axmol/3rdparty/openal/core/mixer/defs.h

110 lines
3.4 KiB
C++

#ifndef CORE_MIXER_DEFS_H
#define CORE_MIXER_DEFS_H
#include <array>
#include <stdlib.h>
#include "alspan.h"
#include "core/bufferline.h"
#include "core/resampler_limits.h"
struct CubicCoefficients;
struct HrtfChannelState;
struct HrtfFilter;
struct MixHrtfFilter;
using uint = unsigned int;
using float2 = std::array<float,2>;
constexpr int MixerFracBits{16};
constexpr int MixerFracOne{1 << MixerFracBits};
constexpr int MixerFracMask{MixerFracOne - 1};
constexpr int MixerFracHalf{MixerFracOne >> 1};
constexpr float GainSilenceThreshold{0.00001f}; /* -100dB */
enum class Resampler : uint8_t {
Point,
Linear,
Cubic,
FastBSinc12,
BSinc12,
FastBSinc24,
BSinc24,
Max = BSinc24
};
/* Interpolator state. Kind of a misnomer since the interpolator itself is
* stateless. This just keeps it from having to recompute scale-related
* mappings for every sample.
*/
struct BsincState {
float sf; /* Scale interpolation factor. */
uint m; /* Coefficient count. */
uint l; /* Left coefficient offset. */
/* Filter coefficients, followed by the phase, scale, and scale-phase
* delta coefficients. Starting at phase index 0, each subsequent phase
* index follows contiguously.
*/
const float *filter;
};
struct CubicState {
/* Filter coefficients, and coefficient deltas. Starting at phase index 0,
* each subsequent phase index follows contiguously.
*/
const CubicCoefficients *filter;
};
union InterpState {
CubicState cubic;
BsincState bsinc;
};
using ResamplerFunc = void(*)(const InterpState *state, const float *RESTRICT src, uint frac,
const uint increment, const al::span<float> dst);
ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state);
template<typename TypeTag, typename InstTag>
void Resample_(const InterpState *state, const float *RESTRICT src, uint frac,
const uint increment, const al::span<float> dst);
template<typename InstTag>
void Mix_(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos);
template<typename InstTag>
void Mix_(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain,
const float TargetGain, const size_t Counter);
template<typename InstTag>
void MixHrtf_(const float *InSamples, float2 *AccumSamples, const uint IrSize,
const MixHrtfFilter *hrtfparams, const size_t BufferSize);
template<typename InstTag>
void MixHrtfBlend_(const float *InSamples, float2 *AccumSamples, const uint IrSize,
const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize);
template<typename InstTag>
void MixDirectHrtf_(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize);
/* Vectorized resampler helpers */
template<size_t N>
inline void InitPosArrays(uint frac, uint increment, uint (&frac_arr)[N], uint (&pos_arr)[N])
{
pos_arr[0] = 0;
frac_arr[0] = frac;
for(size_t i{1};i < N;i++)
{
const uint frac_tmp{frac_arr[i-1] + increment};
pos_arr[i] = pos_arr[i-1] + (frac_tmp>>MixerFracBits);
frac_arr[i] = frac_tmp&MixerFracMask;
}
}
#endif /* CORE_MIXER_DEFS_H */