mirror of https://github.com/axmolengine/axmol.git
201 lines
6.7 KiB
C++
201 lines
6.7 KiB
C++
#include "config.h"
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#include "alnumeric.h"
|
|
#include "core/bsinc_tables.h"
|
|
#include "defs.h"
|
|
#include "hrtfbase.h"
|
|
|
|
struct CTag;
|
|
struct CopyTag;
|
|
struct PointTag;
|
|
struct LerpTag;
|
|
struct CubicTag;
|
|
struct BSincTag;
|
|
struct FastBSincTag;
|
|
|
|
|
|
namespace {
|
|
|
|
constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
|
|
constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
|
|
|
|
inline float do_point(const InterpState&, const float *RESTRICT vals, const uint)
|
|
{ return vals[0]; }
|
|
inline float do_lerp(const InterpState&, const float *RESTRICT vals, const uint frac)
|
|
{ return lerpf(vals[0], vals[1], static_cast<float>(frac)*(1.0f/MixerFracOne)); }
|
|
inline float do_cubic(const InterpState&, const float *RESTRICT vals, const uint frac)
|
|
{ return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/MixerFracOne)); }
|
|
inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
|
|
{
|
|
const size_t m{istate.bsinc.m};
|
|
ASSUME(m > 0);
|
|
|
|
// Calculate the phase index and factor.
|
|
const uint pi{frac >> FracPhaseBitDiff};
|
|
const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
|
|
|
|
const float *RESTRICT fil{istate.bsinc.filter + m*pi*2};
|
|
const float *RESTRICT phd{fil + m};
|
|
const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
|
|
const float *RESTRICT spd{scd + m};
|
|
|
|
// Apply the scale and phase interpolated filter.
|
|
float r{0.0f};
|
|
for(size_t j_f{0};j_f < m;j_f++)
|
|
r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
|
|
return r;
|
|
}
|
|
inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac)
|
|
{
|
|
const size_t m{istate.bsinc.m};
|
|
ASSUME(m > 0);
|
|
|
|
// Calculate the phase index and factor.
|
|
const uint pi{frac >> FracPhaseBitDiff};
|
|
const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
|
|
|
|
const float *RESTRICT fil{istate.bsinc.filter + m*pi*2};
|
|
const float *RESTRICT phd{fil + m};
|
|
|
|
// Apply the phase interpolated filter.
|
|
float r{0.0f};
|
|
for(size_t j_f{0};j_f < m;j_f++)
|
|
r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
|
|
return r;
|
|
}
|
|
|
|
using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const uint);
|
|
template<SamplerT Sampler>
|
|
float *DoResample(const InterpState *state, float *RESTRICT src, uint frac, uint increment,
|
|
const al::span<float> dst)
|
|
{
|
|
const InterpState istate{*state};
|
|
for(float &out : dst)
|
|
{
|
|
out = Sampler(istate, src, frac);
|
|
|
|
frac += increment;
|
|
src += frac>>MixerFracBits;
|
|
frac &= MixerFracMask;
|
|
}
|
|
return dst.data();
|
|
}
|
|
|
|
inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
|
|
const float left, const float right)
|
|
{
|
|
ASSUME(IrSize >= MinIrLength);
|
|
for(size_t c{0};c < IrSize;++c)
|
|
{
|
|
Values[c][0] += Coeffs[c][0] * left;
|
|
Values[c][1] += Coeffs[c][1] * right;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template<>
|
|
float *Resample_<CopyTag,CTag>(const InterpState*, float *RESTRICT src, uint, uint,
|
|
const al::span<float> dst)
|
|
{
|
|
#if defined(HAVE_SSE) || defined(HAVE_NEON)
|
|
/* Avoid copying the source data if it's aligned like the destination. */
|
|
if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15))
|
|
return src;
|
|
#endif
|
|
std::copy_n(src, dst.size(), dst.begin());
|
|
return dst.data();
|
|
}
|
|
|
|
template<>
|
|
float *Resample_<PointTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
|
|
uint increment, const al::span<float> dst)
|
|
{ return DoResample<do_point>(state, src, frac, increment, dst); }
|
|
|
|
template<>
|
|
float *Resample_<LerpTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
|
|
uint increment, const al::span<float> dst)
|
|
{ return DoResample<do_lerp>(state, src, frac, increment, dst); }
|
|
|
|
template<>
|
|
float *Resample_<CubicTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
|
|
uint increment, const al::span<float> dst)
|
|
{ return DoResample<do_cubic>(state, src-1, frac, increment, dst); }
|
|
|
|
template<>
|
|
float *Resample_<BSincTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
|
|
uint increment, const al::span<float> dst)
|
|
{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
|
|
|
|
template<>
|
|
float *Resample_<FastBSincTag,CTag>(const InterpState *state, float *RESTRICT src, uint frac,
|
|
uint increment, const al::span<float> dst)
|
|
{ return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
|
|
|
|
|
|
template<>
|
|
void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
|
|
const MixHrtfFilter *hrtfparams, const size_t BufferSize)
|
|
{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
|
|
|
|
template<>
|
|
void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
|
|
const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
|
|
{
|
|
MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
|
|
BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixDirectHrtf_<CTag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
|
|
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
|
|
float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
|
|
{
|
|
MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
|
|
IrSize, BufferSize);
|
|
}
|
|
|
|
|
|
template<>
|
|
void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
|
|
float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
|
|
{
|
|
const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
|
|
const auto min_len = minz(Counter, InSamples.size());
|
|
for(FloatBufferLine &output : OutBuffer)
|
|
{
|
|
float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
|
|
float gain{*CurrentGains};
|
|
const float step{(*TargetGains-gain) * delta};
|
|
|
|
size_t pos{0};
|
|
if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
|
|
gain = *TargetGains;
|
|
else
|
|
{
|
|
float step_count{0.0f};
|
|
for(;pos != min_len;++pos)
|
|
{
|
|
dst[pos] += InSamples[pos] * (gain + step*step_count);
|
|
step_count += 1.0f;
|
|
}
|
|
if(pos == Counter)
|
|
gain = *TargetGains;
|
|
else
|
|
gain += step*step_count;
|
|
}
|
|
*CurrentGains = gain;
|
|
++CurrentGains;
|
|
++TargetGains;
|
|
|
|
if(!(std::abs(gain) > GainSilenceThreshold))
|
|
continue;
|
|
for(;pos != InSamples.size();++pos)
|
|
dst[pos] += InSamples[pos] * gain;
|
|
}
|
|
}
|