axmol/thirdparty/openal/alc/backends/pulseaudio.cpp

1494 lines
52 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Konstantinos Natsakis <konstantinos.natsakis@gmail.com>
* Copyright (C) 2010 by Chris Robinson <chris.kcat@gmail.com>
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "pulseaudio.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <bitset>
#include <chrono>
#include <cstring>
#include <limits>
#include <mutex>
#include <optional>
#include <stdint.h>
#include <stdlib.h>
#include <string>
#include <sys/types.h>
#include <utility>
#include <vector>
#include "albit.h"
#include "alc/alconfig.h"
#include "alc/events.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "alspan.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/logging.h"
#include "dynload.h"
#include "opthelpers.h"
#include "strutils.h"
#include <pulse/pulseaudio.h>
namespace {
using uint = unsigned int;
#ifdef HAVE_DYNLOAD
#define PULSE_FUNCS(MAGIC) \
MAGIC(pa_context_new); \
MAGIC(pa_context_unref); \
MAGIC(pa_context_get_state); \
MAGIC(pa_context_disconnect); \
MAGIC(pa_context_set_state_callback); \
MAGIC(pa_context_set_subscribe_callback); \
MAGIC(pa_context_subscribe); \
MAGIC(pa_context_errno); \
MAGIC(pa_context_connect); \
MAGIC(pa_context_get_server_info); \
MAGIC(pa_context_get_sink_info_by_name); \
MAGIC(pa_context_get_sink_info_list); \
MAGIC(pa_context_get_source_info_by_name); \
MAGIC(pa_context_get_source_info_list); \
MAGIC(pa_stream_new); \
MAGIC(pa_stream_unref); \
MAGIC(pa_stream_drop); \
MAGIC(pa_stream_get_state); \
MAGIC(pa_stream_peek); \
MAGIC(pa_stream_write); \
MAGIC(pa_stream_connect_record); \
MAGIC(pa_stream_connect_playback); \
MAGIC(pa_stream_readable_size); \
MAGIC(pa_stream_writable_size); \
MAGIC(pa_stream_is_corked); \
MAGIC(pa_stream_cork); \
MAGIC(pa_stream_is_suspended); \
MAGIC(pa_stream_get_device_name); \
MAGIC(pa_stream_get_latency); \
MAGIC(pa_stream_set_write_callback); \
MAGIC(pa_stream_set_buffer_attr); \
MAGIC(pa_stream_get_buffer_attr); \
MAGIC(pa_stream_get_sample_spec); \
MAGIC(pa_stream_get_time); \
MAGIC(pa_stream_set_read_callback); \
MAGIC(pa_stream_set_state_callback); \
MAGIC(pa_stream_set_moved_callback); \
MAGIC(pa_stream_set_underflow_callback); \
MAGIC(pa_stream_new_with_proplist); \
MAGIC(pa_stream_disconnect); \
MAGIC(pa_stream_set_buffer_attr_callback); \
MAGIC(pa_stream_begin_write); \
MAGIC(pa_threaded_mainloop_free); \
MAGIC(pa_threaded_mainloop_get_api); \
MAGIC(pa_threaded_mainloop_lock); \
MAGIC(pa_threaded_mainloop_new); \
MAGIC(pa_threaded_mainloop_signal); \
MAGIC(pa_threaded_mainloop_start); \
MAGIC(pa_threaded_mainloop_stop); \
MAGIC(pa_threaded_mainloop_unlock); \
MAGIC(pa_threaded_mainloop_wait); \
MAGIC(pa_channel_map_init_auto); \
MAGIC(pa_channel_map_parse); \
MAGIC(pa_channel_map_snprint); \
MAGIC(pa_channel_map_equal); \
MAGIC(pa_channel_map_superset); \
MAGIC(pa_channel_position_to_string); \
MAGIC(pa_operation_get_state); \
MAGIC(pa_operation_unref); \
MAGIC(pa_sample_spec_valid); \
MAGIC(pa_frame_size); \
MAGIC(pa_strerror); \
MAGIC(pa_path_get_filename); \
MAGIC(pa_get_binary_name); \
MAGIC(pa_xmalloc); \
MAGIC(pa_xfree);
void *pulse_handle;
#define MAKE_FUNC(x) decltype(x) * p##x
PULSE_FUNCS(MAKE_FUNC)
#undef MAKE_FUNC
#ifndef IN_IDE_PARSER
#define pa_context_new ppa_context_new
#define pa_context_unref ppa_context_unref
#define pa_context_get_state ppa_context_get_state
#define pa_context_disconnect ppa_context_disconnect
#define pa_context_set_state_callback ppa_context_set_state_callback
#define pa_context_set_subscribe_callback ppa_context_set_subscribe_callback
#define pa_context_subscribe ppa_context_subscribe
#define pa_context_errno ppa_context_errno
#define pa_context_connect ppa_context_connect
#define pa_context_get_server_info ppa_context_get_server_info
#define pa_context_get_sink_info_by_name ppa_context_get_sink_info_by_name
#define pa_context_get_sink_info_list ppa_context_get_sink_info_list
#define pa_context_get_source_info_by_name ppa_context_get_source_info_by_name
#define pa_context_get_source_info_list ppa_context_get_source_info_list
#define pa_stream_new ppa_stream_new
#define pa_stream_unref ppa_stream_unref
#define pa_stream_disconnect ppa_stream_disconnect
#define pa_stream_drop ppa_stream_drop
#define pa_stream_set_write_callback ppa_stream_set_write_callback
#define pa_stream_set_buffer_attr ppa_stream_set_buffer_attr
#define pa_stream_get_buffer_attr ppa_stream_get_buffer_attr
#define pa_stream_get_sample_spec ppa_stream_get_sample_spec
#define pa_stream_get_time ppa_stream_get_time
#define pa_stream_set_read_callback ppa_stream_set_read_callback
#define pa_stream_set_state_callback ppa_stream_set_state_callback
#define pa_stream_set_moved_callback ppa_stream_set_moved_callback
#define pa_stream_set_underflow_callback ppa_stream_set_underflow_callback
#define pa_stream_connect_record ppa_stream_connect_record
#define pa_stream_connect_playback ppa_stream_connect_playback
#define pa_stream_readable_size ppa_stream_readable_size
#define pa_stream_writable_size ppa_stream_writable_size
#define pa_stream_is_corked ppa_stream_is_corked
#define pa_stream_cork ppa_stream_cork
#define pa_stream_is_suspended ppa_stream_is_suspended
#define pa_stream_get_device_name ppa_stream_get_device_name
#define pa_stream_get_latency ppa_stream_get_latency
#define pa_stream_set_buffer_attr_callback ppa_stream_set_buffer_attr_callback
#define pa_stream_begin_write ppa_stream_begin_write
#define pa_threaded_mainloop_free ppa_threaded_mainloop_free
#define pa_threaded_mainloop_get_api ppa_threaded_mainloop_get_api
#define pa_threaded_mainloop_lock ppa_threaded_mainloop_lock
#define pa_threaded_mainloop_new ppa_threaded_mainloop_new
#define pa_threaded_mainloop_signal ppa_threaded_mainloop_signal
#define pa_threaded_mainloop_start ppa_threaded_mainloop_start
#define pa_threaded_mainloop_stop ppa_threaded_mainloop_stop
#define pa_threaded_mainloop_unlock ppa_threaded_mainloop_unlock
#define pa_threaded_mainloop_wait ppa_threaded_mainloop_wait
#define pa_channel_map_init_auto ppa_channel_map_init_auto
#define pa_channel_map_parse ppa_channel_map_parse
#define pa_channel_map_snprint ppa_channel_map_snprint
#define pa_channel_map_equal ppa_channel_map_equal
#define pa_channel_map_superset ppa_channel_map_superset
#define pa_channel_position_to_string ppa_channel_position_to_string
#define pa_operation_get_state ppa_operation_get_state
#define pa_operation_unref ppa_operation_unref
#define pa_sample_spec_valid ppa_sample_spec_valid
#define pa_frame_size ppa_frame_size
#define pa_strerror ppa_strerror
#define pa_stream_get_state ppa_stream_get_state
#define pa_stream_peek ppa_stream_peek
#define pa_stream_write ppa_stream_write
#define pa_xfree ppa_xfree
#define pa_path_get_filename ppa_path_get_filename
#define pa_get_binary_name ppa_get_binary_name
#define pa_xmalloc ppa_xmalloc
#endif /* IN_IDE_PARSER */
#endif
constexpr pa_channel_map MonoChanMap{
1, {PA_CHANNEL_POSITION_MONO}
}, StereoChanMap{
2, {PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT}
}, QuadChanMap{
4, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT
}
}, X51ChanMap{
6, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT
}
}, X51RearChanMap{
6, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT
}
}, X61ChanMap{
7, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_REAR_CENTER,
PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT
}
}, X71ChanMap{
8, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT,
PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT
}
}, X714ChanMap{
12, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT,
PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT,
PA_CHANNEL_POSITION_TOP_FRONT_LEFT, PA_CHANNEL_POSITION_TOP_FRONT_RIGHT,
PA_CHANNEL_POSITION_TOP_REAR_LEFT, PA_CHANNEL_POSITION_TOP_REAR_RIGHT
}
};
/* *grumble* Don't use enums for bitflags. */
constexpr pa_stream_flags_t operator|(pa_stream_flags_t lhs, pa_stream_flags_t rhs)
{ return pa_stream_flags_t(lhs | al::to_underlying(rhs)); }
constexpr pa_stream_flags_t& operator|=(pa_stream_flags_t &lhs, pa_stream_flags_t rhs)
{
lhs = lhs | rhs;
return lhs;
}
constexpr pa_stream_flags_t operator~(pa_stream_flags_t flag)
{ return pa_stream_flags_t(~al::to_underlying(flag)); }
constexpr pa_stream_flags_t& operator&=(pa_stream_flags_t &lhs, pa_stream_flags_t rhs)
{
lhs = pa_stream_flags_t(al::to_underlying(lhs) & rhs);
return lhs;
}
constexpr pa_context_flags_t operator|(pa_context_flags_t lhs, pa_context_flags_t rhs)
{ return pa_context_flags_t(lhs | al::to_underlying(rhs)); }
constexpr pa_context_flags_t& operator|=(pa_context_flags_t &lhs, pa_context_flags_t rhs)
{
lhs = lhs | rhs;
return lhs;
}
constexpr pa_subscription_mask_t operator|(pa_subscription_mask_t lhs, pa_subscription_mask_t rhs)
{ return pa_subscription_mask_t(lhs | al::to_underlying(rhs)); }
struct DevMap {
std::string name;
std::string device_name;
};
bool checkName(const al::span<const DevMap> list, const std::string &name)
{
auto match_name = [&name](const DevMap &entry) -> bool { return entry.name == name; };
return std::find_if(list.cbegin(), list.cend(), match_name) != list.cend();
}
std::vector<DevMap> PlaybackDevices;
std::vector<DevMap> CaptureDevices;
/* Global flags and properties */
pa_context_flags_t pulse_ctx_flags;
class PulseMainloop {
pa_threaded_mainloop *mLoop{};
pa_context *mContext{};
public:
PulseMainloop() = default;
PulseMainloop(const PulseMainloop&) = delete;
PulseMainloop(PulseMainloop&& rhs) noexcept : mLoop{rhs.mLoop} { rhs.mLoop = nullptr; }
explicit PulseMainloop(pa_threaded_mainloop *loop) noexcept : mLoop{loop} { }
~PulseMainloop();
PulseMainloop& operator=(const PulseMainloop&) = delete;
PulseMainloop& operator=(PulseMainloop&& rhs) noexcept
{ std::swap(mLoop, rhs.mLoop); return *this; }
PulseMainloop& operator=(std::nullptr_t) noexcept
{
if(mLoop)
pa_threaded_mainloop_free(mLoop);
mLoop = nullptr;
return *this;
}
explicit operator bool() const noexcept { return mLoop != nullptr; }
auto start() const { return pa_threaded_mainloop_start(mLoop); }
auto stop() const { return pa_threaded_mainloop_stop(mLoop); }
auto getApi() const { return pa_threaded_mainloop_get_api(mLoop); }
auto getContext() const noexcept { return mContext; }
auto lock() const { return pa_threaded_mainloop_lock(mLoop); }
auto unlock() const { return pa_threaded_mainloop_unlock(mLoop); }
auto signal(bool wait=false) const { return pa_threaded_mainloop_signal(mLoop, wait); }
static auto Create() { return PulseMainloop{pa_threaded_mainloop_new()}; }
void streamSuccessCallback(pa_stream*, int) noexcept { signal(); }
static void streamSuccessCallbackC(pa_stream *stream, int success, void *pdata) noexcept
{ static_cast<PulseMainloop*>(pdata)->streamSuccessCallback(stream, success); }
void close(pa_stream *stream=nullptr);
void deviceSinkCallback(pa_context*, const pa_sink_info *info, int eol) noexcept
{
if(eol)
{
signal();
return;
}
/* Skip this device is if it's already in the list. */
auto match_devname = [info](const DevMap &entry) -> bool
{ return entry.device_name == info->name; };
if(std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), match_devname) != PlaybackDevices.cend())
return;
/* Make sure the display name (description) is unique. Append a number
* counter as needed.
*/
int count{1};
std::string newname{info->description};
while(checkName(PlaybackDevices, newname))
{
newname = info->description;
newname += " #";
newname += std::to_string(++count);
}
PlaybackDevices.emplace_back(DevMap{std::move(newname), info->name});
DevMap &newentry = PlaybackDevices.back();
TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str());
}
void deviceSourceCallback(pa_context*, const pa_source_info *info, int eol) noexcept
{
if(eol)
{
signal();
return;
}
/* Skip this device is if it's already in the list. */
auto match_devname = [info](const DevMap &entry) -> bool
{ return entry.device_name == info->name; };
if(std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), match_devname) != CaptureDevices.cend())
return;
/* Make sure the display name (description) is unique. Append a number
* counter as needed.
*/
int count{1};
std::string newname{info->description};
while(checkName(CaptureDevices, newname))
{
newname = info->description;
newname += " #";
newname += std::to_string(++count);
}
CaptureDevices.emplace_back(DevMap{std::move(newname), info->name});
DevMap &newentry = CaptureDevices.back();
TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str());
}
void probePlaybackDevices();
void probeCaptureDevices();
friend struct MainloopUniqueLock;
};
struct MainloopUniqueLock : public std::unique_lock<PulseMainloop> {
using std::unique_lock<PulseMainloop>::unique_lock;
MainloopUniqueLock& operator=(MainloopUniqueLock&&) = default;
auto wait() const -> void
{ pa_threaded_mainloop_wait(mutex()->mLoop); }
template<typename Predicate>
auto wait(Predicate done_waiting) const -> void
{ while(!done_waiting()) wait(); }
void waitForOperation(pa_operation *op)
{
if(op)
{
wait([op]{ return pa_operation_get_state(op) != PA_OPERATION_RUNNING; });
pa_operation_unref(op);
}
}
void setEventHandler()
{
pa_operation *op{pa_context_subscribe(mutex()->mContext,
PA_SUBSCRIPTION_MASK_SINK | PA_SUBSCRIPTION_MASK_SOURCE,
[](pa_context*, int, void *pdata) noexcept
{ static_cast<PulseMainloop*>(pdata)->signal(); },
mutex())};
waitForOperation(op);
/* Watch for device added/removed events.
*
* TODO: Also track the "default" device, in as much as PulseAudio has
* the concept of a default device (whatever device is opened when not
* specifying a specific sink or source name). There doesn't seem to be
* an event for this.
*/
auto handler = [](pa_context*, pa_subscription_event_type_t t, uint32_t, void*) noexcept
{
const auto eventFacility = (t & PA_SUBSCRIPTION_EVENT_FACILITY_MASK);
if(eventFacility == PA_SUBSCRIPTION_EVENT_SINK
|| eventFacility == PA_SUBSCRIPTION_EVENT_SOURCE)
{
const auto deviceType = (eventFacility == PA_SUBSCRIPTION_EVENT_SINK)
? alc::DeviceType::Playback : alc::DeviceType::Capture;
const auto eventType = (t & PA_SUBSCRIPTION_EVENT_TYPE_MASK);
if(eventType == PA_SUBSCRIPTION_EVENT_NEW)
alc::Event(alc::EventType::DeviceAdded, deviceType, "Device added");
else if(eventType == PA_SUBSCRIPTION_EVENT_REMOVE)
alc::Event(alc::EventType::DeviceRemoved, deviceType, "Device removed");
}
};
pa_context_set_subscribe_callback(mutex()->mContext, handler, nullptr);
}
void contextStateCallback(pa_context *context) noexcept
{
pa_context_state_t state{pa_context_get_state(context)};
if(state == PA_CONTEXT_READY || !PA_CONTEXT_IS_GOOD(state))
mutex()->signal();
}
void streamStateCallback(pa_stream *stream) noexcept
{
pa_stream_state_t state{pa_stream_get_state(stream)};
if(state == PA_STREAM_READY || !PA_STREAM_IS_GOOD(state))
mutex()->signal();
}
void connectContext();
pa_stream *connectStream(const char *device_name, pa_stream_flags_t flags,
pa_buffer_attr *attr, pa_sample_spec *spec, pa_channel_map *chanmap, BackendType type);
};
using MainloopLockGuard = std::lock_guard<PulseMainloop>;
PulseMainloop::~PulseMainloop()
{
if(mContext)
{
MainloopUniqueLock _{*this};
pa_context_disconnect(mContext);
pa_context_unref(mContext);
}
if(mLoop)
pa_threaded_mainloop_free(mLoop);
}
void MainloopUniqueLock::connectContext()
{
if(mutex()->mContext)
return;
mutex()->mContext = pa_context_new(mutex()->getApi(), nullptr);
if(!mutex()->mContext) throw al::backend_exception{al::backend_error::OutOfMemory,
"pa_context_new() failed"};
pa_context_set_state_callback(mutex()->mContext, [](pa_context *ctx, void *pdata) noexcept
{ return static_cast<MainloopUniqueLock*>(pdata)->contextStateCallback(ctx); }, this);
int err;
if((err=pa_context_connect(mutex()->mContext, nullptr, pulse_ctx_flags, nullptr)) >= 0)
{
pa_context_state_t state;
while((state=pa_context_get_state(mutex()->mContext)) != PA_CONTEXT_READY)
{
if(!PA_CONTEXT_IS_GOOD(state))
{
err = pa_context_errno(mutex()->mContext);
if(err > 0) err = -err;
break;
}
wait();
}
}
pa_context_set_state_callback(mutex()->mContext, nullptr, nullptr);
if(err < 0)
{
pa_context_unref(mutex()->mContext);
mutex()->mContext = nullptr;
throw al::backend_exception{al::backend_error::DeviceError, "Context did not connect (%s)",
pa_strerror(err)};
}
}
pa_stream *MainloopUniqueLock::connectStream(const char *device_name, pa_stream_flags_t flags,
pa_buffer_attr *attr, pa_sample_spec *spec, pa_channel_map *chanmap, BackendType type)
{
const char *stream_id{(type==BackendType::Playback) ? "Playback Stream" : "Capture Stream"};
pa_stream *stream{pa_stream_new(mutex()->mContext, stream_id, spec, chanmap)};
if(!stream)
throw al::backend_exception{al::backend_error::OutOfMemory, "pa_stream_new() failed (%s)",
pa_strerror(pa_context_errno(mutex()->mContext))};
pa_stream_set_state_callback(stream, [](pa_stream *strm, void *pdata) noexcept
{ return static_cast<MainloopUniqueLock*>(pdata)->streamStateCallback(strm); }, this);
int err{(type==BackendType::Playback) ?
pa_stream_connect_playback(stream, device_name, attr, flags, nullptr, nullptr) :
pa_stream_connect_record(stream, device_name, attr, flags)};
if(err < 0)
{
pa_stream_unref(stream);
throw al::backend_exception{al::backend_error::DeviceError, "%s did not connect (%s)",
stream_id, pa_strerror(err)};
}
pa_stream_state_t state;
while((state=pa_stream_get_state(stream)) != PA_STREAM_READY)
{
if(!PA_STREAM_IS_GOOD(state))
{
err = pa_context_errno(mutex()->mContext);
pa_stream_unref(stream);
throw al::backend_exception{al::backend_error::DeviceError,
"%s did not get ready (%s)", stream_id, pa_strerror(err)};
}
wait();
}
pa_stream_set_state_callback(stream, nullptr, nullptr);
return stream;
}
void PulseMainloop::close(pa_stream *stream)
{
if(!stream)
return;
MainloopUniqueLock _{*this};
pa_stream_set_state_callback(stream, nullptr, nullptr);
pa_stream_set_moved_callback(stream, nullptr, nullptr);
pa_stream_set_write_callback(stream, nullptr, nullptr);
pa_stream_set_buffer_attr_callback(stream, nullptr, nullptr);
pa_stream_disconnect(stream);
pa_stream_unref(stream);
}
void PulseMainloop::probePlaybackDevices()
{
PlaybackDevices.clear();
try {
MainloopUniqueLock plock{*this};
auto sink_callback = [](pa_context *ctx, const pa_sink_info *info, int eol, void *pdata) noexcept
{ return static_cast<PulseMainloop*>(pdata)->deviceSinkCallback(ctx, info, eol); };
pa_operation *op{pa_context_get_sink_info_by_name(mContext, nullptr, sink_callback, this)};
plock.waitForOperation(op);
op = pa_context_get_sink_info_list(mContext, sink_callback, this);
plock.waitForOperation(op);
}
catch(std::exception &e) {
ERR("Error enumerating devices: %s\n", e.what());
}
}
void PulseMainloop::probeCaptureDevices()
{
CaptureDevices.clear();
try {
MainloopUniqueLock plock{*this};
auto src_callback = [](pa_context *ctx, const pa_source_info *info, int eol, void *pdata) noexcept
{ return static_cast<PulseMainloop*>(pdata)->deviceSourceCallback(ctx, info, eol); };
pa_operation *op{pa_context_get_source_info_by_name(mContext, nullptr, src_callback,
this)};
plock.waitForOperation(op);
op = pa_context_get_source_info_list(mContext, src_callback, this);
plock.waitForOperation(op);
}
catch(std::exception &e) {
ERR("Error enumerating devices: %s\n", e.what());
}
}
/* Used for initial connection test and enumeration. */
PulseMainloop gGlobalMainloop;
struct PulsePlayback final : public BackendBase {
PulsePlayback(DeviceBase *device) noexcept : BackendBase{device} { }
~PulsePlayback() override;
void bufferAttrCallback(pa_stream *stream) noexcept;
void streamStateCallback(pa_stream *stream) noexcept;
void streamWriteCallback(pa_stream *stream, size_t nbytes) noexcept;
void sinkInfoCallback(pa_context *context, const pa_sink_info *info, int eol) noexcept;
void sinkNameCallback(pa_context *context, const pa_sink_info *info, int eol) noexcept;
void streamMovedCallback(pa_stream *stream) noexcept;
void open(std::string_view name) override;
bool reset() override;
void start() override;
void stop() override;
ClockLatency getClockLatency() override;
PulseMainloop mMainloop;
std::optional<std::string> mDeviceName{std::nullopt};
bool mIs51Rear{false};
pa_buffer_attr mAttr;
pa_sample_spec mSpec;
pa_stream *mStream{nullptr};
uint mFrameSize{0u};
DEF_NEWDEL(PulsePlayback)
};
PulsePlayback::~PulsePlayback()
{ if(mStream) mMainloop.close(mStream); }
void PulsePlayback::bufferAttrCallback(pa_stream *stream) noexcept
{
/* FIXME: Update the device's UpdateSize (and/or BufferSize) using the new
* buffer attributes? Changing UpdateSize will change the ALC_REFRESH
* property, which probably shouldn't change between device resets. But
* leaving it alone means ALC_REFRESH will be off.
*/
mAttr = *(pa_stream_get_buffer_attr(stream));
TRACE("minreq=%d, tlength=%d, prebuf=%d\n", mAttr.minreq, mAttr.tlength, mAttr.prebuf);
}
void PulsePlayback::streamStateCallback(pa_stream *stream) noexcept
{
if(pa_stream_get_state(stream) == PA_STREAM_FAILED)
{
ERR("Received stream failure!\n");
mDevice->handleDisconnect("Playback stream failure");
}
mMainloop.signal();
}
void PulsePlayback::streamWriteCallback(pa_stream *stream, size_t nbytes) noexcept
{
do {
pa_free_cb_t free_func{nullptr};
auto buflen = static_cast<size_t>(-1);
void *buf{};
if(pa_stream_begin_write(stream, &buf, &buflen) || !buf) UNLIKELY
{
buflen = nbytes;
buf = pa_xmalloc(buflen);
free_func = pa_xfree;
}
else
buflen = minz(buflen, nbytes);
nbytes -= buflen;
mDevice->renderSamples(buf, static_cast<uint>(buflen/mFrameSize), mSpec.channels);
int ret{pa_stream_write(stream, buf, buflen, free_func, 0, PA_SEEK_RELATIVE)};
if(ret != PA_OK) UNLIKELY
ERR("Failed to write to stream: %d, %s\n", ret, pa_strerror(ret));
} while(nbytes > 0);
}
void PulsePlayback::sinkInfoCallback(pa_context*, const pa_sink_info *info, int eol) noexcept
{
struct ChannelMap {
DevFmtChannels fmt;
pa_channel_map map;
bool is_51rear;
};
static constexpr std::array<ChannelMap,8> chanmaps{{
{ DevFmtX714, X714ChanMap, false },
{ DevFmtX71, X71ChanMap, false },
{ DevFmtX61, X61ChanMap, false },
{ DevFmtX51, X51ChanMap, false },
{ DevFmtX51, X51RearChanMap, true },
{ DevFmtQuad, QuadChanMap, false },
{ DevFmtStereo, StereoChanMap, false },
{ DevFmtMono, MonoChanMap, false }
}};
if(eol)
{
mMainloop.signal();
return;
}
auto chaniter = std::find_if(chanmaps.cbegin(), chanmaps.cend(),
[info](const ChannelMap &chanmap) -> bool
{ return pa_channel_map_superset(&info->channel_map, &chanmap.map); }
);
if(chaniter != chanmaps.cend())
{
if(!mDevice->Flags.test(ChannelsRequest))
mDevice->FmtChans = chaniter->fmt;
mIs51Rear = chaniter->is_51rear;
}
else
{
mIs51Rear = false;
char chanmap_str[PA_CHANNEL_MAP_SNPRINT_MAX]{};
pa_channel_map_snprint(chanmap_str, sizeof(chanmap_str), &info->channel_map);
WARN("Failed to find format for channel map:\n %s\n", chanmap_str);
}
if(info->active_port)
TRACE("Active port: %s (%s)\n", info->active_port->name, info->active_port->description);
mDevice->Flags.set(DirectEar, (info->active_port
&& strcmp(info->active_port->name, "analog-output-headphones") == 0));
}
void PulsePlayback::sinkNameCallback(pa_context*, const pa_sink_info *info, int eol) noexcept
{
if(eol)
{
mMainloop.signal();
return;
}
mDevice->DeviceName = info->description;
}
void PulsePlayback::streamMovedCallback(pa_stream *stream) noexcept
{
mDeviceName = pa_stream_get_device_name(stream);
TRACE("Stream moved to %s\n", mDeviceName->c_str());
}
void PulsePlayback::open(std::string_view name)
{
mMainloop = PulseMainloop::Create();
mMainloop.start();
const char *pulse_name{nullptr};
const char *dev_name{nullptr};
if(!name.empty())
{
if(PlaybackDevices.empty())
mMainloop.probePlaybackDevices();
auto iter = std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(),
[name](const DevMap &entry) -> bool { return entry.name == name; });
if(iter == PlaybackDevices.cend())
throw al::backend_exception{al::backend_error::NoDevice,
"Device name \"%.*s\" not found", static_cast<int>(name.length()), name.data()};
pulse_name = iter->device_name.c_str();
dev_name = iter->name.c_str();
}
MainloopUniqueLock plock{mMainloop};
plock.connectContext();
pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE |
PA_STREAM_FIX_CHANNELS};
if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", true))
flags |= PA_STREAM_DONT_MOVE;
pa_sample_spec spec{};
spec.format = PA_SAMPLE_S16NE;
spec.rate = 44100;
spec.channels = 2;
if(!pulse_name)
{
static const auto defname = al::getenv("ALSOFT_PULSE_DEFAULT");
if(defname) pulse_name = defname->c_str();
}
TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)");
mStream = plock.connectStream(pulse_name, flags, nullptr, &spec, nullptr,
BackendType::Playback);
pa_stream_set_moved_callback(mStream, [](pa_stream *stream, void *pdata) noexcept
{ return static_cast<PulsePlayback*>(pdata)->streamMovedCallback(stream); }, this);
mFrameSize = static_cast<uint>(pa_frame_size(pa_stream_get_sample_spec(mStream)));
if(pulse_name) mDeviceName.emplace(pulse_name);
else mDeviceName.reset();
if(!dev_name)
{
auto name_callback = [](pa_context *context, const pa_sink_info *info, int eol, void *pdata) noexcept
{ return static_cast<PulsePlayback*>(pdata)->sinkNameCallback(context, info, eol); };
pa_operation *op{pa_context_get_sink_info_by_name(mMainloop.getContext(),
pa_stream_get_device_name(mStream), name_callback, this)};
plock.waitForOperation(op);
}
else
mDevice->DeviceName = dev_name;
}
bool PulsePlayback::reset()
{
MainloopUniqueLock plock{mMainloop};
const auto deviceName = mDeviceName ? mDeviceName->c_str() : nullptr;
if(mStream)
{
pa_stream_set_state_callback(mStream, nullptr, nullptr);
pa_stream_set_moved_callback(mStream, nullptr, nullptr);
pa_stream_set_write_callback(mStream, nullptr, nullptr);
pa_stream_set_buffer_attr_callback(mStream, nullptr, nullptr);
pa_stream_disconnect(mStream);
pa_stream_unref(mStream);
mStream = nullptr;
}
auto info_callback = [](pa_context *context, const pa_sink_info *info, int eol, void *pdata) noexcept
{ return static_cast<PulsePlayback*>(pdata)->sinkInfoCallback(context, info, eol); };
pa_operation *op{pa_context_get_sink_info_by_name(mMainloop.getContext(), deviceName,
info_callback, this)};
plock.waitForOperation(op);
pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_INTERPOLATE_TIMING |
PA_STREAM_AUTO_TIMING_UPDATE | PA_STREAM_EARLY_REQUESTS};
if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", true))
flags |= PA_STREAM_DONT_MOVE;
if(GetConfigValueBool(mDevice->DeviceName.c_str(), "pulse", "adjust-latency", false))
{
/* ADJUST_LATENCY can't be specified with EARLY_REQUESTS, for some
* reason. So if the user wants to adjust the overall device latency,
* we can't ask to get write signals as soon as minreq is reached.
*/
flags &= ~PA_STREAM_EARLY_REQUESTS;
flags |= PA_STREAM_ADJUST_LATENCY;
}
if(GetConfigValueBool(mDevice->DeviceName.c_str(), "pulse", "fix-rate", false)
|| !mDevice->Flags.test(FrequencyRequest))
flags |= PA_STREAM_FIX_RATE;
pa_channel_map chanmap{};
switch(mDevice->FmtChans)
{
case DevFmtMono:
chanmap = MonoChanMap;
break;
case DevFmtAmbi3D:
mDevice->FmtChans = DevFmtStereo;
/*fall-through*/
case DevFmtStereo:
chanmap = StereoChanMap;
break;
case DevFmtQuad:
chanmap = QuadChanMap;
break;
case DevFmtX51:
chanmap = (mIs51Rear ? X51RearChanMap : X51ChanMap);
break;
case DevFmtX61:
chanmap = X61ChanMap;
break;
case DevFmtX71:
case DevFmtX3D71:
chanmap = X71ChanMap;
break;
case DevFmtX714:
chanmap = X714ChanMap;
break;
}
setDefaultWFXChannelOrder();
switch(mDevice->FmtType)
{
case DevFmtByte:
mDevice->FmtType = DevFmtUByte;
/* fall-through */
case DevFmtUByte:
mSpec.format = PA_SAMPLE_U8;
break;
case DevFmtUShort:
mDevice->FmtType = DevFmtShort;
/* fall-through */
case DevFmtShort:
mSpec.format = PA_SAMPLE_S16NE;
break;
case DevFmtUInt:
mDevice->FmtType = DevFmtInt;
/* fall-through */
case DevFmtInt:
mSpec.format = PA_SAMPLE_S32NE;
break;
case DevFmtFloat:
mSpec.format = PA_SAMPLE_FLOAT32NE;
break;
}
mSpec.rate = mDevice->Frequency;
mSpec.channels = static_cast<uint8_t>(mDevice->channelsFromFmt());
if(pa_sample_spec_valid(&mSpec) == 0)
throw al::backend_exception{al::backend_error::DeviceError, "Invalid sample spec"};
const auto frame_size = static_cast<uint>(pa_frame_size(&mSpec));
mAttr.maxlength = ~0u;
mAttr.tlength = mDevice->BufferSize * frame_size;
mAttr.prebuf = 0u;
mAttr.minreq = mDevice->UpdateSize * frame_size;
mAttr.fragsize = ~0u;
mStream = plock.connectStream(deviceName, flags, &mAttr, &mSpec, &chanmap,
BackendType::Playback);
pa_stream_set_state_callback(mStream, [](pa_stream *stream, void *pdata) noexcept
{ return static_cast<PulsePlayback*>(pdata)->streamStateCallback(stream); }, this);
pa_stream_set_moved_callback(mStream, [](pa_stream *stream, void *pdata) noexcept
{ return static_cast<PulsePlayback*>(pdata)->streamMovedCallback(stream); }, this);
mSpec = *(pa_stream_get_sample_spec(mStream));
mFrameSize = static_cast<uint>(pa_frame_size(&mSpec));
if(mDevice->Frequency != mSpec.rate)
{
/* Server updated our playback rate, so modify the buffer attribs
* accordingly.
*/
const auto scale = static_cast<double>(mSpec.rate) / mDevice->Frequency;
const auto perlen = static_cast<uint>(clampd(scale*mDevice->UpdateSize + 0.5, 64.0,
8192.0));
const auto buflen = static_cast<uint>(clampd(scale*mDevice->BufferSize + 0.5, perlen*2,
std::numeric_limits<int>::max()/mFrameSize));
mAttr.maxlength = ~0u;
mAttr.tlength = buflen * mFrameSize;
mAttr.prebuf = 0u;
mAttr.minreq = perlen * mFrameSize;
op = pa_stream_set_buffer_attr(mStream, &mAttr, &PulseMainloop::streamSuccessCallbackC,
&mMainloop);
plock.waitForOperation(op);
mDevice->Frequency = mSpec.rate;
}
auto attr_callback = [](pa_stream *stream, void *pdata) noexcept
{ return static_cast<PulsePlayback*>(pdata)->bufferAttrCallback(stream); };
pa_stream_set_buffer_attr_callback(mStream, attr_callback, this);
bufferAttrCallback(mStream);
mDevice->BufferSize = mAttr.tlength / mFrameSize;
mDevice->UpdateSize = mAttr.minreq / mFrameSize;
return true;
}
void PulsePlayback::start()
{
MainloopUniqueLock plock{mMainloop};
/* Write some samples to fill the buffer before we start feeding it newly
* mixed samples.
*/
if(size_t todo{pa_stream_writable_size(mStream)})
{
void *buf{pa_xmalloc(todo)};
mDevice->renderSamples(buf, static_cast<uint>(todo/mFrameSize), mSpec.channels);
pa_stream_write(mStream, buf, todo, pa_xfree, 0, PA_SEEK_RELATIVE);
}
pa_stream_set_write_callback(mStream, [](pa_stream *stream, size_t nbytes, void *pdata)noexcept
{ return static_cast<PulsePlayback*>(pdata)->streamWriteCallback(stream, nbytes); }, this);
pa_operation *op{pa_stream_cork(mStream, 0, &PulseMainloop::streamSuccessCallbackC,
&mMainloop)};
plock.waitForOperation(op);
}
void PulsePlayback::stop()
{
MainloopUniqueLock plock{mMainloop};
pa_operation *op{pa_stream_cork(mStream, 1, &PulseMainloop::streamSuccessCallbackC,
&mMainloop)};
plock.waitForOperation(op);
pa_stream_set_write_callback(mStream, nullptr, nullptr);
}
ClockLatency PulsePlayback::getClockLatency()
{
ClockLatency ret;
pa_usec_t latency;
int neg, err;
{
MainloopUniqueLock plock{mMainloop};
ret.ClockTime = GetDeviceClockTime(mDevice);
err = pa_stream_get_latency(mStream, &latency, &neg);
}
if(err != 0) UNLIKELY
{
/* If err = -PA_ERR_NODATA, it means we were called too soon after
* starting the stream and no timing info has been received from the
* server yet. Give a generic value since nothing better is available.
*/
if(err != -PA_ERR_NODATA)
ERR("Failed to get stream latency: 0x%x\n", err);
latency = mDevice->BufferSize - mDevice->UpdateSize;
neg = 0;
}
else if(neg) UNLIKELY
latency = 0;
ret.Latency = std::chrono::microseconds{latency};
return ret;
}
struct PulseCapture final : public BackendBase {
PulseCapture(DeviceBase *device) noexcept : BackendBase{device} { }
~PulseCapture() override;
void streamStateCallback(pa_stream *stream) noexcept;
void sourceNameCallback(pa_context *context, const pa_source_info *info, int eol) noexcept;
void streamMovedCallback(pa_stream *stream) noexcept;
void open(std::string_view name) override;
void start() override;
void stop() override;
void captureSamples(std::byte *buffer, uint samples) override;
uint availableSamples() override;
ClockLatency getClockLatency() override;
PulseMainloop mMainloop;
std::optional<std::string> mDeviceName{std::nullopt};
al::span<const std::byte> mCapBuffer;
size_t mHoleLength{0};
size_t mPacketLength{0};
uint mLastReadable{0u};
std::byte mSilentVal{};
pa_buffer_attr mAttr{};
pa_sample_spec mSpec{};
pa_stream *mStream{nullptr};
DEF_NEWDEL(PulseCapture)
};
PulseCapture::~PulseCapture()
{ if(mStream) mMainloop.close(mStream); }
void PulseCapture::streamStateCallback(pa_stream *stream) noexcept
{
if(pa_stream_get_state(stream) == PA_STREAM_FAILED)
{
ERR("Received stream failure!\n");
mDevice->handleDisconnect("Capture stream failure");
}
mMainloop.signal();
}
void PulseCapture::sourceNameCallback(pa_context*, const pa_source_info *info, int eol) noexcept
{
if(eol)
{
mMainloop.signal();
return;
}
mDevice->DeviceName = info->description;
}
void PulseCapture::streamMovedCallback(pa_stream *stream) noexcept
{
mDeviceName = pa_stream_get_device_name(stream);
TRACE("Stream moved to %s\n", mDeviceName->c_str());
}
void PulseCapture::open(std::string_view name)
{
if(!mMainloop)
{
mMainloop = PulseMainloop::Create();
mMainloop.start();
}
const char *pulse_name{nullptr};
if(!name.empty())
{
if(CaptureDevices.empty())
mMainloop.probeCaptureDevices();
auto iter = std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(),
[name](const DevMap &entry) -> bool { return entry.name == name; });
if(iter == CaptureDevices.cend())
throw al::backend_exception{al::backend_error::NoDevice,
"Device name \"%.*s\" not found", static_cast<int>(name.length()), name.data()};
pulse_name = iter->device_name.c_str();
mDevice->DeviceName = iter->name;
}
MainloopUniqueLock plock{mMainloop};
plock.connectContext();
pa_channel_map chanmap{};
switch(mDevice->FmtChans)
{
case DevFmtMono:
chanmap = MonoChanMap;
break;
case DevFmtStereo:
chanmap = StereoChanMap;
break;
case DevFmtQuad:
chanmap = QuadChanMap;
break;
case DevFmtX51:
chanmap = X51ChanMap;
break;
case DevFmtX61:
chanmap = X61ChanMap;
break;
case DevFmtX71:
chanmap = X71ChanMap;
break;
case DevFmtX714:
chanmap = X714ChanMap;
break;
case DevFmtX3D71:
case DevFmtAmbi3D:
throw al::backend_exception{al::backend_error::DeviceError, "%s capture not supported",
DevFmtChannelsString(mDevice->FmtChans)};
}
setDefaultWFXChannelOrder();
switch(mDevice->FmtType)
{
case DevFmtUByte:
mSilentVal = std::byte(0x80);
mSpec.format = PA_SAMPLE_U8;
break;
case DevFmtShort:
mSpec.format = PA_SAMPLE_S16NE;
break;
case DevFmtInt:
mSpec.format = PA_SAMPLE_S32NE;
break;
case DevFmtFloat:
mSpec.format = PA_SAMPLE_FLOAT32NE;
break;
case DevFmtByte:
case DevFmtUShort:
case DevFmtUInt:
throw al::backend_exception{al::backend_error::DeviceError,
"%s capture samples not supported", DevFmtTypeString(mDevice->FmtType)};
}
mSpec.rate = mDevice->Frequency;
mSpec.channels = static_cast<uint8_t>(mDevice->channelsFromFmt());
if(pa_sample_spec_valid(&mSpec) == 0)
throw al::backend_exception{al::backend_error::DeviceError, "Invalid sample format"};
const auto frame_size = static_cast<uint>(pa_frame_size(&mSpec));
const uint samples{maxu(mDevice->BufferSize, 100 * mDevice->Frequency / 1000)};
mAttr.minreq = ~0u;
mAttr.prebuf = ~0u;
mAttr.maxlength = samples * frame_size;
mAttr.tlength = ~0u;
mAttr.fragsize = minu(samples, 50*mDevice->Frequency/1000) * frame_size;
pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_ADJUST_LATENCY};
if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", true))
flags |= PA_STREAM_DONT_MOVE;
TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)");
mStream = plock.connectStream(pulse_name, flags, &mAttr, &mSpec, &chanmap,
BackendType::Capture);
pa_stream_set_moved_callback(mStream, [](pa_stream *stream, void *pdata) noexcept
{ return static_cast<PulseCapture*>(pdata)->streamMovedCallback(stream); }, this);
pa_stream_set_state_callback(mStream, [](pa_stream *stream, void *pdata) noexcept
{ return static_cast<PulseCapture*>(pdata)->streamStateCallback(stream); }, this);
if(pulse_name) mDeviceName.emplace(pulse_name);
else mDeviceName.reset();
if(mDevice->DeviceName.empty())
{
auto name_callback = [](pa_context *context, const pa_source_info *info, int eol, void *pdata) noexcept
{ return static_cast<PulseCapture*>(pdata)->sourceNameCallback(context, info, eol); };
pa_operation *op{pa_context_get_source_info_by_name(mMainloop.getContext(),
pa_stream_get_device_name(mStream), name_callback, this)};
plock.waitForOperation(op);
}
}
void PulseCapture::start()
{
MainloopUniqueLock plock{mMainloop};
pa_operation *op{pa_stream_cork(mStream, 0, &PulseMainloop::streamSuccessCallbackC,
&mMainloop)};
plock.waitForOperation(op);
}
void PulseCapture::stop()
{
MainloopUniqueLock plock{mMainloop};
pa_operation *op{pa_stream_cork(mStream, 1, &PulseMainloop::streamSuccessCallbackC,
&mMainloop)};
plock.waitForOperation(op);
}
void PulseCapture::captureSamples(std::byte *buffer, uint samples)
{
al::span<std::byte> dstbuf{buffer, samples * pa_frame_size(&mSpec)};
/* Capture is done in fragment-sized chunks, so we loop until we get all
* that's available.
*/
mLastReadable -= static_cast<uint>(dstbuf.size());
while(!dstbuf.empty())
{
if(mHoleLength > 0) UNLIKELY
{
const size_t rem{minz(dstbuf.size(), mHoleLength)};
std::fill_n(dstbuf.begin(), rem, mSilentVal);
dstbuf = dstbuf.subspan(rem);
mHoleLength -= rem;
continue;
}
if(!mCapBuffer.empty())
{
const size_t rem{minz(dstbuf.size(), mCapBuffer.size())};
std::copy_n(mCapBuffer.begin(), rem, dstbuf.begin());
dstbuf = dstbuf.subspan(rem);
mCapBuffer = mCapBuffer.subspan(rem);
continue;
}
if(!mDevice->Connected.load(std::memory_order_acquire)) UNLIKELY
break;
MainloopUniqueLock plock{mMainloop};
if(mPacketLength > 0)
{
pa_stream_drop(mStream);
mPacketLength = 0;
}
const pa_stream_state_t state{pa_stream_get_state(mStream)};
if(!PA_STREAM_IS_GOOD(state)) UNLIKELY
{
mDevice->handleDisconnect("Bad capture state: %u", state);
break;
}
const void *capbuf;
size_t caplen;
if(pa_stream_peek(mStream, &capbuf, &caplen) < 0) UNLIKELY
{
mDevice->handleDisconnect("Failed retrieving capture samples: %s",
pa_strerror(pa_context_errno(mMainloop.getContext())));
break;
}
plock.unlock();
if(caplen == 0) break;
if(!capbuf) UNLIKELY
mHoleLength = caplen;
else
mCapBuffer = {static_cast<const std::byte*>(capbuf), caplen};
mPacketLength = caplen;
}
if(!dstbuf.empty())
std::fill(dstbuf.begin(), dstbuf.end(), mSilentVal);
}
uint PulseCapture::availableSamples()
{
size_t readable{maxz(mCapBuffer.size(), mHoleLength)};
if(mDevice->Connected.load(std::memory_order_acquire))
{
MainloopUniqueLock plock{mMainloop};
size_t got{pa_stream_readable_size(mStream)};
if(static_cast<ssize_t>(got) < 0) UNLIKELY
{
const char *err{pa_strerror(static_cast<int>(got))};
ERR("pa_stream_readable_size() failed: %s\n", err);
mDevice->handleDisconnect("Failed getting readable size: %s", err);
}
else
{
/* "readable" is the number of bytes from the last packet that have
* not yet been read by the caller. So add the stream's readable
* size excluding the last packet (the stream size includes the
* last packet until it's dropped).
*/
if(got > mPacketLength)
readable += got - mPacketLength;
}
}
/* Avoid uint overflow, and avoid decreasing the readable count. */
readable = std::min<size_t>(readable, std::numeric_limits<uint>::max());
mLastReadable = std::max(mLastReadable, static_cast<uint>(readable));
return mLastReadable / static_cast<uint>(pa_frame_size(&mSpec));
}
ClockLatency PulseCapture::getClockLatency()
{
ClockLatency ret;
pa_usec_t latency;
int neg, err;
{
MainloopUniqueLock plock{mMainloop};
ret.ClockTime = GetDeviceClockTime(mDevice);
err = pa_stream_get_latency(mStream, &latency, &neg);
}
if(err != 0) UNLIKELY
{
ERR("Failed to get stream latency: 0x%x\n", err);
latency = 0;
neg = 0;
}
else if(neg) UNLIKELY
latency = 0;
ret.Latency = std::chrono::microseconds{latency};
return ret;
}
} // namespace
bool PulseBackendFactory::init()
{
#ifdef HAVE_DYNLOAD
if(!pulse_handle)
{
bool ret{true};
std::string missing_funcs;
#ifdef _WIN32
#define PALIB "libpulse-0.dll"
#elif defined(__APPLE__) && defined(__MACH__)
#define PALIB "libpulse.0.dylib"
#else
#define PALIB "libpulse.so.0"
#endif
pulse_handle = LoadLib(PALIB);
if(!pulse_handle)
{
WARN("Failed to load %s\n", PALIB);
return false;
}
#define LOAD_FUNC(x) do { \
p##x = al::bit_cast<decltype(p##x)>(GetSymbol(pulse_handle, #x)); \
if(!(p##x)) { \
ret = false; \
missing_funcs += "\n" #x; \
} \
} while(0)
PULSE_FUNCS(LOAD_FUNC)
#undef LOAD_FUNC
if(!ret)
{
WARN("Missing expected functions:%s\n", missing_funcs.c_str());
CloseLib(pulse_handle);
pulse_handle = nullptr;
return false;
}
}
#endif /* HAVE_DYNLOAD */
pulse_ctx_flags = PA_CONTEXT_NOFLAGS;
if(!GetConfigValueBool(nullptr, "pulse", "spawn-server", false))
pulse_ctx_flags |= PA_CONTEXT_NOAUTOSPAWN;
try {
if(!gGlobalMainloop)
{
gGlobalMainloop = PulseMainloop::Create();
gGlobalMainloop.start();
}
MainloopUniqueLock plock{gGlobalMainloop};
plock.connectContext();
plock.setEventHandler();
return true;
}
catch(...) {
return false;
}
}
bool PulseBackendFactory::querySupport(BackendType type)
{ return type == BackendType::Playback || type == BackendType::Capture; }
std::string PulseBackendFactory::probe(BackendType type)
{
std::string outnames;
auto add_device = [&outnames](const DevMap &entry) -> void
{
/* +1 to also append the null char (to ensure a null-separated list and
* double-null terminated list).
*/
outnames.append(entry.name.c_str(), entry.name.length()+1);
};
switch(type)
{
case BackendType::Playback:
gGlobalMainloop.probePlaybackDevices();
std::for_each(PlaybackDevices.cbegin(), PlaybackDevices.cend(), add_device);
break;
case BackendType::Capture:
gGlobalMainloop.probeCaptureDevices();
std::for_each(CaptureDevices.cbegin(), CaptureDevices.cend(), add_device);
break;
}
return outnames;
}
BackendPtr PulseBackendFactory::createBackend(DeviceBase *device, BackendType type)
{
if(type == BackendType::Playback)
return BackendPtr{new PulsePlayback{device}};
if(type == BackendType::Capture)
return BackendPtr{new PulseCapture{device}};
return nullptr;
}
BackendFactory &PulseBackendFactory::getFactory()
{
static PulseBackendFactory factory{};
return factory;
}