axmol/cocos/editor-support/spine/PathConstraint.c

468 lines
16 KiB
C

/******************************************************************************
* Spine Runtimes Software License v2.5
*
* Copyright (c) 2013-2016, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable, and
* non-transferable license to use, install, execute, and perform the Spine
* Runtimes software and derivative works solely for personal or internal
* use. Without the written permission of Esoteric Software (see Section 2 of
* the Spine Software License Agreement), you may not (a) modify, translate,
* adapt, or develop new applications using the Spine Runtimes or otherwise
* create derivative works or improvements of the Spine Runtimes or (b) remove,
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
* or other intellectual property or proprietary rights notices on or in the
* Software, including any copy thereof. Redistributions in binary or source
* form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include <spine/PathConstraint.h>
#include <spine/Skeleton.h>
#include <spine/extension.h>
#define PATHCONSTRAINT_NONE -1
#define PATHCONSTRAINT_BEFORE -2
#define PATHCONSTRAINT_AFTER -3
spPathConstraint* spPathConstraint_create (spPathConstraintData* data, const spSkeleton* skeleton) {
int i;
spPathConstraint *self = NEW(spPathConstraint);
CONST_CAST(spPathConstraintData*, self->data) = data;
self->bonesCount = data->bonesCount;
CONST_CAST(spBone**, self->bones) = MALLOC(spBone*, self->bonesCount);
for (i = 0; i < self->bonesCount; ++i)
self->bones[i] = spSkeleton_findBone(skeleton, self->data->bones[i]->name);
self->target = spSkeleton_findSlot(skeleton, self->data->target->name);
self->position = data->position;
self->spacing = data->spacing;
self->rotateMix = data->rotateMix;
self->translateMix = data->translateMix;
self->spacesCount = 0;
self->spaces = 0;
self->positionsCount = 0;
self->positions = 0;
self->worldCount = 0;
self->world = 0;
self->curvesCount = 0;
self->curves = 0;
self->lengthsCount = 0;
self->lengths = 0;
return self;
}
void spPathConstraint_dispose (spPathConstraint* self) {
FREE(self->bones);
FREE(self->spaces);
if (self->positions) FREE(self->positions);
if (self->world) FREE(self->world);
if (self->curves) FREE(self->curves);
if (self->lengths) FREE(self->lengths);
FREE(self);
}
void spPathConstraint_apply (spPathConstraint* self) {
int i, p, n;
float length, setupLength, x, y, dx, dy, s;
float* spaces, *lengths, *positions;
float spacing;
float boneX, boneY, offsetRotation;
int/*bool*/tip;
float rotateMix = self->rotateMix, translateMix = self->translateMix;
int/*bool*/ translate = translateMix > 0, rotate = rotateMix > 0;
spPathAttachment* attachment = (spPathAttachment*)self->target->attachment;
spPathConstraintData* data = self->data;
spSpacingMode spacingMode = data->spacingMode;
int lengthSpacing = spacingMode == SP_SPACING_MODE_LENGTH;
spRotateMode rotateMode = data->rotateMode;
int tangents = rotateMode == SP_ROTATE_MODE_TANGENT, scale = rotateMode == SP_ROTATE_MODE_CHAIN_SCALE;
int boneCount = self->bonesCount, spacesCount = tangents ? boneCount : boneCount + 1;
spBone** bones = self->bones;
spBone* pa;
if (!translate && !rotate) return;
if ((attachment == 0) || (attachment->super.super.type != SP_ATTACHMENT_PATH)) return;
if (self->spacesCount != spacesCount) {
if (self->spaces) FREE(self->spaces);
self->spaces = MALLOC(float, spacesCount);
self->spacesCount = spacesCount;
}
spaces = self->spaces;
spaces[0] = 0;
lengths = 0;
spacing = self->spacing;
if (scale || lengthSpacing) {
if (scale) {
if (self->lengthsCount != boneCount) {
if (self->lengths) FREE(self->lengths);
self->lengths = MALLOC(float, boneCount);
self->lengthsCount = boneCount;
}
lengths = self->lengths;
}
for (i = 0, n = spacesCount - 1; i < n;) {
spBone* bone = bones[i];
setupLength = bone->data->length;
if (setupLength == 0) setupLength = 0.000000001f;
x = setupLength * bone->a, y = setupLength * bone->c;
length = SQRT(x * x + y * y);
if (scale) lengths[i] = length;
spaces[++i] = (lengthSpacing ? setupLength + spacing : spacing) * length / setupLength;
}
} else {
for (i = 1; i < spacesCount; i++) {
spaces[i] = spacing;
}
}
positions = spPathConstraint_computeWorldPositions(self, attachment, spacesCount, tangents,
data->positionMode == SP_POSITION_MODE_PERCENT, spacingMode == SP_SPACING_MODE_PERCENT);
boneX = positions[0], boneY = positions[1], offsetRotation = self->data->offsetRotation;
tip = 0;
if (offsetRotation == 0)
tip = rotateMode == SP_ROTATE_MODE_CHAIN;
else {
tip = 0;
pa = self->target->bone;
offsetRotation *= pa->a * pa->d - pa->b * pa->c > 0 ? DEG_RAD : -DEG_RAD;
}
for (i = 0, p = 3; i < boneCount; i++, p += 3) {
spBone* bone = bones[i];
CONST_CAST(float, bone->worldX) += (boneX - bone->worldX) * translateMix;
CONST_CAST(float, bone->worldY) += (boneY - bone->worldY) * translateMix;
x = positions[p], y = positions[p + 1], dx = x - boneX, dy = y - boneY;
if (scale) {
length = lengths[i];
if (length != 0) {
s = (SQRT(dx * dx + dy * dy) / length - 1) * rotateMix + 1;
CONST_CAST(float, bone->a) *= s;
CONST_CAST(float, bone->c) *= s;
}
}
boneX = x;
boneY = y;
if (rotate) {
float a = bone->a, b = bone->b, c = bone->c, d = bone->d, r, cosine, sine;
if (tangents)
r = positions[p - 1];
else if (spaces[i + 1] == 0)
r = positions[p + 2];
else
r = ATAN2(dy, dx);
r -= ATAN2(c, a) - offsetRotation * DEG_RAD;
if (tip) {
cosine = COS(r);
sine = SIN(r);
length = bone->data->length;
boneX += (length * (cosine * a - sine * c) - dx) * rotateMix;
boneY += (length * (sine * a + cosine * c) - dy) * rotateMix;
} else
r += offsetRotation;
if (r > PI)
r -= PI2;
else if (r < -PI)
r += PI2;
r *= rotateMix;
cosine = COS(r);
sine = SIN(r);
CONST_CAST(float, bone->a) = cosine * a - sine * c;
CONST_CAST(float, bone->b) = cosine * b - sine * d;
CONST_CAST(float, bone->c) = sine * a + cosine * c;
CONST_CAST(float, bone->d) = sine * b + cosine * d;
}
CONST_CAST(int, bone->appliedValid) = -1;
}
}
static void _addBeforePosition(float p, float* temp, int i, float* out, int o) {
float x1 = temp[i], y1 = temp[i + 1], dx = temp[i + 2] - x1, dy = temp[i + 3] - y1, r = ATAN2(dy, dx);
out[o] = x1 + p * COS(r);
out[o + 1] = y1 + p * SIN(r);
out[o + 2] = r;
}
static void _addAfterPosition (float p, float* temp, int i, float* out, int o) {
float x1 = temp[i + 2], y1 = temp[i + 3], dx = x1 - temp[i], dy = y1 - temp[i + 1], r = ATAN2(dy, dx);
out[o] = x1 + p * COS(r);
out[o + 1] = y1 + p * SIN(r);
out[o + 2] = r;
}
/* Need to pass 0 as an argument, so VC++ doesn't error with C2124 */
static int _isNan(float value, float zero) {
float _nan = (float)0.0 / zero;
return 0 == memcmp((void*)&value, (void*)&_nan, sizeof(value));
}
static void _addCurvePosition (float p, float x1, float y1, float cx1, float cy1, float cx2, float cy2, float x2, float y2,
float* out, int o, int/*bool*/tangents) {
float tt, ttt, u, uu, uuu;
float ut, ut3, uut3, utt3;
float x, y;
if (p == 0 || _isNan(p, 0)) p = 0.0001f;
tt = p * p, ttt = tt * p, u = 1 - p, uu = u * u, uuu = uu * u;
ut = u * p, ut3 = ut * 3, uut3 = u * ut3, utt3 = ut3 * p;
x = x1 * uuu + cx1 * uut3 + cx2 * utt3 + x2 * ttt, y = y1 * uuu + cy1 * uut3 + cy2 * utt3 + y2 * ttt;
out[o] = x;
out[o + 1] = y;
if (tangents) out[o + 2] = ATAN2(y - (y1 * uu + cy1 * ut * 2 + cy2 * tt), x - (x1 * uu + cx1 * ut * 2 + cx2 * tt));
}
float* spPathConstraint_computeWorldPositions(spPathConstraint* self, spPathAttachment* path, int spacesCount, int/*bool*/ tangents, int/*bool*/percentPosition, int/**/percentSpacing) {
int i, o, w, curve, segment, /*bool*/closed, verticesLength, curveCount, prevCurve;
float* out, *curves, *segments;
float tmpx, tmpy, dddfx, dddfy, ddfx, ddfy, dfx, dfy, pathLength, curveLength, p;
float x1, y1, cx1, cy1, cx2, cy2, x2, y2;
spSlot* target = self->target;
float position = self->position;
float* spaces = self->spaces, *world = 0;
if (self->positionsCount != spacesCount * 3 + 2) {
if (self->positions) FREE(self->positions);
self->positions = MALLOC(float, spacesCount * 3 + 2);
self->positionsCount = spacesCount * 3 + 2;
}
out = self->positions;
closed = path->closed;
verticesLength = path->super.worldVerticesLength, curveCount = verticesLength / 6, prevCurve = PATHCONSTRAINT_NONE;
if (!path->constantSpeed) {
float* lengths = path->lengths;
curveCount -= closed ? 1 : 2;
pathLength = lengths[curveCount];
if (percentPosition) position *= pathLength;
if (percentSpacing) {
for (i = 0; i < spacesCount; i++)
spaces[i] *= pathLength;
}
if (self->worldCount != 8) {
if (self->world) FREE(self->world);
self->world = MALLOC(float, 8);
self->worldCount = 8;
}
world = self->world;
for (i = 0, o = 0, curve = 0; i < spacesCount; i++, o += 3) {
float space = spaces[i];
position += space;
p = position;
if (closed) {
p = FMOD(p, pathLength);
if (p < 0) p += pathLength;
curve = 0;
} else if (p < 0) {
if (prevCurve != PATHCONSTRAINT_BEFORE) {
prevCurve = PATHCONSTRAINT_BEFORE;
spVertexAttachment_computeWorldVertices(SUPER(path), target, 2, 4, world, 0, 2);
}
_addBeforePosition(p, world, 0, out, o);
continue;
} else if (p > pathLength) {
if (prevCurve != PATHCONSTRAINT_AFTER) {
prevCurve = PATHCONSTRAINT_AFTER;
spVertexAttachment_computeWorldVertices(SUPER(path), target, verticesLength - 6, 4, world, 0, 2);
}
_addAfterPosition(p - pathLength, world, 0, out, o);
continue;
}
/* Determine curve containing position. */
for (;; curve++) {
float length = lengths[curve];
if (p > length) continue;
if (curve == 0)
p /= length;
else {
float prev = lengths[curve - 1];
p = (p - prev) / (length - prev);
}
break;
}
if (curve != prevCurve) {
prevCurve = curve;
if (closed && curve == curveCount) {
spVertexAttachment_computeWorldVertices(SUPER(path), target, verticesLength - 4, 4, world, 0, 2);
spVertexAttachment_computeWorldVertices(SUPER(path), target, 0, 4, world, 4, 2);
} else
spVertexAttachment_computeWorldVertices(SUPER(path), target, curve * 6 + 2, 8, world, 0, 2);
}
_addCurvePosition(p, world[0], world[1], world[2], world[3], world[4], world[5], world[6], world[7], out, o,
tangents || (i > 0 && space == 0));
}
return out;
}
/* World vertices. */
if (closed) {
verticesLength += 2;
if (self->worldCount != verticesLength) {
if (self->world) FREE(self->world);
self->world = MALLOC(float, verticesLength);
self->worldCount = verticesLength;
}
world = self->world;
spVertexAttachment_computeWorldVertices(SUPER(path), target, 2, verticesLength - 4, world, 0, 2);
spVertexAttachment_computeWorldVertices(SUPER(path), target, 0, 2, world, verticesLength - 4, 2);
world[verticesLength - 2] = world[0];
world[verticesLength - 1] = world[1];
} else {
curveCount--;
verticesLength -= 4;
if (self->worldCount != verticesLength) {
if (self->world) FREE(self->world);
self->world = MALLOC(float, verticesLength);
self->worldCount = verticesLength;
}
world = self->world;
spVertexAttachment_computeWorldVertices(SUPER(path), target, 2, verticesLength, world, 0, 2);
}
/* Curve lengths. */
if (self->curvesCount != curveCount) {
if (self->curves) FREE(self->curves);
self->curves = MALLOC(float, curveCount);
self->curvesCount = curveCount;
}
curves = self->curves;
pathLength = 0;
x1 = world[0], y1 = world[1], cx1 = 0, cy1 = 0, cx2 = 0, cy2 = 0, x2 = 0, y2 = 0;
for (i = 0, w = 2; i < curveCount; i++, w += 6) {
cx1 = world[w];
cy1 = world[w + 1];
cx2 = world[w + 2];
cy2 = world[w + 3];
x2 = world[w + 4];
y2 = world[w + 5];
tmpx = (x1 - cx1 * 2 + cx2) * 0.1875f;
tmpy = (y1 - cy1 * 2 + cy2) * 0.1875f;
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.09375f;
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.09375f;
ddfx = tmpx * 2 + dddfx;
ddfy = tmpy * 2 + dddfy;
dfx = (cx1 - x1) * 0.75f + tmpx + dddfx * 0.16666667f;
dfy = (cy1 - y1) * 0.75f + tmpy + dddfy * 0.16666667f;
pathLength += SQRT(dfx * dfx + dfy * dfy);
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
pathLength += SQRT(dfx * dfx + dfy * dfy);
dfx += ddfx;
dfy += ddfy;
pathLength += SQRT(dfx * dfx + dfy * dfy);
dfx += ddfx + dddfx;
dfy += ddfy + dddfy;
pathLength += SQRT(dfx * dfx + dfy * dfy);
curves[i] = pathLength;
x1 = x2;
y1 = y2;
}
if (percentPosition) position *= pathLength;
if (percentSpacing) {
for (i = 0; i < spacesCount; i++)
spaces[i] *= pathLength;
}
segments = self->segments;
curveLength = 0;
for (i = 0, o = 0, curve = 0, segment = 0; i < spacesCount; i++, o += 3) {
float space = spaces[i];
position += space;
p = position;
if (closed) {
p = FMOD(p, pathLength);
if (p < 0) p += pathLength;
curve = 0;
} else if (p < 0) {
_addBeforePosition(p, world, 0, out, o);
continue;
} else if (p > pathLength) {
_addAfterPosition(p - pathLength, world, verticesLength - 4, out, o);
continue;
}
/* Determine curve containing position. */
for (;; curve++) {
float length = curves[curve];
if (p > length) continue;
if (curve == 0)
p /= length;
else {
float prev = curves[curve - 1];
p = (p - prev) / (length - prev);
}
break;
}
/* Curve segment lengths. */
if (curve != prevCurve) {
int ii;
prevCurve = curve;
ii = curve * 6;
x1 = world[ii];
y1 = world[ii + 1];
cx1 = world[ii + 2];
cy1 = world[ii + 3];
cx2 = world[ii + 4];
cy2 = world[ii + 5];
x2 = world[ii + 6];
y2 = world[ii + 7];
tmpx = (x1 - cx1 * 2 + cx2) * 0.03f;
tmpy = (y1 - cy1 * 2 + cy2) * 0.03f;
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.006f;
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.006f;
ddfx = tmpx * 2 + dddfx;
ddfy = tmpy * 2 + dddfy;
dfx = (cx1 - x1) * 0.3f + tmpx + dddfx * 0.16666667f;
dfy = (cy1 - y1) * 0.3f + tmpy + dddfy * 0.16666667f;
curveLength = SQRT(dfx * dfx + dfy * dfy);
segments[0] = curveLength;
for (ii = 1; ii < 8; ii++) {
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
curveLength += SQRT(dfx * dfx + dfy * dfy);
segments[ii] = curveLength;
}
dfx += ddfx;
dfy += ddfy;
curveLength += SQRT(dfx * dfx + dfy * dfy);
segments[8] = curveLength;
dfx += ddfx + dddfx;
dfy += ddfy + dddfy;
curveLength += SQRT(dfx * dfx + dfy * dfy);
segments[9] = curveLength;
segment = 0;
}
/* Weight by segment length. */
p *= curveLength;
for (;; segment++) {
float length = segments[segment];
if (p > length) continue;
if (segment == 0)
p /= length;
else {
float prev = segments[segment - 1];
p = segment + (p - prev) / (length - prev);
}
break;
}
_addCurvePosition(p * 0.1f, x1, y1, cx1, cy1, cx2, cy2, x2, y2, out, o, tangents || (i > 0 && space == 0));
}
return out;
}