;
|
|
maxVertsPerCont = dtMax(maxVertsPerCont, lcset.conts[i].nverts);
|
|
}
|
|
|
|
// TODO: warn about too many vertices?
|
|
|
|
mesh.nvp = MAX_VERTS_PER_POLY;
|
|
|
|
dtFixedArray<unsigned char> vflags(alloc, maxVertices);
|
|
if (!vflags)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(vflags, 0, maxVertices);
|
|
|
|
mesh.verts = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxVertices*3);
|
|
if (!mesh.verts)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
mesh.polys = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris*MAX_VERTS_PER_POLY*2);
|
|
if (!mesh.polys)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
mesh.areas = (unsigned char*)alloc->alloc(sizeof(unsigned char)*maxTris);
|
|
if (!mesh.areas)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
mesh.flags = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris);
|
|
if (!mesh.flags)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
// Just allocate and clean the mesh flags array. The user is resposible for filling it.
|
|
memset(mesh.flags, 0, sizeof(unsigned short) * maxTris);
|
|
|
|
mesh.nverts = 0;
|
|
mesh.npolys = 0;
|
|
|
|
memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
|
|
memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*MAX_VERTS_PER_POLY*2);
|
|
memset(mesh.areas, 0, sizeof(unsigned char)*maxTris);
|
|
|
|
unsigned short firstVert[VERTEX_BUCKET_COUNT2];
|
|
for (int i = 0; i < VERTEX_BUCKET_COUNT2; ++i)
|
|
firstVert[i] = DT_TILECACHE_NULL_IDX;
|
|
|
|
dtFixedArray<unsigned short> nextVert(alloc, maxVertices);
|
|
if (!nextVert)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(nextVert, 0, sizeof(unsigned short)*maxVertices);
|
|
|
|
dtFixedArray<unsigned short> indices(alloc, maxVertsPerCont);
|
|
if (!indices)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
dtFixedArray<unsigned short> tris(alloc, maxVertsPerCont*3);
|
|
if (!tris)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
dtFixedArray<unsigned short> polys(alloc, maxVertsPerCont*MAX_VERTS_PER_POLY);
|
|
if (!polys)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
for (int i = 0; i < lcset.nconts; ++i)
|
|
{
|
|
dtTileCacheContour& cont = lcset.conts[i];
|
|
|
|
// Skip null contours.
|
|
if (cont.nverts < 3)
|
|
continue;
|
|
|
|
// Triangulate contour
|
|
for (int j = 0; j < cont.nverts; ++j)
|
|
indices[j] = (unsigned short)j;
|
|
|
|
int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
|
|
if (ntris <= 0)
|
|
{
|
|
// TODO: issue warning!
|
|
ntris = -ntris;
|
|
}
|
|
|
|
// Add and merge vertices.
|
|
for (int j = 0; j < cont.nverts; ++j)
|
|
{
|
|
const unsigned char* v = &cont.verts[j*4];
|
|
indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2],
|
|
mesh.verts, firstVert, nextVert, mesh.nverts);
|
|
if (v[3] & 0x80)
|
|
{
|
|
// This vertex should be removed.
|
|
vflags[indices[j]] = 1;
|
|
}
|
|
}
|
|
|
|
// Build initial polygons.
|
|
int npolys = 0;
|
|
memset(polys, 0xff, sizeof(unsigned short) * maxVertsPerCont * MAX_VERTS_PER_POLY);
|
|
for (int j = 0; j < ntris; ++j)
|
|
{
|
|
const unsigned short* t = &tris[j*3];
|
|
if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
|
|
{
|
|
polys[npolys*MAX_VERTS_PER_POLY+0] = indices[t[0]];
|
|
polys[npolys*MAX_VERTS_PER_POLY+1] = indices[t[1]];
|
|
polys[npolys*MAX_VERTS_PER_POLY+2] = indices[t[2]];
|
|
npolys++;
|
|
}
|
|
}
|
|
if (!npolys)
|
|
continue;
|
|
|
|
// Merge polygons.
|
|
int maxVertsPerPoly =MAX_VERTS_PER_POLY ;
|
|
if (maxVertsPerPoly > 3)
|
|
{
|
|
for(;;)
|
|
{
|
|
// Find best polygons to merge.
|
|
int bestMergeVal = 0;
|
|
int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
|
|
|
|
for (int j = 0; j < npolys-1; ++j)
|
|
{
|
|
unsigned short* pj = &polys[j*MAX_VERTS_PER_POLY];
|
|
for (int k = j+1; k < npolys; ++k)
|
|
{
|
|
unsigned short* pk = &polys[k*MAX_VERTS_PER_POLY];
|
|
int ea, eb;
|
|
int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb);
|
|
if (v > bestMergeVal)
|
|
{
|
|
bestMergeVal = v;
|
|
bestPa = j;
|
|
bestPb = k;
|
|
bestEa = ea;
|
|
bestEb = eb;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bestMergeVal > 0)
|
|
{
|
|
// Found best, merge.
|
|
unsigned short* pa = &polys[bestPa*MAX_VERTS_PER_POLY];
|
|
unsigned short* pb = &polys[bestPb*MAX_VERTS_PER_POLY];
|
|
mergePolys(pa, pb, bestEa, bestEb);
|
|
memcpy(pb, &polys[(npolys-1)*MAX_VERTS_PER_POLY], sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
npolys--;
|
|
}
|
|
else
|
|
{
|
|
// Could not merge any polygons, stop.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Store polygons.
|
|
for (int j = 0; j < npolys; ++j)
|
|
{
|
|
unsigned short* p = &mesh.polys[mesh.npolys*MAX_VERTS_PER_POLY*2];
|
|
unsigned short* q = &polys[j*MAX_VERTS_PER_POLY];
|
|
for (int k = 0; k < MAX_VERTS_PER_POLY; ++k)
|
|
p[k] = q[k];
|
|
mesh.areas[mesh.npolys] = cont.area;
|
|
mesh.npolys++;
|
|
if (mesh.npolys > maxTris)
|
|
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
}
|
|
}
|
|
|
|
|
|
// Remove edge vertices.
|
|
for (int i = 0; i < mesh.nverts; ++i)
|
|
{
|
|
if (vflags[i])
|
|
{
|
|
if (!canRemoveVertex(mesh, (unsigned short)i))
|
|
continue;
|
|
dtStatus status = removeVertex(mesh, (unsigned short)i, maxTris);
|
|
if (dtStatusFailed(status))
|
|
return status;
|
|
// Remove vertex
|
|
// Note: mesh.nverts is already decremented inside removeVertex()!
|
|
for (int j = i; j < mesh.nverts; ++j)
|
|
vflags[j] = vflags[j+1];
|
|
--i;
|
|
}
|
|
}
|
|
|
|
// Calculate adjacency.
|
|
if (!buildMeshAdjacency(alloc, mesh.polys, mesh.npolys, mesh.verts, mesh.nverts, lcset))
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtMarkCylinderArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch,
|
|
const float* pos, const float radius, const float height, const unsigned char areaId)
|
|
{
|
|
float bmin[3], bmax[3];
|
|
bmin[0] = pos[0] - radius;
|
|
bmin[1] = pos[1];
|
|
bmin[2] = pos[2] - radius;
|
|
bmax[0] = pos[0] + radius;
|
|
bmax[1] = pos[1] + height;
|
|
bmax[2] = pos[2] + radius;
|
|
const float r2 = dtSqr(radius/cs + 0.5f);
|
|
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const float ics = 1.0f/cs;
|
|
const float ich = 1.0f/ch;
|
|
|
|
const float px = (pos[0]-orig[0])*ics;
|
|
const float pz = (pos[2]-orig[2])*ics;
|
|
|
|
int minx = (int)dtMathFloorf((bmin[0]-orig[0])*ics);
|
|
int miny = (int)dtMathFloorf((bmin[1]-orig[1])*ich);
|
|
int minz = (int)dtMathFloorf((bmin[2]-orig[2])*ics);
|
|
int maxx = (int)dtMathFloorf((bmax[0]-orig[0])*ics);
|
|
int maxy = (int)dtMathFloorf((bmax[1]-orig[1])*ich);
|
|
int maxz = (int)dtMathFloorf((bmax[2]-orig[2])*ics);
|
|
|
|
if (maxx < 0) return DT_SUCCESS;
|
|
if (minx >= w) return DT_SUCCESS;
|
|
if (maxz < 0) return DT_SUCCESS;
|
|
if (minz >= h) return DT_SUCCESS;
|
|
|
|
if (minx < 0) minx = 0;
|
|
if (maxx >= w) maxx = w-1;
|
|
if (minz < 0) minz = 0;
|
|
if (maxz >= h) maxz = h-1;
|
|
|
|
for (int z = minz; z <= maxz; ++z)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
const float dx = (float)(x+0.5f) - px;
|
|
const float dz = (float)(z+0.5f) - pz;
|
|
if (dx*dx + dz*dz > r2)
|
|
continue;
|
|
const int y = layer.heights[x+z*w];
|
|
if (y < miny || y > maxy)
|
|
continue;
|
|
layer.areas[x+z*w] = areaId;
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtMarkBoxArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch,
|
|
const float* bmin, const float* bmax, const unsigned char areaId)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const float ics = 1.0f/cs;
|
|
const float ich = 1.0f/ch;
|
|
|
|
int minx = (int)floorf((bmin[0]-orig[0])*ics);
|
|
int miny = (int)floorf((bmin[1]-orig[1])*ich);
|
|
int minz = (int)floorf((bmin[2]-orig[2])*ics);
|
|
int maxx = (int)floorf((bmax[0]-orig[0])*ics);
|
|
int maxy = (int)floorf((bmax[1]-orig[1])*ich);
|
|
int maxz = (int)floorf((bmax[2]-orig[2])*ics);
|
|
|
|
if (maxx < 0) return DT_SUCCESS;
|
|
if (minx >= w) return DT_SUCCESS;
|
|
if (maxz < 0) return DT_SUCCESS;
|
|
if (minz >= h) return DT_SUCCESS;
|
|
|
|
if (minx < 0) minx = 0;
|
|
if (maxx >= w) maxx = w-1;
|
|
if (minz < 0) minz = 0;
|
|
if (maxz >= h) maxz = h-1;
|
|
|
|
for (int z = minz; z <= maxz; ++z)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
const int y = layer.heights[x+z*w];
|
|
if (y < miny || y > maxy)
|
|
continue;
|
|
layer.areas[x+z*w] = areaId;
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtMarkBoxArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch,
|
|
const float* center, const float* halfExtents, const float* rotAux, const unsigned char areaId)
|
|
{
|
|
const int w = (int)layer.header->width;
|
|
const int h = (int)layer.header->height;
|
|
const float ics = 1.0f/cs;
|
|
const float ich = 1.0f/ch;
|
|
|
|
float cx = (center[0] - orig[0])*ics;
|
|
float cz = (center[2] - orig[2])*ics;
|
|
|
|
float maxr = 1.41f*dtMax(halfExtents[0], halfExtents[2]);
|
|
int minx = (int)floorf(cx - maxr*ics);
|
|
int maxx = (int)floorf(cx + maxr*ics);
|
|
int minz = (int)floorf(cz - maxr*ics);
|
|
int maxz = (int)floorf(cz + maxr*ics);
|
|
int miny = (int)floorf((center[1]-halfExtents[1]-orig[1])*ich);
|
|
int maxy = (int)floorf((center[1]+halfExtents[1]-orig[1])*ich);
|
|
|
|
if (maxx < 0) return DT_SUCCESS;
|
|
if (minx >= w) return DT_SUCCESS;
|
|
if (maxz < 0) return DT_SUCCESS;
|
|
if (minz >= h) return DT_SUCCESS;
|
|
|
|
if (minx < 0) minx = 0;
|
|
if (maxx >= w) maxx = w-1;
|
|
if (minz < 0) minz = 0;
|
|
if (maxz >= h) maxz = h-1;
|
|
|
|
float xhalf = halfExtents[0]*ics + 0.5f;
|
|
float zhalf = halfExtents[2]*ics + 0.5f;
|
|
|
|
for (int z = minz; z <= maxz; ++z)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
float x2 = 2.0f*(float(x) - cx);
|
|
float z2 = 2.0f*(float(z) - cz);
|
|
float xrot = rotAux[1]*x2 + rotAux[0]*z2;
|
|
if (xrot > xhalf || xrot < -xhalf)
|
|
continue;
|
|
float zrot = rotAux[1]*z2 - rotAux[0]*x2;
|
|
if (zrot > zhalf || zrot < -zhalf)
|
|
continue;
|
|
const int y = layer.heights[x+z*w];
|
|
if (y < miny || y > maxy)
|
|
continue;
|
|
layer.areas[x+z*w] = areaId;
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtBuildTileCacheLayer(dtTileCacheCompressor* comp,
|
|
dtTileCacheLayerHeader* header,
|
|
const unsigned char* heights,
|
|
const unsigned char* areas,
|
|
const unsigned char* cons,
|
|
unsigned char** outData, int* outDataSize)
|
|
{
|
|
const int headerSize = dtAlign4(sizeof(dtTileCacheLayerHeader));
|
|
const int gridSize = (int)header->width * (int)header->height;
|
|
const int maxDataSize = headerSize + comp->maxCompressedSize(gridSize*3);
|
|
unsigned char* data = (unsigned char*)dtAlloc(maxDataSize, DT_ALLOC_PERM);
|
|
if (!data)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(data, 0, maxDataSize);
|
|
|
|
// Store header
|
|
memcpy(data, header, sizeof(dtTileCacheLayerHeader));
|
|
|
|
// Concatenate grid data for compression.
|
|
const int bufferSize = gridSize*3;
|
|
unsigned char* buffer = (unsigned char*)dtAlloc(bufferSize, DT_ALLOC_TEMP);
|
|
if (!buffer)
|
|
{
|
|
dtFree(data);
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
}
|
|
|
|
memcpy(buffer, heights, gridSize);
|
|
memcpy(buffer+gridSize, areas, gridSize);
|
|
memcpy(buffer+gridSize*2, cons, gridSize);
|
|
|
|
// Compress
|
|
unsigned char* compressed = data + headerSize;
|
|
const int maxCompressedSize = maxDataSize - headerSize;
|
|
int compressedSize = 0;
|
|
dtStatus status = comp->compress(buffer, bufferSize, compressed, maxCompressedSize, &compressedSize);
|
|
if (dtStatusFailed(status))
|
|
{
|
|
dtFree(buffer);
|
|
dtFree(data);
|
|
return status;
|
|
}
|
|
|
|
*outData = data;
|
|
*outDataSize = headerSize + compressedSize;
|
|
|
|
dtFree(buffer);
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
void dtFreeTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheLayer* layer)
|
|
{
|
|
dtAssert(alloc);
|
|
// The layer is allocated as one conitguous blob of data.
|
|
alloc->free(layer);
|
|
}
|
|
|
|
dtStatus dtDecompressTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheCompressor* comp,
|
|
unsigned char* compressed, const int compressedSize,
|
|
dtTileCacheLayer** layerOut)
|
|
{
|
|
dtAssert(alloc);
|
|
dtAssert(comp);
|
|
|
|
if (!layerOut)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
if (!compressed)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*layerOut = 0;
|
|
|
|
dtTileCacheLayerHeader* compressedHeader = (dtTileCacheLayerHeader*)compressed;
|
|
if (compressedHeader->magic != DT_TILECACHE_MAGIC)
|
|
return DT_FAILURE | DT_WRONG_MAGIC;
|
|
if (compressedHeader->version != DT_TILECACHE_VERSION)
|
|
return DT_FAILURE | DT_WRONG_VERSION;
|
|
|
|
const int layerSize = dtAlign4(sizeof(dtTileCacheLayer));
|
|
const int headerSize = dtAlign4(sizeof(dtTileCacheLayerHeader));
|
|
const int gridSize = (int)compressedHeader->width * (int)compressedHeader->height;
|
|
const int bufferSize = layerSize + headerSize + gridSize*4;
|
|
|
|
unsigned char* buffer = (unsigned char*)alloc->alloc(bufferSize);
|
|
if (!buffer)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
memset(buffer, 0, bufferSize);
|
|
|
|
dtTileCacheLayer* layer = (dtTileCacheLayer*)buffer;
|
|
dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)(buffer + layerSize);
|
|
unsigned char* grids = buffer + layerSize + headerSize;
|
|
const int gridsSize = bufferSize - (layerSize + headerSize);
|
|
|
|
// Copy header
|
|
memcpy(header, compressedHeader, headerSize);
|
|
// Decompress grid.
|
|
int size = 0;
|
|
dtStatus status = comp->decompress(compressed+headerSize, compressedSize-headerSize,
|
|
grids, gridsSize, &size);
|
|
if (dtStatusFailed(status))
|
|
{
|
|
alloc->free(buffer);
|
|
return status;
|
|
}
|
|
|
|
layer->header = header;
|
|
layer->heights = grids;
|
|
layer->areas = grids + gridSize;
|
|
layer->cons = grids + gridSize*2;
|
|
layer->regs = grids + gridSize*3;
|
|
|
|
*layerOut = layer;
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
bool dtTileCacheHeaderSwapEndian(unsigned char* data, const int dataSize)
|
|
{
|
|
dtIgnoreUnused(dataSize);
|
|
dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)data;
|
|
|
|
int swappedMagic = DT_TILECACHE_MAGIC;
|
|
int swappedVersion = DT_TILECACHE_VERSION;
|
|
dtSwapEndian(&swappedMagic);
|
|
dtSwapEndian(&swappedVersion);
|
|
|
|
if ((header->magic != DT_TILECACHE_MAGIC || header->version != DT_TILECACHE_VERSION) &&
|
|
(header->magic != swappedMagic || header->version != swappedVersion))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
dtSwapEndian(&header->magic);
|
|
dtSwapEndian(&header->version);
|
|
dtSwapEndian(&header->tx);
|
|
dtSwapEndian(&header->ty);
|
|
dtSwapEndian(&header->tlayer);
|
|
dtSwapEndian(&header->bmin[0]);
|
|
dtSwapEndian(&header->bmin[1]);
|
|
dtSwapEndian(&header->bmin[2]);
|
|
dtSwapEndian(&header->bmax[0]);
|
|
dtSwapEndian(&header->bmax[1]);
|
|
dtSwapEndian(&header->bmax[2]);
|
|
dtSwapEndian(&header->hmin);
|
|
dtSwapEndian(&header->hmax);
|
|
|
|
// width, height, minx, maxx, miny, maxy are unsigned char, no need to swap.
|
|
|
|
return true;
|
|
}
|
|
|