mirror of https://github.com/axmolengine/axmol.git
425 lines
20 KiB
NASM
425 lines
20 KiB
NASM
;
|
|
; jchuff-sse2.asm - Huffman entropy encoding (SSE2)
|
|
;
|
|
; Copyright (C) 2009-2011, 2014-2017, D. R. Commander.
|
|
; Copyright (C) 2015, Matthieu Darbois.
|
|
;
|
|
; Based on the x86 SIMD extension for IJG JPEG library
|
|
; Copyright (C) 1999-2006, MIYASAKA Masaru.
|
|
; For conditions of distribution and use, see copyright notice in jsimdext.inc
|
|
;
|
|
; This file should be assembled with NASM (Netwide Assembler),
|
|
; can *not* be assembled with Microsoft's MASM or any compatible
|
|
; assembler (including Borland's Turbo Assembler).
|
|
; NASM is available from http://nasm.sourceforge.net/ or
|
|
; http://sourceforge.net/project/showfiles.php?group_id=6208
|
|
;
|
|
; This file contains an SSE2 implementation for Huffman coding of one block.
|
|
; The following code is based directly on jchuff.c; see jchuff.c for more
|
|
; details.
|
|
|
|
%include "jsimdext.inc"
|
|
|
|
; --------------------------------------------------------------------------
|
|
SECTION SEG_CONST
|
|
|
|
alignz 32
|
|
GLOBAL_DATA(jconst_huff_encode_one_block)
|
|
|
|
EXTN(jconst_huff_encode_one_block):
|
|
|
|
%include "jpeg_nbits_table.inc"
|
|
|
|
alignz 32
|
|
|
|
; --------------------------------------------------------------------------
|
|
SECTION SEG_TEXT
|
|
BITS 32
|
|
|
|
; These macros perform the same task as the emit_bits() function in the
|
|
; original libjpeg code. In addition to reducing overhead by explicitly
|
|
; inlining the code, additional performance is achieved by taking into
|
|
; account the size of the bit buffer and waiting until it is almost full
|
|
; before emptying it. This mostly benefits 64-bit platforms, since 6
|
|
; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
|
|
|
|
%macro EMIT_BYTE 0
|
|
sub put_bits, 8 ; put_bits -= 8;
|
|
mov edx, put_buffer
|
|
mov ecx, put_bits
|
|
shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
|
|
mov byte [eax], dl ; *buffer++ = c;
|
|
add eax, 1
|
|
cmp dl, 0xFF ; need to stuff a zero byte?
|
|
jne %%.EMIT_BYTE_END
|
|
mov byte [eax], 0 ; *buffer++ = 0;
|
|
add eax, 1
|
|
%%.EMIT_BYTE_END:
|
|
%endmacro
|
|
|
|
%macro PUT_BITS 1
|
|
add put_bits, ecx ; put_bits += size;
|
|
shl put_buffer, cl ; put_buffer = (put_buffer << size);
|
|
or put_buffer, %1
|
|
%endmacro
|
|
|
|
%macro CHECKBUF15 0
|
|
cmp put_bits, 16 ; if (put_bits > 31) {
|
|
jl %%.CHECKBUF15_END
|
|
mov eax, POINTER [esp+buffer]
|
|
EMIT_BYTE
|
|
EMIT_BYTE
|
|
mov POINTER [esp+buffer], eax
|
|
%%.CHECKBUF15_END:
|
|
%endmacro
|
|
|
|
%macro EMIT_BITS 1
|
|
PUT_BITS %1
|
|
CHECKBUF15
|
|
%endmacro
|
|
|
|
%macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
|
|
pxor xmm4, xmm4 ; __m128i neg = _mm_setzero_si128();
|
|
pxor xmm5, xmm5 ; __m128i neg = _mm_setzero_si128();
|
|
pxor xmm6, xmm6 ; __m128i neg = _mm_setzero_si128();
|
|
pxor xmm7, xmm7 ; __m128i neg = _mm_setzero_si128();
|
|
pinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0];
|
|
pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8];
|
|
pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16];
|
|
pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24];
|
|
pinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1];
|
|
pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9];
|
|
pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17];
|
|
pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25];
|
|
pinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2];
|
|
pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10];
|
|
pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18];
|
|
pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26];
|
|
pinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3];
|
|
pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11];
|
|
pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19];
|
|
pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27];
|
|
pinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4];
|
|
pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12];
|
|
pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20];
|
|
pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28];
|
|
pinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5];
|
|
pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13];
|
|
pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21];
|
|
pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29];
|
|
pinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6];
|
|
pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14];
|
|
pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22];
|
|
pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30];
|
|
pinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7];
|
|
pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15];
|
|
pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23];
|
|
%if %1 != 32
|
|
pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31];
|
|
%else
|
|
pinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31];
|
|
%endif
|
|
pcmpgtw xmm4, %34 ; neg = _mm_cmpgt_epi16(neg, x1);
|
|
pcmpgtw xmm5, %35 ; neg = _mm_cmpgt_epi16(neg, x1);
|
|
pcmpgtw xmm6, %36 ; neg = _mm_cmpgt_epi16(neg, x1);
|
|
pcmpgtw xmm7, %37 ; neg = _mm_cmpgt_epi16(neg, x1);
|
|
paddw %34, xmm4 ; x1 = _mm_add_epi16(x1, neg);
|
|
paddw %35, xmm5 ; x1 = _mm_add_epi16(x1, neg);
|
|
paddw %36, xmm6 ; x1 = _mm_add_epi16(x1, neg);
|
|
paddw %37, xmm7 ; x1 = _mm_add_epi16(x1, neg);
|
|
pxor %34, xmm4 ; x1 = _mm_xor_si128(x1, neg);
|
|
pxor %35, xmm5 ; x1 = _mm_xor_si128(x1, neg);
|
|
pxor %36, xmm6 ; x1 = _mm_xor_si128(x1, neg);
|
|
pxor %37, xmm7 ; x1 = _mm_xor_si128(x1, neg);
|
|
pxor xmm4, %34 ; neg = _mm_xor_si128(neg, x1);
|
|
pxor xmm5, %35 ; neg = _mm_xor_si128(neg, x1);
|
|
pxor xmm6, %36 ; neg = _mm_xor_si128(neg, x1);
|
|
pxor xmm7, %37 ; neg = _mm_xor_si128(neg, x1);
|
|
movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
|
|
movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
|
|
movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
|
|
movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
|
|
movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
|
|
movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
|
|
movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
|
|
movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
|
|
%endmacro
|
|
|
|
;
|
|
; Encode a single block's worth of coefficients.
|
|
;
|
|
; GLOBAL(JOCTET *)
|
|
; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer,
|
|
; JCOEFPTR block, int last_dc_val,
|
|
; c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
|
;
|
|
|
|
; eax + 8 = working_state *state
|
|
; eax + 12 = JOCTET *buffer
|
|
; eax + 16 = JCOEFPTR block
|
|
; eax + 20 = int last_dc_val
|
|
; eax + 24 = c_derived_tbl *dctbl
|
|
; eax + 28 = c_derived_tbl *actbl
|
|
|
|
%define pad 6 * SIZEOF_DWORD ; Align to 16 bytes
|
|
%define t1 pad
|
|
%define t2 t1 + (DCTSIZE2 * SIZEOF_WORD)
|
|
%define block t2 + (DCTSIZE2 * SIZEOF_WORD)
|
|
%define actbl block + SIZEOF_DWORD
|
|
%define buffer actbl + SIZEOF_DWORD
|
|
%define temp buffer + SIZEOF_DWORD
|
|
%define temp2 temp + SIZEOF_DWORD
|
|
%define temp3 temp2 + SIZEOF_DWORD
|
|
%define temp4 temp3 + SIZEOF_DWORD
|
|
%define temp5 temp4 + SIZEOF_DWORD
|
|
%define gotptr temp5 + SIZEOF_DWORD ; void *gotptr
|
|
%define put_buffer ebx
|
|
%define put_bits edi
|
|
|
|
align 32
|
|
GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2)
|
|
|
|
EXTN(jsimd_huff_encode_one_block_sse2):
|
|
push ebp
|
|
mov eax, esp ; eax = original ebp
|
|
sub esp, byte 4
|
|
and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
|
|
mov [esp], eax
|
|
mov ebp, esp ; ebp = aligned ebp
|
|
sub esp, temp5+9*SIZEOF_DWORD-pad
|
|
push ebx
|
|
push ecx
|
|
; push edx ; need not be preserved
|
|
push esi
|
|
push edi
|
|
push ebp
|
|
|
|
mov esi, POINTER [eax+8] ; (working_state *state)
|
|
mov put_buffer, dword [esi+8] ; put_buffer = state->cur.put_buffer;
|
|
mov put_bits, dword [esi+12] ; put_bits = state->cur.put_bits;
|
|
push esi ; esi is now scratch
|
|
|
|
get_GOT edx ; get GOT address
|
|
movpic POINTER [esp+gotptr], edx ; save GOT address
|
|
|
|
mov ecx, POINTER [eax+28]
|
|
mov edx, POINTER [eax+16]
|
|
mov esi, POINTER [eax+12]
|
|
mov POINTER [esp+actbl], ecx
|
|
mov POINTER [esp+block], edx
|
|
mov POINTER [esp+buffer], esi
|
|
|
|
; Encode the DC coefficient difference per section F.1.2.1
|
|
mov esi, POINTER [esp+block] ; block
|
|
movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val;
|
|
sub ecx, dword [eax+20]
|
|
mov esi, ecx
|
|
|
|
; This is a well-known technique for obtaining the absolute value
|
|
; with out a branch. It is derived from an assembly language technique
|
|
; presented in "How to Optimize for the Pentium Processors",
|
|
; Copyright (c) 1996, 1997 by Agner Fog.
|
|
mov edx, ecx
|
|
sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
|
|
xor ecx, edx ; temp ^= temp3;
|
|
sub ecx, edx ; temp -= temp3;
|
|
|
|
; For a negative input, want temp2 = bitwise complement of abs(input)
|
|
; This code assumes we are on a two's complement machine
|
|
add esi, edx ; temp2 += temp3;
|
|
mov dword [esp+temp], esi ; backup temp2 in temp
|
|
|
|
; Find the number of bits needed for the magnitude of the coefficient
|
|
movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp)
|
|
movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NBITS(temp);
|
|
mov dword [esp+temp2], edx ; backup nbits in temp2
|
|
|
|
; Emit the Huffman-coded symbol for the number of bits
|
|
mov ebp, POINTER [eax+24] ; After this point, arguments are not accessible anymore
|
|
mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits];
|
|
movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits];
|
|
EMIT_BITS eax ; EMIT_BITS(code, size)
|
|
|
|
mov ecx, dword [esp+temp2] ; restore nbits
|
|
|
|
; Mask off any extra bits in code
|
|
mov eax, 1
|
|
shl eax, cl
|
|
dec eax
|
|
and eax, dword [esp+temp] ; temp2 &= (((JLONG)1)<<nbits) - 1;
|
|
|
|
; Emit that number of bits of the value, if positive,
|
|
; or the complement of its magnitude, if negative.
|
|
EMIT_BITS eax ; EMIT_BITS(temp2, nbits)
|
|
|
|
; Prepare data
|
|
xor ecx, ecx
|
|
mov esi, POINTER [esp+block]
|
|
kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \
|
|
18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \
|
|
27, 20, 13, 6, 7, 14, 21, 28, 35, \
|
|
xmm0, xmm1, xmm2, xmm3
|
|
kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
|
|
30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
|
|
53, 60, 61, 54, 47, 55, 62, 63, 63, \
|
|
xmm0, xmm1, xmm2, xmm3
|
|
|
|
pxor xmm7, xmm7
|
|
movdqa xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
|
|
movdqa xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
|
|
movdqa xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
|
|
movdqa xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
|
|
pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
|
|
pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
|
|
pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
|
|
pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
|
|
packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
|
|
packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
|
|
pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
|
|
pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
|
|
shl ecx, 16
|
|
or edx, ecx
|
|
not edx ; index = ~index;
|
|
|
|
lea esi, [esp+t1]
|
|
mov ebp, POINTER [esp+actbl] ; ebp = actbl
|
|
|
|
.BLOOP:
|
|
bsf ecx, edx ; r = __builtin_ctzl(index);
|
|
jz near .ELOOP
|
|
lea esi, [esi+ecx*2] ; k += r;
|
|
shr edx, cl ; index >>= r;
|
|
mov dword [esp+temp3], edx
|
|
.BRLOOP:
|
|
cmp ecx, 16 ; while (r > 15) {
|
|
jl near .ERLOOP
|
|
sub ecx, 16 ; r -= 16;
|
|
mov dword [esp+temp], ecx
|
|
mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
|
|
movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
|
|
EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
|
|
mov ecx, dword [esp+temp]
|
|
jmp .BRLOOP
|
|
.ERLOOP:
|
|
movsx eax, word [esi] ; temp = t1[k];
|
|
movpic edx, POINTER [esp+gotptr] ; load GOT address (edx)
|
|
movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NBITS(temp);
|
|
mov dword [esp+temp2], eax
|
|
; Emit Huffman symbol for run length / number of bits
|
|
shl ecx, 4 ; temp3 = (r << 4) + nbits;
|
|
add ecx, eax
|
|
mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
|
|
movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
|
|
EMIT_BITS eax
|
|
|
|
movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
|
|
; Mask off any extra bits in code
|
|
mov ecx, dword [esp+temp2]
|
|
mov eax, 1
|
|
shl eax, cl
|
|
dec eax
|
|
and eax, edx ; temp2 &= (((JLONG)1)<<nbits) - 1;
|
|
EMIT_BITS eax ; PUT_BITS(temp2, nbits)
|
|
mov edx, dword [esp+temp3]
|
|
add esi, 2 ; ++k;
|
|
shr edx, 1 ; index >>= 1;
|
|
|
|
jmp .BLOOP
|
|
.ELOOP:
|
|
movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
|
|
movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
|
|
movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
|
|
movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
|
|
pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
|
|
pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
|
|
pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
|
|
pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
|
|
packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
|
|
packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
|
|
pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
|
|
pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
|
|
shl ecx, 16
|
|
or edx, ecx
|
|
not edx ; index = ~index;
|
|
|
|
lea eax, [esp + t1 + (DCTSIZE2/2) * 2]
|
|
sub eax, esi
|
|
shr eax, 1
|
|
bsf ecx, edx ; r = __builtin_ctzl(index);
|
|
jz near .ELOOP2
|
|
shr edx, cl ; index >>= r;
|
|
add ecx, eax
|
|
lea esi, [esi+ecx*2] ; k += r;
|
|
mov dword [esp+temp3], edx
|
|
jmp .BRLOOP2
|
|
.BLOOP2:
|
|
bsf ecx, edx ; r = __builtin_ctzl(index);
|
|
jz near .ELOOP2
|
|
lea esi, [esi+ecx*2] ; k += r;
|
|
shr edx, cl ; index >>= r;
|
|
mov dword [esp+temp3], edx
|
|
.BRLOOP2:
|
|
cmp ecx, 16 ; while (r > 15) {
|
|
jl near .ERLOOP2
|
|
sub ecx, 16 ; r -= 16;
|
|
mov dword [esp+temp], ecx
|
|
mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
|
|
movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
|
|
EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
|
|
mov ecx, dword [esp+temp]
|
|
jmp .BRLOOP2
|
|
.ERLOOP2:
|
|
movsx eax, word [esi] ; temp = t1[k];
|
|
bsr eax, eax ; nbits = 32 - __builtin_clz(temp);
|
|
inc eax
|
|
mov dword [esp+temp2], eax
|
|
; Emit Huffman symbol for run length / number of bits
|
|
shl ecx, 4 ; temp3 = (r << 4) + nbits;
|
|
add ecx, eax
|
|
mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
|
|
movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
|
|
EMIT_BITS eax
|
|
|
|
movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
|
|
; Mask off any extra bits in code
|
|
mov ecx, dword [esp+temp2]
|
|
mov eax, 1
|
|
shl eax, cl
|
|
dec eax
|
|
and eax, edx ; temp2 &= (((JLONG)1)<<nbits) - 1;
|
|
EMIT_BITS eax ; PUT_BITS(temp2, nbits)
|
|
mov edx, dword [esp+temp3]
|
|
add esi, 2 ; ++k;
|
|
shr edx, 1 ; index >>= 1;
|
|
|
|
jmp .BLOOP2
|
|
.ELOOP2:
|
|
; If the last coef(s) were zero, emit an end-of-block code
|
|
lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k;
|
|
cmp edx, esi ; if (r > 0) {
|
|
je .EFN
|
|
mov eax, INT [ebp] ; code = actbl->ehufco[0];
|
|
movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0];
|
|
EMIT_BITS eax
|
|
.EFN:
|
|
mov eax, [esp+buffer]
|
|
pop esi
|
|
; Save put_buffer & put_bits
|
|
mov dword [esi+8], put_buffer ; state->cur.put_buffer = put_buffer;
|
|
mov dword [esi+12], put_bits ; state->cur.put_bits = put_bits;
|
|
|
|
pop ebp
|
|
pop edi
|
|
pop esi
|
|
; pop edx ; need not be preserved
|
|
pop ecx
|
|
pop ebx
|
|
mov esp, ebp ; esp <- aligned ebp
|
|
pop esp ; esp <- original ebp
|
|
pop ebp
|
|
ret
|
|
|
|
; For some reason, the OS X linker does not honor the request to align the
|
|
; segment unless we do this.
|
|
align 32
|