mirror of https://github.com/axmolengine/axmol.git
1806 lines
68 KiB
C++
1806 lines
68 KiB
C++
/**
|
|
* Ambisonic reverb engine for the OpenAL cross platform audio library
|
|
* Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cstdio>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <numeric>
|
|
#include <stdint.h>
|
|
|
|
#include "alc/effects/base.h"
|
|
#include "almalloc.h"
|
|
#include "alnumbers.h"
|
|
#include "alnumeric.h"
|
|
#include "alspan.h"
|
|
#include "core/ambidefs.h"
|
|
#include "core/bufferline.h"
|
|
#include "core/context.h"
|
|
#include "core/devformat.h"
|
|
#include "core/device.h"
|
|
#include "core/effectslot.h"
|
|
#include "core/filters/biquad.h"
|
|
#include "core/filters/splitter.h"
|
|
#include "core/mixer.h"
|
|
#include "core/mixer/defs.h"
|
|
#include "intrusive_ptr.h"
|
|
#include "opthelpers.h"
|
|
#include "vecmat.h"
|
|
#include "vector.h"
|
|
|
|
/* This is a user config option for modifying the overall output of the reverb
|
|
* effect.
|
|
*/
|
|
float ReverbBoost = 1.0f;
|
|
|
|
namespace {
|
|
|
|
using uint = unsigned int;
|
|
|
|
constexpr float MaxModulationTime{4.0f};
|
|
constexpr float DefaultModulationTime{0.25f};
|
|
|
|
#define MOD_FRACBITS 24
|
|
#define MOD_FRACONE (1<<MOD_FRACBITS)
|
|
#define MOD_FRACMASK (MOD_FRACONE-1)
|
|
|
|
|
|
struct CubicFilter {
|
|
static constexpr size_t sTableBits{8};
|
|
static constexpr size_t sTableSteps{1 << sTableBits};
|
|
static constexpr size_t sTableMask{sTableSteps - 1};
|
|
|
|
float mFilter[sTableSteps*2 + 1]{};
|
|
|
|
constexpr CubicFilter()
|
|
{
|
|
/* This creates a lookup table for a cubic spline filter, with 256
|
|
* steps between samples. Only half the coefficients are needed, since
|
|
* Coeff2 is just Coeff1 in reverse and Coeff3 is just Coeff0 in
|
|
* reverse.
|
|
*/
|
|
for(size_t i{0};i < sTableSteps;++i)
|
|
{
|
|
const double mu{static_cast<double>(i) / double{sTableSteps}};
|
|
const double mu2{mu*mu}, mu3{mu2*mu};
|
|
const double a0{-0.5*mu3 + mu2 + -0.5*mu};
|
|
const double a1{ 1.5*mu3 + -2.5*mu2 + 1.0f};
|
|
mFilter[i] = static_cast<float>(a1);
|
|
mFilter[sTableSteps+i] = static_cast<float>(a0);
|
|
}
|
|
}
|
|
|
|
constexpr float getCoeff0(size_t i) const noexcept { return mFilter[sTableSteps+i]; }
|
|
constexpr float getCoeff1(size_t i) const noexcept { return mFilter[i]; }
|
|
constexpr float getCoeff2(size_t i) const noexcept { return mFilter[sTableSteps-i]; }
|
|
constexpr float getCoeff3(size_t i) const noexcept { return mFilter[sTableSteps*2-i]; }
|
|
};
|
|
constexpr CubicFilter gCubicTable;
|
|
|
|
|
|
using namespace std::placeholders;
|
|
|
|
/* Max samples per process iteration. Used to limit the size needed for
|
|
* temporary buffers. Must be a multiple of 4 for SIMD alignment.
|
|
*/
|
|
constexpr size_t MAX_UPDATE_SAMPLES{256};
|
|
|
|
/* The number of spatialized lines or channels to process. Four channels allows
|
|
* for a 3D A-Format response. NOTE: This can't be changed without taking care
|
|
* of the conversion matrices, and a few places where the length arrays are
|
|
* assumed to have 4 elements.
|
|
*/
|
|
constexpr size_t NUM_LINES{4u};
|
|
|
|
|
|
/* This coefficient is used to define the maximum frequency range controlled by
|
|
* the modulation depth. The current value of 0.05 will allow it to swing from
|
|
* 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler
|
|
* to stall on the downswing, and above 1 it will cause it to sample backwards.
|
|
* The value 0.05 seems be nearest to Creative hardware behavior.
|
|
*/
|
|
constexpr float MODULATION_DEPTH_COEFF{0.05f};
|
|
|
|
|
|
/* The B-Format to A-Format conversion matrix. The arrangement of rows is
|
|
* deliberately chosen to align the resulting lines to their spatial opposites
|
|
* (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
|
|
* back left). It's not quite opposite, since the A-Format results in a
|
|
* tetrahedron, but it's close enough. Should the model be extended to 8-lines
|
|
* in the future, true opposites can be used.
|
|
*/
|
|
alignas(16) constexpr float B2A[NUM_LINES][NUM_LINES]{
|
|
{ 0.5f, 0.5f, 0.5f, 0.5f },
|
|
{ 0.5f, -0.5f, -0.5f, 0.5f },
|
|
{ 0.5f, 0.5f, -0.5f, -0.5f },
|
|
{ 0.5f, -0.5f, 0.5f, -0.5f }
|
|
};
|
|
|
|
/* Converts A-Format to B-Format for early reflections. */
|
|
alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> EarlyA2B{{
|
|
{{ 0.5f, 0.5f, 0.5f, 0.5f }},
|
|
{{ 0.5f, -0.5f, 0.5f, -0.5f }},
|
|
{{ 0.5f, -0.5f, -0.5f, 0.5f }},
|
|
{{ 0.5f, 0.5f, -0.5f, -0.5f }}
|
|
}};
|
|
|
|
/* Converts A-Format to B-Format for late reverb. */
|
|
constexpr auto InvSqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
|
|
alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> LateA2B{{
|
|
{{ 0.5f, 0.5f, 0.5f, 0.5f }},
|
|
{{ InvSqrt2, -InvSqrt2, 0.0f, 0.0f }},
|
|
{{ 0.0f, 0.0f, InvSqrt2, -InvSqrt2 }},
|
|
{{ 0.5f, 0.5f, -0.5f, -0.5f }}
|
|
}};
|
|
|
|
/* The all-pass and delay lines have a variable length dependent on the
|
|
* effect's density parameter, which helps alter the perceived environment
|
|
* size. The size-to-density conversion is a cubed scale:
|
|
*
|
|
* density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
|
|
*
|
|
* The line lengths scale linearly with room size, so the inverse density
|
|
* conversion is needed, taking the cube root of the re-scaled density to
|
|
* calculate the line length multiplier:
|
|
*
|
|
* length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
|
|
*
|
|
* The density scale below will result in a max line multiplier of 50, for an
|
|
* effective size range of 5m to 50m.
|
|
*/
|
|
constexpr float DENSITY_SCALE{125000.0f};
|
|
|
|
/* All delay line lengths are specified in seconds.
|
|
*
|
|
* To approximate early reflections, we break them up into primary (those
|
|
* arriving from the same direction as the source) and secondary (those
|
|
* arriving from the opposite direction).
|
|
*
|
|
* The early taps decorrelate the 4-channel signal to approximate an average
|
|
* room response for the primary reflections after the initial early delay.
|
|
*
|
|
* Given an average room dimension (d_a) and the speed of sound (c) we can
|
|
* calculate the average reflection delay (r_a) regardless of listener and
|
|
* source positions as:
|
|
*
|
|
* r_a = d_a / c
|
|
* c = 343.3
|
|
*
|
|
* This can extended to finding the average difference (r_d) between the
|
|
* maximum (r_1) and minimum (r_0) reflection delays:
|
|
*
|
|
* r_0 = 2 / 3 r_a
|
|
* = r_a - r_d / 2
|
|
* = r_d
|
|
* r_1 = 4 / 3 r_a
|
|
* = r_a + r_d / 2
|
|
* = 2 r_d
|
|
* r_d = 2 / 3 r_a
|
|
* = r_1 - r_0
|
|
*
|
|
* As can be determined by integrating the 1D model with a source (s) and
|
|
* listener (l) positioned across the dimension of length (d_a):
|
|
*
|
|
* r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
|
|
*
|
|
* The initial taps (T_(i=0)^N) are then specified by taking a power series
|
|
* that ranges between r_0 and half of r_1 less r_0:
|
|
*
|
|
* R_i = 2^(i / (2 N - 1)) r_d
|
|
* = r_0 + (2^(i / (2 N - 1)) - 1) r_d
|
|
* = r_0 + T_i
|
|
* T_i = R_i - r_0
|
|
* = (2^(i / (2 N - 1)) - 1) r_d
|
|
*
|
|
* Assuming an average of 1m, we get the following taps:
|
|
*/
|
|
constexpr std::array<float,NUM_LINES> EARLY_TAP_LENGTHS{{
|
|
0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
|
|
}};
|
|
|
|
/* The early all-pass filter lengths are based on the early tap lengths:
|
|
*
|
|
* A_i = R_i / a
|
|
*
|
|
* Where a is the approximate maximum all-pass cycle limit (20).
|
|
*/
|
|
constexpr std::array<float,NUM_LINES> EARLY_ALLPASS_LENGTHS{{
|
|
9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
|
|
}};
|
|
|
|
/* The early delay lines are used to transform the primary reflections into
|
|
* the secondary reflections. The A-format is arranged in such a way that
|
|
* the channels/lines are spatially opposite:
|
|
*
|
|
* C_i is opposite C_(N-i-1)
|
|
*
|
|
* The delays of the two opposing reflections (R_i and O_i) from a source
|
|
* anywhere along a particular dimension always sum to twice its full delay:
|
|
*
|
|
* 2 r_a = R_i + O_i
|
|
*
|
|
* With that in mind we can determine the delay between the two reflections
|
|
* and thus specify our early line lengths (L_(i=0)^N) using:
|
|
*
|
|
* O_i = 2 r_a - R_(N-i-1)
|
|
* L_i = O_i - R_(N-i-1)
|
|
* = 2 (r_a - R_(N-i-1))
|
|
* = 2 (r_a - T_(N-i-1) - r_0)
|
|
* = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
|
|
*
|
|
* Using an average dimension of 1m, we get:
|
|
*/
|
|
constexpr std::array<float,NUM_LINES> EARLY_LINE_LENGTHS{{
|
|
5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f
|
|
}};
|
|
|
|
/* The late all-pass filter lengths are based on the late line lengths:
|
|
*
|
|
* A_i = (5 / 3) L_i / r_1
|
|
*/
|
|
constexpr std::array<float,NUM_LINES> LATE_ALLPASS_LENGTHS{{
|
|
1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
|
|
}};
|
|
|
|
/* The late lines are used to approximate the decaying cycle of recursive
|
|
* late reflections.
|
|
*
|
|
* Splitting the lines in half, we start with the shortest reflection paths
|
|
* (L_(i=0)^(N/2)):
|
|
*
|
|
* L_i = 2^(i / (N - 1)) r_d
|
|
*
|
|
* Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
|
|
*
|
|
* L_i = 2 r_a - L_(i-N/2)
|
|
* = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
|
|
*
|
|
* For our 1m average room, we get:
|
|
*/
|
|
constexpr std::array<float,NUM_LINES> LATE_LINE_LENGTHS{{
|
|
1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
|
|
}};
|
|
|
|
|
|
using ReverbUpdateLine = std::array<float,MAX_UPDATE_SAMPLES>;
|
|
|
|
struct DelayLineI {
|
|
/* The delay lines use interleaved samples, with the lengths being powers
|
|
* of 2 to allow the use of bit-masking instead of a modulus for wrapping.
|
|
*/
|
|
size_t Mask{0u};
|
|
union {
|
|
uintptr_t LineOffset{0u};
|
|
std::array<float,NUM_LINES> *Line;
|
|
};
|
|
|
|
/* Given the allocated sample buffer, this function updates each delay line
|
|
* offset.
|
|
*/
|
|
void realizeLineOffset(std::array<float,NUM_LINES> *sampleBuffer) noexcept
|
|
{ Line = sampleBuffer + LineOffset; }
|
|
|
|
/* Calculate the length of a delay line and store its mask and offset. */
|
|
uint calcLineLength(const float length, const uintptr_t offset, const float frequency,
|
|
const uint extra)
|
|
{
|
|
/* All line lengths are powers of 2, calculated from their lengths in
|
|
* seconds, rounded up.
|
|
*/
|
|
uint samples{float2uint(std::ceil(length*frequency))};
|
|
samples = NextPowerOf2(samples + extra);
|
|
|
|
/* All lines share a single sample buffer. */
|
|
Mask = samples - 1;
|
|
LineOffset = offset;
|
|
|
|
/* Return the sample count for accumulation. */
|
|
return samples;
|
|
}
|
|
|
|
void write(size_t offset, const size_t c, const float *RESTRICT in, const size_t count) const noexcept
|
|
{
|
|
ASSUME(count > 0);
|
|
for(size_t i{0u};i < count;)
|
|
{
|
|
offset &= Mask;
|
|
size_t td{minz(Mask+1 - offset, count - i)};
|
|
do {
|
|
Line[offset++][c] = in[i++];
|
|
} while(--td);
|
|
}
|
|
}
|
|
};
|
|
|
|
struct VecAllpass {
|
|
DelayLineI Delay;
|
|
float Coeff{0.0f};
|
|
size_t Offset[NUM_LINES]{};
|
|
|
|
void process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
|
|
const float xCoeff, const float yCoeff, const size_t todo);
|
|
};
|
|
|
|
struct T60Filter {
|
|
/* Two filters are used to adjust the signal. One to control the low
|
|
* frequencies, and one to control the high frequencies.
|
|
*/
|
|
float MidGain{0.0f};
|
|
BiquadFilter HFFilter, LFFilter;
|
|
|
|
void calcCoeffs(const float length, const float lfDecayTime, const float mfDecayTime,
|
|
const float hfDecayTime, const float lf0norm, const float hf0norm);
|
|
|
|
/* Applies the two T60 damping filter sections. */
|
|
void process(const al::span<float> samples)
|
|
{ DualBiquad{HFFilter, LFFilter}.process(samples, samples.data()); }
|
|
|
|
void clear() noexcept { HFFilter.clear(); LFFilter.clear(); }
|
|
};
|
|
|
|
struct EarlyReflections {
|
|
/* A Gerzon vector all-pass filter is used to simulate initial diffusion.
|
|
* The spread from this filter also helps smooth out the reverb tail.
|
|
*/
|
|
VecAllpass VecAp;
|
|
|
|
/* An echo line is used to complete the second half of the early
|
|
* reflections.
|
|
*/
|
|
DelayLineI Delay;
|
|
size_t Offset[NUM_LINES]{};
|
|
float Coeff[NUM_LINES]{};
|
|
|
|
/* The gain for each output channel based on 3D panning. */
|
|
float CurrentGains[NUM_LINES][MaxAmbiChannels]{};
|
|
float TargetGains[NUM_LINES][MaxAmbiChannels]{};
|
|
|
|
void updateLines(const float density_mult, const float diffusion, const float decayTime,
|
|
const float frequency);
|
|
};
|
|
|
|
|
|
struct Modulation {
|
|
/* The vibrato time is tracked with an index over a (MOD_FRACONE)
|
|
* normalized range.
|
|
*/
|
|
uint Index, Step;
|
|
|
|
/* The depth of frequency change, in samples. */
|
|
float Depth;
|
|
|
|
float ModDelays[MAX_UPDATE_SAMPLES];
|
|
|
|
void updateModulator(float modTime, float modDepth, float frequency);
|
|
|
|
void calcDelays(size_t todo);
|
|
};
|
|
|
|
struct LateReverb {
|
|
/* A recursive delay line is used fill in the reverb tail. */
|
|
DelayLineI Delay;
|
|
size_t Offset[NUM_LINES]{};
|
|
|
|
/* Attenuation to compensate for the modal density and decay rate of the
|
|
* late lines.
|
|
*/
|
|
float DensityGain{0.0f};
|
|
|
|
/* T60 decay filters are used to simulate absorption. */
|
|
T60Filter T60[NUM_LINES];
|
|
|
|
Modulation Mod;
|
|
|
|
/* A Gerzon vector all-pass filter is used to simulate diffusion. */
|
|
VecAllpass VecAp;
|
|
|
|
/* The gain for each output channel based on 3D panning. */
|
|
float CurrentGains[NUM_LINES][MaxAmbiChannels]{};
|
|
float TargetGains[NUM_LINES][MaxAmbiChannels]{};
|
|
|
|
void updateLines(const float density_mult, const float diffusion, const float lfDecayTime,
|
|
const float mfDecayTime, const float hfDecayTime, const float lf0norm,
|
|
const float hf0norm, const float frequency);
|
|
|
|
void clear() noexcept
|
|
{
|
|
for(auto &filter : T60)
|
|
filter.clear();
|
|
}
|
|
};
|
|
|
|
struct ReverbPipeline {
|
|
/* Master effect filters */
|
|
struct {
|
|
BiquadFilter Lp;
|
|
BiquadFilter Hp;
|
|
} mFilter[NUM_LINES];
|
|
|
|
/* Core delay line (early reflections and late reverb tap from this). */
|
|
DelayLineI mEarlyDelayIn;
|
|
DelayLineI mLateDelayIn;
|
|
|
|
/* Tap points for early reflection delay. */
|
|
size_t mEarlyDelayTap[NUM_LINES][2]{};
|
|
float mEarlyDelayCoeff[NUM_LINES]{};
|
|
|
|
/* Tap points for late reverb feed and delay. */
|
|
size_t mLateDelayTap[NUM_LINES][2]{};
|
|
|
|
/* Coefficients for the all-pass and line scattering matrices. */
|
|
float mMixX{0.0f};
|
|
float mMixY{0.0f};
|
|
|
|
EarlyReflections mEarly;
|
|
|
|
LateReverb mLate;
|
|
|
|
std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
|
|
|
|
size_t mFadeSampleCount{1};
|
|
|
|
void updateDelayLine(const float earlyDelay, const float lateDelay, const float density_mult,
|
|
const float decayTime, const float frequency);
|
|
void update3DPanning(const al::span<const float,3> ReflectionsPan,
|
|
const al::span<const float,3> LateReverbPan, const float earlyGain, const float lateGain,
|
|
const bool doUpmix, const MixParams *mainMix);
|
|
|
|
void processEarly(size_t offset, const size_t samplesToDo,
|
|
const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
|
|
const al::span<FloatBufferLine,NUM_LINES> outSamples);
|
|
void processLate(size_t offset, const size_t samplesToDo,
|
|
const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
|
|
const al::span<FloatBufferLine,NUM_LINES> outSamples);
|
|
|
|
void clear() noexcept
|
|
{
|
|
for(auto &filter : mFilter)
|
|
{
|
|
filter.Lp.clear();
|
|
filter.Hp.clear();
|
|
}
|
|
mLate.clear();
|
|
for(auto &filters : mAmbiSplitter)
|
|
{
|
|
for(auto &filter : filters)
|
|
filter.clear();
|
|
}
|
|
}
|
|
};
|
|
|
|
struct ReverbState final : public EffectState {
|
|
/* All delay lines are allocated as a single buffer to reduce memory
|
|
* fragmentation and management code.
|
|
*/
|
|
al::vector<std::array<float,NUM_LINES>,16> mSampleBuffer;
|
|
|
|
struct {
|
|
/* Calculated parameters which indicate if cross-fading is needed after
|
|
* an update.
|
|
*/
|
|
float Density{1.0f};
|
|
float Diffusion{1.0f};
|
|
float DecayTime{1.49f};
|
|
float HFDecayTime{0.83f * 1.49f};
|
|
float LFDecayTime{1.0f * 1.49f};
|
|
float ModulationTime{0.25f};
|
|
float ModulationDepth{0.0f};
|
|
float HFReference{5000.0f};
|
|
float LFReference{250.0f};
|
|
} mParams;
|
|
|
|
enum PipelineState : uint8_t {
|
|
DeviceClear,
|
|
StartFade,
|
|
Fading,
|
|
Cleanup,
|
|
Normal,
|
|
};
|
|
PipelineState mPipelineState{DeviceClear};
|
|
uint8_t mCurrentPipeline{0};
|
|
|
|
ReverbPipeline mPipelines[2];
|
|
|
|
/* The current write offset for all delay lines. */
|
|
size_t mOffset{};
|
|
|
|
/* Temporary storage used when processing. */
|
|
union {
|
|
alignas(16) FloatBufferLine mTempLine{};
|
|
alignas(16) std::array<ReverbUpdateLine,NUM_LINES> mTempSamples;
|
|
};
|
|
alignas(16) std::array<FloatBufferLine,NUM_LINES> mEarlySamples{};
|
|
alignas(16) std::array<FloatBufferLine,NUM_LINES> mLateSamples{};
|
|
|
|
std::array<float,MaxAmbiOrder+1> mOrderScales{};
|
|
|
|
bool mUpmixOutput{false};
|
|
|
|
|
|
void MixOutPlain(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut,
|
|
const size_t todo)
|
|
{
|
|
ASSUME(todo > 0);
|
|
|
|
/* When not upsampling, the panning gains convert to B-Format and pan
|
|
* at the same time.
|
|
*/
|
|
for(size_t c{0u};c < NUM_LINES;c++)
|
|
{
|
|
const al::span<float> tmpspan{mEarlySamples[c].data(), todo};
|
|
MixSamples(tmpspan, samplesOut, pipeline.mEarly.CurrentGains[c],
|
|
pipeline.mEarly.TargetGains[c], todo, 0);
|
|
}
|
|
for(size_t c{0u};c < NUM_LINES;c++)
|
|
{
|
|
const al::span<float> tmpspan{mLateSamples[c].data(), todo};
|
|
MixSamples(tmpspan, samplesOut, pipeline.mLate.CurrentGains[c],
|
|
pipeline.mLate.TargetGains[c], todo, 0);
|
|
}
|
|
}
|
|
|
|
void MixOutAmbiUp(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut,
|
|
const size_t todo)
|
|
{
|
|
ASSUME(todo > 0);
|
|
|
|
auto DoMixRow = [](const al::span<float> OutBuffer, const al::span<const float,4> Gains,
|
|
const float *InSamples, const size_t InStride)
|
|
{
|
|
std::fill(OutBuffer.begin(), OutBuffer.end(), 0.0f);
|
|
for(const float gain : Gains)
|
|
{
|
|
const float *RESTRICT input{al::assume_aligned<16>(InSamples)};
|
|
InSamples += InStride;
|
|
|
|
if(!(std::fabs(gain) > GainSilenceThreshold))
|
|
continue;
|
|
|
|
auto mix_sample = [gain](const float sample, const float in) noexcept -> float
|
|
{ return sample + in*gain; };
|
|
std::transform(OutBuffer.begin(), OutBuffer.end(), input, OutBuffer.begin(),
|
|
mix_sample);
|
|
}
|
|
};
|
|
|
|
/* When upsampling, the B-Format conversion needs to be done separately
|
|
* so the proper HF scaling can be applied to each B-Format channel.
|
|
* The panning gains then pan and upsample the B-Format channels.
|
|
*/
|
|
const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), todo};
|
|
for(size_t c{0u};c < NUM_LINES;c++)
|
|
{
|
|
DoMixRow(tmpspan, EarlyA2B[c], mEarlySamples[0].data(), mEarlySamples[0].size());
|
|
|
|
/* Apply scaling to the B-Format's HF response to "upsample" it to
|
|
* higher-order output.
|
|
*/
|
|
const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
|
|
pipeline.mAmbiSplitter[0][c].processHfScale(tmpspan, hfscale);
|
|
|
|
MixSamples(tmpspan, samplesOut, pipeline.mEarly.CurrentGains[c],
|
|
pipeline.mEarly.TargetGains[c], todo, 0);
|
|
}
|
|
for(size_t c{0u};c < NUM_LINES;c++)
|
|
{
|
|
DoMixRow(tmpspan, LateA2B[c], mLateSamples[0].data(), mLateSamples[0].size());
|
|
|
|
const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
|
|
pipeline.mAmbiSplitter[1][c].processHfScale(tmpspan, hfscale);
|
|
|
|
MixSamples(tmpspan, samplesOut, pipeline.mLate.CurrentGains[c],
|
|
pipeline.mLate.TargetGains[c], todo, 0);
|
|
}
|
|
}
|
|
|
|
void mixOut(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut, const size_t todo)
|
|
{
|
|
if(mUpmixOutput)
|
|
MixOutAmbiUp(pipeline, samplesOut, todo);
|
|
else
|
|
MixOutPlain(pipeline, samplesOut, todo);
|
|
}
|
|
|
|
void allocLines(const float frequency);
|
|
|
|
void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
|
|
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
|
|
const EffectTarget target) override;
|
|
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
|
|
const al::span<FloatBufferLine> samplesOut) override;
|
|
|
|
DEF_NEWDEL(ReverbState)
|
|
};
|
|
|
|
/**************************************
|
|
* Device Update *
|
|
**************************************/
|
|
|
|
inline float CalcDelayLengthMult(float density)
|
|
{ return maxf(5.0f, std::cbrt(density*DENSITY_SCALE)); }
|
|
|
|
/* Calculates the delay line metrics and allocates the shared sample buffer
|
|
* for all lines given the sample rate (frequency).
|
|
*/
|
|
void ReverbState::allocLines(const float frequency)
|
|
{
|
|
/* All delay line lengths are calculated to accommodate the full range of
|
|
* lengths given their respective parameters.
|
|
*/
|
|
size_t totalSamples{0u};
|
|
|
|
/* Multiplier for the maximum density value, i.e. density=1, which is
|
|
* actually the least density...
|
|
*/
|
|
const float multiplier{CalcDelayLengthMult(1.0f)};
|
|
|
|
/* The modulator's line length is calculated from the maximum modulation
|
|
* time and depth coefficient, and halfed for the low-to-high frequency
|
|
* swing.
|
|
*/
|
|
constexpr float max_mod_delay{MaxModulationTime*MODULATION_DEPTH_COEFF / 2.0f};
|
|
|
|
for(auto &pipeline : mPipelines)
|
|
{
|
|
/* The main delay length includes the maximum early reflection delay,
|
|
* the largest early tap width, the maximum late reverb delay, and the
|
|
* largest late tap width. Finally, it must also be extended by the
|
|
* update size (BufferLineSize) for block processing.
|
|
*/
|
|
float length{ReverbMaxReflectionsDelay + EARLY_TAP_LENGTHS.back()*multiplier};
|
|
totalSamples += pipeline.mEarlyDelayIn.calcLineLength(length, totalSamples, frequency,
|
|
BufferLineSize);
|
|
|
|
constexpr float LateLineDiffAvg{(LATE_LINE_LENGTHS.back()-LATE_LINE_LENGTHS.front()) /
|
|
float{NUM_LINES}};
|
|
length = ReverbMaxLateReverbDelay + LateLineDiffAvg*multiplier;
|
|
totalSamples += pipeline.mLateDelayIn.calcLineLength(length, totalSamples, frequency,
|
|
BufferLineSize);
|
|
|
|
/* The early vector all-pass line. */
|
|
length = EARLY_ALLPASS_LENGTHS.back() * multiplier;
|
|
totalSamples += pipeline.mEarly.VecAp.Delay.calcLineLength(length, totalSamples, frequency,
|
|
0);
|
|
|
|
/* The early reflection line. */
|
|
length = EARLY_LINE_LENGTHS.back() * multiplier;
|
|
totalSamples += pipeline.mEarly.Delay.calcLineLength(length, totalSamples, frequency,
|
|
MAX_UPDATE_SAMPLES);
|
|
|
|
/* The late vector all-pass line. */
|
|
length = LATE_ALLPASS_LENGTHS.back() * multiplier;
|
|
totalSamples += pipeline.mLate.VecAp.Delay.calcLineLength(length, totalSamples, frequency,
|
|
0);
|
|
|
|
/* The late delay lines are calculated from the largest maximum density
|
|
* line length, and the maximum modulation delay. Four additional
|
|
* samples are needed for resampling the modulator delay.
|
|
*/
|
|
length = LATE_LINE_LENGTHS.back()*multiplier + max_mod_delay;
|
|
totalSamples += pipeline.mLate.Delay.calcLineLength(length, totalSamples, frequency, 4);
|
|
}
|
|
|
|
if(totalSamples != mSampleBuffer.size())
|
|
decltype(mSampleBuffer)(totalSamples).swap(mSampleBuffer);
|
|
|
|
/* Clear the sample buffer. */
|
|
std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), decltype(mSampleBuffer)::value_type{});
|
|
|
|
/* Update all delays to reflect the new sample buffer. */
|
|
for(auto &pipeline : mPipelines)
|
|
{
|
|
pipeline.mEarlyDelayIn.realizeLineOffset(mSampleBuffer.data());
|
|
pipeline.mLateDelayIn.realizeLineOffset(mSampleBuffer.data());
|
|
pipeline.mEarly.VecAp.Delay.realizeLineOffset(mSampleBuffer.data());
|
|
pipeline.mEarly.Delay.realizeLineOffset(mSampleBuffer.data());
|
|
pipeline.mLate.VecAp.Delay.realizeLineOffset(mSampleBuffer.data());
|
|
pipeline.mLate.Delay.realizeLineOffset(mSampleBuffer.data());
|
|
}
|
|
}
|
|
|
|
void ReverbState::deviceUpdate(const DeviceBase *device, const BufferStorage*)
|
|
{
|
|
const auto frequency = static_cast<float>(device->Frequency);
|
|
|
|
/* Allocate the delay lines. */
|
|
allocLines(frequency);
|
|
|
|
for(auto &pipeline : mPipelines)
|
|
{
|
|
/* Clear filters and gain coefficients since the delay lines were all just
|
|
* cleared (if not reallocated).
|
|
*/
|
|
for(auto &filter : pipeline.mFilter)
|
|
{
|
|
filter.Lp.clear();
|
|
filter.Hp.clear();
|
|
}
|
|
|
|
std::fill(std::begin(pipeline.mEarlyDelayCoeff),std::end(pipeline.mEarlyDelayCoeff), 0.0f);
|
|
std::fill(std::begin(pipeline.mEarlyDelayCoeff),std::end(pipeline.mEarlyDelayCoeff), 0.0f);
|
|
|
|
pipeline.mLate.DensityGain = 0.0f;
|
|
for(auto &t60 : pipeline.mLate.T60)
|
|
{
|
|
t60.MidGain = 0.0f;
|
|
t60.HFFilter.clear();
|
|
t60.LFFilter.clear();
|
|
}
|
|
|
|
pipeline.mLate.Mod.Index = 0;
|
|
pipeline.mLate.Mod.Step = 1;
|
|
pipeline.mLate.Mod.Depth = 0.0f;
|
|
|
|
for(auto &gains : pipeline.mEarly.CurrentGains)
|
|
std::fill(std::begin(gains), std::end(gains), 0.0f);
|
|
for(auto &gains : pipeline.mEarly.TargetGains)
|
|
std::fill(std::begin(gains), std::end(gains), 0.0f);
|
|
for(auto &gains : pipeline.mLate.CurrentGains)
|
|
std::fill(std::begin(gains), std::end(gains), 0.0f);
|
|
for(auto &gains : pipeline.mLate.TargetGains)
|
|
std::fill(std::begin(gains), std::end(gains), 0.0f);
|
|
}
|
|
mPipelineState = DeviceClear;
|
|
|
|
/* Reset offset base. */
|
|
mOffset = 0;
|
|
|
|
if(device->mAmbiOrder > 1)
|
|
{
|
|
mUpmixOutput = true;
|
|
mOrderScales = AmbiScale::GetHFOrderScales(1, device->mAmbiOrder, device->m2DMixing);
|
|
}
|
|
else
|
|
{
|
|
mUpmixOutput = false;
|
|
mOrderScales.fill(1.0f);
|
|
}
|
|
mPipelines[0].mAmbiSplitter[0][0].init(device->mXOverFreq / frequency);
|
|
for(auto &pipeline : mPipelines)
|
|
{
|
|
std::fill(pipeline.mAmbiSplitter[0].begin(), pipeline.mAmbiSplitter[0].end(),
|
|
pipeline.mAmbiSplitter[0][0]);
|
|
std::fill(pipeline.mAmbiSplitter[1].begin(), pipeline.mAmbiSplitter[1].end(),
|
|
pipeline.mAmbiSplitter[0][0]);
|
|
}
|
|
}
|
|
|
|
/**************************************
|
|
* Effect Update *
|
|
**************************************/
|
|
|
|
/* Calculate a decay coefficient given the length of each cycle and the time
|
|
* until the decay reaches -60 dB.
|
|
*/
|
|
inline float CalcDecayCoeff(const float length, const float decayTime)
|
|
{ return std::pow(ReverbDecayGain, length/decayTime); }
|
|
|
|
/* Calculate a decay length from a coefficient and the time until the decay
|
|
* reaches -60 dB.
|
|
*/
|
|
inline float CalcDecayLength(const float coeff, const float decayTime)
|
|
{
|
|
constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
|
|
return std::log10(coeff) * decayTime / log10_decaygain;
|
|
}
|
|
|
|
/* Calculate an attenuation to be applied to the input of any echo models to
|
|
* compensate for modal density and decay time.
|
|
*/
|
|
inline float CalcDensityGain(const float a)
|
|
{
|
|
/* The energy of a signal can be obtained by finding the area under the
|
|
* squared signal. This takes the form of Sum(x_n^2), where x is the
|
|
* amplitude for the sample n.
|
|
*
|
|
* Decaying feedback matches exponential decay of the form Sum(a^n),
|
|
* where a is the attenuation coefficient, and n is the sample. The area
|
|
* under this decay curve can be calculated as: 1 / (1 - a).
|
|
*
|
|
* Modifying the above equation to find the area under the squared curve
|
|
* (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
|
|
* calculated by inverting the square root of this approximation,
|
|
* yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
|
|
*/
|
|
return std::sqrt(1.0f - a*a);
|
|
}
|
|
|
|
/* Calculate the scattering matrix coefficients given a diffusion factor. */
|
|
inline void CalcMatrixCoeffs(const float diffusion, float *x, float *y)
|
|
{
|
|
/* The matrix is of order 4, so n is sqrt(4 - 1). */
|
|
constexpr float n{al::numbers::sqrt3_v<float>};
|
|
const float t{diffusion * std::atan(n)};
|
|
|
|
/* Calculate the first mixing matrix coefficient. */
|
|
*x = std::cos(t);
|
|
/* Calculate the second mixing matrix coefficient. */
|
|
*y = std::sin(t) / n;
|
|
}
|
|
|
|
/* Calculate the limited HF ratio for use with the late reverb low-pass
|
|
* filters.
|
|
*/
|
|
float CalcLimitedHfRatio(const float hfRatio, const float airAbsorptionGainHF,
|
|
const float decayTime)
|
|
{
|
|
/* Find the attenuation due to air absorption in dB (converting delay
|
|
* time to meters using the speed of sound). Then reversing the decay
|
|
* equation, solve for HF ratio. The delay length is cancelled out of
|
|
* the equation, so it can be calculated once for all lines.
|
|
*/
|
|
float limitRatio{1.0f / SpeedOfSoundMetersPerSec /
|
|
CalcDecayLength(airAbsorptionGainHF, decayTime)};
|
|
|
|
/* Using the limit calculated above, apply the upper bound to the HF ratio. */
|
|
return minf(limitRatio, hfRatio);
|
|
}
|
|
|
|
|
|
/* Calculates the 3-band T60 damping coefficients for a particular delay line
|
|
* of specified length, using a combination of two shelf filter sections given
|
|
* decay times for each band split at two reference frequencies.
|
|
*/
|
|
void T60Filter::calcCoeffs(const float length, const float lfDecayTime,
|
|
const float mfDecayTime, const float hfDecayTime, const float lf0norm,
|
|
const float hf0norm)
|
|
{
|
|
const float mfGain{CalcDecayCoeff(length, mfDecayTime)};
|
|
const float lfGain{CalcDecayCoeff(length, lfDecayTime) / mfGain};
|
|
const float hfGain{CalcDecayCoeff(length, hfDecayTime) / mfGain};
|
|
|
|
MidGain = mfGain;
|
|
LFFilter.setParamsFromSlope(BiquadType::LowShelf, lf0norm, lfGain, 1.0f);
|
|
HFFilter.setParamsFromSlope(BiquadType::HighShelf, hf0norm, hfGain, 1.0f);
|
|
}
|
|
|
|
/* Update the early reflection line lengths and gain coefficients. */
|
|
void EarlyReflections::updateLines(const float density_mult, const float diffusion,
|
|
const float decayTime, const float frequency)
|
|
{
|
|
/* Calculate the all-pass feed-back/forward coefficient. */
|
|
VecAp.Coeff = diffusion*diffusion * InvSqrt2;
|
|
|
|
for(size_t i{0u};i < NUM_LINES;i++)
|
|
{
|
|
/* Calculate the delay length of each all-pass line. */
|
|
float length{EARLY_ALLPASS_LENGTHS[i] * density_mult};
|
|
VecAp.Offset[i] = float2uint(length * frequency);
|
|
|
|
/* Calculate the delay length of each delay line. */
|
|
length = EARLY_LINE_LENGTHS[i] * density_mult;
|
|
Offset[i] = float2uint(length * frequency);
|
|
|
|
/* Calculate the gain (coefficient) for each line. */
|
|
Coeff[i] = CalcDecayCoeff(length, decayTime);
|
|
}
|
|
}
|
|
|
|
/* Update the EAX modulation step and depth. Keep in mind that this kind of
|
|
* vibrato is additive and not multiplicative as one may expect. The downswing
|
|
* will sound stronger than the upswing.
|
|
*/
|
|
void Modulation::updateModulator(float modTime, float modDepth, float frequency)
|
|
{
|
|
/* Modulation is calculated in two parts.
|
|
*
|
|
* The modulation time effects the sinus rate, altering the speed of
|
|
* frequency changes. An index is incremented for each sample with an
|
|
* appropriate step size to generate an LFO, which will vary the feedback
|
|
* delay over time.
|
|
*/
|
|
Step = maxu(fastf2u(MOD_FRACONE / (frequency * modTime)), 1);
|
|
|
|
/* The modulation depth effects the amount of frequency change over the
|
|
* range of the sinus. It needs to be scaled by the modulation time so that
|
|
* a given depth produces a consistent change in frequency over all ranges
|
|
* of time. Since the depth is applied to a sinus value, it needs to be
|
|
* halved once for the sinus range and again for the sinus swing in time
|
|
* (half of it is spent decreasing the frequency, half is spent increasing
|
|
* it).
|
|
*/
|
|
if(modTime >= DefaultModulationTime)
|
|
{
|
|
/* To cancel the effects of a long period modulation on the late
|
|
* reverberation, the amount of pitch should be varied (decreased)
|
|
* according to the modulation time. The natural form is varying
|
|
* inversely, in fact resulting in an invariant.
|
|
*/
|
|
Depth = MODULATION_DEPTH_COEFF / 4.0f * DefaultModulationTime * modDepth * frequency;
|
|
}
|
|
else
|
|
Depth = MODULATION_DEPTH_COEFF / 4.0f * modTime * modDepth * frequency;
|
|
}
|
|
|
|
/* Update the late reverb line lengths and T60 coefficients. */
|
|
void LateReverb::updateLines(const float density_mult, const float diffusion,
|
|
const float lfDecayTime, const float mfDecayTime, const float hfDecayTime,
|
|
const float lf0norm, const float hf0norm, const float frequency)
|
|
{
|
|
/* Scaling factor to convert the normalized reference frequencies from
|
|
* representing 0...freq to 0...max_reference.
|
|
*/
|
|
constexpr float MaxHFReference{20000.0f};
|
|
const float norm_weight_factor{frequency / MaxHFReference};
|
|
|
|
const float late_allpass_avg{
|
|
std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) /
|
|
float{NUM_LINES}};
|
|
|
|
/* To compensate for changes in modal density and decay time of the late
|
|
* reverb signal, the input is attenuated based on the maximal energy of
|
|
* the outgoing signal. This approximation is used to keep the apparent
|
|
* energy of the signal equal for all ranges of density and decay time.
|
|
*
|
|
* The average length of the delay lines is used to calculate the
|
|
* attenuation coefficient.
|
|
*/
|
|
float length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) /
|
|
float{NUM_LINES} + late_allpass_avg};
|
|
length *= density_mult;
|
|
/* The density gain calculation uses an average decay time weighted by
|
|
* approximate bandwidth. This attempts to compensate for losses of energy
|
|
* that reduce decay time due to scattering into highly attenuated bands.
|
|
*/
|
|
const float decayTimeWeighted{
|
|
lf0norm*norm_weight_factor*lfDecayTime +
|
|
(hf0norm - lf0norm)*norm_weight_factor*mfDecayTime +
|
|
(1.0f - hf0norm*norm_weight_factor)*hfDecayTime};
|
|
DensityGain = CalcDensityGain(CalcDecayCoeff(length, decayTimeWeighted));
|
|
|
|
/* Calculate the all-pass feed-back/forward coefficient. */
|
|
VecAp.Coeff = diffusion*diffusion * InvSqrt2;
|
|
|
|
for(size_t i{0u};i < NUM_LINES;i++)
|
|
{
|
|
/* Calculate the delay length of each all-pass line. */
|
|
length = LATE_ALLPASS_LENGTHS[i] * density_mult;
|
|
VecAp.Offset[i] = float2uint(length * frequency);
|
|
|
|
/* Calculate the delay length of each feedback delay line. A cubic
|
|
* resampler is used for modulation on the feedback delay, which
|
|
* includes one sample of delay. Reduce by one to compensate.
|
|
*/
|
|
length = LATE_LINE_LENGTHS[i] * density_mult;
|
|
Offset[i] = maxu(float2uint(length*frequency + 0.5f), 1u) - 1u;
|
|
|
|
/* Approximate the absorption that the vector all-pass would exhibit
|
|
* given the current diffusion so we don't have to process a full T60
|
|
* filter for each of its four lines. Also include the average
|
|
* modulation delay (depth is half the max delay in samples).
|
|
*/
|
|
length += lerpf(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion)*density_mult +
|
|
Mod.Depth/frequency;
|
|
|
|
/* Calculate the T60 damping coefficients for each line. */
|
|
T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm);
|
|
}
|
|
}
|
|
|
|
|
|
/* Update the offsets for the main effect delay line. */
|
|
void ReverbPipeline::updateDelayLine(const float earlyDelay, const float lateDelay,
|
|
const float density_mult, const float decayTime, const float frequency)
|
|
{
|
|
/* Early reflection taps are decorrelated by means of an average room
|
|
* reflection approximation described above the definition of the taps.
|
|
* This approximation is linear and so the above density multiplier can
|
|
* be applied to adjust the width of the taps. A single-band decay
|
|
* coefficient is applied to simulate initial attenuation and absorption.
|
|
*
|
|
* Late reverb taps are based on the late line lengths to allow a zero-
|
|
* delay path and offsets that would continue the propagation naturally
|
|
* into the late lines.
|
|
*/
|
|
for(size_t i{0u};i < NUM_LINES;i++)
|
|
{
|
|
float length{EARLY_TAP_LENGTHS[i]*density_mult};
|
|
mEarlyDelayTap[i][1] = float2uint((earlyDelay+length) * frequency);
|
|
mEarlyDelayCoeff[i] = CalcDecayCoeff(length, decayTime);
|
|
|
|
length = (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())/float{NUM_LINES}*density_mult +
|
|
lateDelay;
|
|
mLateDelayTap[i][1] = float2uint(length * frequency);
|
|
}
|
|
}
|
|
|
|
/* Creates a transform matrix given a reverb vector. The vector pans the reverb
|
|
* reflections toward the given direction, using its magnitude (up to 1) as a
|
|
* focal strength. This function results in a B-Format transformation matrix
|
|
* that spatially focuses the signal in the desired direction.
|
|
*/
|
|
std::array<std::array<float,4>,4> GetTransformFromVector(const al::span<const float,3> vec)
|
|
{
|
|
/* Normalize the panning vector according to the N3D scale, which has an
|
|
* extra sqrt(3) term on the directional components. Converting from OpenAL
|
|
* to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
|
|
* that the reverb panning vectors use left-handed coordinates, unlike the
|
|
* rest of OpenAL which use right-handed. This is fixed by negating Z,
|
|
* which cancels out with the B-Format Z negation.
|
|
*/
|
|
float norm[3];
|
|
float mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
|
|
if(mag > 1.0f)
|
|
{
|
|
const float scale{al::numbers::sqrt3_v<float> / mag};
|
|
norm[0] = vec[0] * -scale;
|
|
norm[1] = vec[1] * scale;
|
|
norm[2] = vec[2] * scale;
|
|
mag = 1.0f;
|
|
}
|
|
else
|
|
{
|
|
/* If the magnitude is less than or equal to 1, just apply the sqrt(3)
|
|
* term. There's no need to renormalize the magnitude since it would
|
|
* just be reapplied in the matrix.
|
|
*/
|
|
norm[0] = vec[0] * -al::numbers::sqrt3_v<float>;
|
|
norm[1] = vec[1] * al::numbers::sqrt3_v<float>;
|
|
norm[2] = vec[2] * al::numbers::sqrt3_v<float>;
|
|
}
|
|
|
|
return std::array<std::array<float,4>,4>{{
|
|
{{1.0f, 0.0f, 0.0f, 0.0f}},
|
|
{{norm[0], 1.0f-mag, 0.0f, 0.0f}},
|
|
{{norm[1], 0.0f, 1.0f-mag, 0.0f}},
|
|
{{norm[2], 0.0f, 0.0f, 1.0f-mag}}
|
|
}};
|
|
}
|
|
|
|
/* Update the early and late 3D panning gains. */
|
|
void ReverbPipeline::update3DPanning(const al::span<const float,3> ReflectionsPan,
|
|
const al::span<const float,3> LateReverbPan, const float earlyGain, const float lateGain,
|
|
const bool doUpmix, const MixParams *mainMix)
|
|
{
|
|
/* Create matrices that transform a B-Format signal according to the
|
|
* panning vectors.
|
|
*/
|
|
const std::array<std::array<float,4>,4> earlymat{GetTransformFromVector(ReflectionsPan)};
|
|
const std::array<std::array<float,4>,4> latemat{GetTransformFromVector(LateReverbPan)};
|
|
|
|
if(doUpmix)
|
|
{
|
|
/* When upsampling, combine the early and late transforms with the
|
|
* first-order upsample matrix. This results in panning gains that
|
|
* apply the panning transform to first-order B-Format, which is then
|
|
* upsampled.
|
|
*/
|
|
auto mult_matrix = [](const al::span<const std::array<float,4>,4> mtx1)
|
|
{
|
|
auto&& mtx2 = AmbiScale::FirstOrderUp;
|
|
std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
|
|
|
|
for(size_t i{0};i < mtx1[0].size();++i)
|
|
{
|
|
float *RESTRICT dst{res[i].data()};
|
|
for(size_t k{0};k < mtx1.size();++k)
|
|
{
|
|
const float *RESTRICT src{mtx2[k].data()};
|
|
const float a{mtx1[k][i]};
|
|
for(size_t j{0};j < mtx2[0].size();++j)
|
|
dst[j] += a * src[j];
|
|
}
|
|
}
|
|
|
|
return res;
|
|
};
|
|
auto earlycoeffs = mult_matrix(earlymat);
|
|
auto latecoeffs = mult_matrix(latemat);
|
|
|
|
for(size_t i{0u};i < NUM_LINES;i++)
|
|
ComputePanGains(mainMix, earlycoeffs[i].data(), earlyGain, mEarly.TargetGains[i]);
|
|
for(size_t i{0u};i < NUM_LINES;i++)
|
|
ComputePanGains(mainMix, latecoeffs[i].data(), lateGain, mLate.TargetGains[i]);
|
|
}
|
|
else
|
|
{
|
|
/* When not upsampling, combine the early and late A-to-B-Format
|
|
* conversions with their respective transform. This results panning
|
|
* gains that convert A-Format to B-Format, which is then panned.
|
|
*/
|
|
auto mult_matrix = [](const al::span<const std::array<float,NUM_LINES>,4> mtx1,
|
|
const al::span<const std::array<float,4>,4> mtx2)
|
|
{
|
|
std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
|
|
|
|
for(size_t i{0};i < mtx1[0].size();++i)
|
|
{
|
|
float *RESTRICT dst{res[i].data()};
|
|
for(size_t k{0};k < mtx1.size();++k)
|
|
{
|
|
const float a{mtx1[k][i]};
|
|
for(size_t j{0};j < mtx2.size();++j)
|
|
dst[j] += a * mtx2[j][k];
|
|
}
|
|
}
|
|
|
|
return res;
|
|
};
|
|
auto earlycoeffs = mult_matrix(EarlyA2B, earlymat);
|
|
auto latecoeffs = mult_matrix(LateA2B, latemat);
|
|
|
|
for(size_t i{0u};i < NUM_LINES;i++)
|
|
ComputePanGains(mainMix, earlycoeffs[i].data(), earlyGain, mEarly.TargetGains[i]);
|
|
for(size_t i{0u};i < NUM_LINES;i++)
|
|
ComputePanGains(mainMix, latecoeffs[i].data(), lateGain, mLate.TargetGains[i]);
|
|
}
|
|
}
|
|
|
|
void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot,
|
|
const EffectProps *props, const EffectTarget target)
|
|
{
|
|
const DeviceBase *Device{Context->mDevice};
|
|
const auto frequency = static_cast<float>(Device->Frequency);
|
|
|
|
/* If the HF limit parameter is flagged, calculate an appropriate limit
|
|
* based on the air absorption parameter.
|
|
*/
|
|
float hfRatio{props->Reverb.DecayHFRatio};
|
|
if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
|
|
hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
|
|
props->Reverb.DecayTime);
|
|
|
|
/* Calculate the LF/HF decay times. */
|
|
constexpr float MinDecayTime{0.1f}, MaxDecayTime{20.0f};
|
|
const float lfDecayTime{clampf(props->Reverb.DecayTime*props->Reverb.DecayLFRatio,
|
|
MinDecayTime, MaxDecayTime)};
|
|
const float hfDecayTime{clampf(props->Reverb.DecayTime*hfRatio, MinDecayTime, MaxDecayTime)};
|
|
|
|
/* Determine if a full update is required. */
|
|
const bool fullUpdate{mPipelineState == DeviceClear ||
|
|
/* Density is essentially a master control for the feedback delays, so
|
|
* changes the offsets of many delay lines.
|
|
*/
|
|
mParams.Density != props->Reverb.Density ||
|
|
/* Diffusion and decay times influences the decay rate (gain) of the
|
|
* late reverb T60 filter.
|
|
*/
|
|
mParams.Diffusion != props->Reverb.Diffusion ||
|
|
mParams.DecayTime != props->Reverb.DecayTime ||
|
|
mParams.HFDecayTime != hfDecayTime ||
|
|
mParams.LFDecayTime != lfDecayTime ||
|
|
/* Modulation time and depth both require fading the modulation delay. */
|
|
mParams.ModulationTime != props->Reverb.ModulationTime ||
|
|
mParams.ModulationDepth != props->Reverb.ModulationDepth ||
|
|
/* HF/LF References control the weighting used to calculate the density
|
|
* gain.
|
|
*/
|
|
mParams.HFReference != props->Reverb.HFReference ||
|
|
mParams.LFReference != props->Reverb.LFReference};
|
|
if(fullUpdate)
|
|
{
|
|
mParams.Density = props->Reverb.Density;
|
|
mParams.Diffusion = props->Reverb.Diffusion;
|
|
mParams.DecayTime = props->Reverb.DecayTime;
|
|
mParams.HFDecayTime = hfDecayTime;
|
|
mParams.LFDecayTime = lfDecayTime;
|
|
mParams.ModulationTime = props->Reverb.ModulationTime;
|
|
mParams.ModulationDepth = props->Reverb.ModulationDepth;
|
|
mParams.HFReference = props->Reverb.HFReference;
|
|
mParams.LFReference = props->Reverb.LFReference;
|
|
|
|
mPipelineState = (mPipelineState != DeviceClear) ? StartFade : Normal;
|
|
mCurrentPipeline ^= 1;
|
|
}
|
|
auto &pipeline = mPipelines[mCurrentPipeline];
|
|
|
|
/* Update early and late 3D panning. */
|
|
mOutTarget = target.Main->Buffer;
|
|
const float gain{props->Reverb.Gain * Slot->Gain * ReverbBoost};
|
|
pipeline.update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan,
|
|
props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, mUpmixOutput,
|
|
target.Main);
|
|
|
|
/* Calculate the master filters */
|
|
float hf0norm{minf(props->Reverb.HFReference/frequency, 0.49f)};
|
|
pipeline.mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props->Reverb.GainHF, 1.0f);
|
|
float lf0norm{minf(props->Reverb.LFReference/frequency, 0.49f)};
|
|
pipeline.mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props->Reverb.GainLF, 1.0f);
|
|
for(size_t i{1u};i < NUM_LINES;i++)
|
|
{
|
|
pipeline.mFilter[i].Lp.copyParamsFrom(pipeline.mFilter[0].Lp);
|
|
pipeline.mFilter[i].Hp.copyParamsFrom(pipeline.mFilter[0].Hp);
|
|
}
|
|
|
|
/* The density-based room size (delay length) multiplier. */
|
|
const float density_mult{CalcDelayLengthMult(props->Reverb.Density)};
|
|
|
|
/* Update the main effect delay and associated taps. */
|
|
pipeline.updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
|
|
density_mult, props->Reverb.DecayTime, frequency);
|
|
|
|
if(fullUpdate)
|
|
{
|
|
/* Update the early lines. */
|
|
pipeline.mEarly.updateLines(density_mult, props->Reverb.Diffusion, props->Reverb.DecayTime,
|
|
frequency);
|
|
|
|
/* Get the mixing matrix coefficients. */
|
|
CalcMatrixCoeffs(props->Reverb.Diffusion, &pipeline.mMixX, &pipeline.mMixY);
|
|
|
|
/* Update the modulator rate and depth. */
|
|
pipeline.mLate.Mod.updateModulator(props->Reverb.ModulationTime,
|
|
props->Reverb.ModulationDepth, frequency);
|
|
|
|
/* Update the late lines. */
|
|
pipeline.mLate.updateLines(density_mult, props->Reverb.Diffusion, lfDecayTime,
|
|
props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency);
|
|
}
|
|
|
|
/* Calculate the gain at the start of the late reverb stage, and the gain
|
|
* difference from the decay target (0.001, or -60dB).
|
|
*/
|
|
const float decayBase{props->Reverb.ReflectionsGain * props->Reverb.LateReverbGain};
|
|
const float decayDiff{ReverbDecayGain / decayBase};
|
|
|
|
if(decayDiff < 1.0f)
|
|
{
|
|
/* Given the DecayTime (the amount of time for the late reverb to decay
|
|
* by -60dB), calculate the time to decay to -60dB from the start of
|
|
* the late reverb.
|
|
*/
|
|
const float diffTime{std::log10(decayDiff)*(20.0f / -60.0f) * props->Reverb.DecayTime};
|
|
|
|
const float decaySamples{(props->Reverb.ReflectionsDelay + props->Reverb.LateReverbDelay
|
|
+ diffTime) * frequency};
|
|
/* Limit to 100,000 samples (a touch over 2 seconds at 48khz) to
|
|
* avoid excessive double-processing.
|
|
*/
|
|
pipeline.mFadeSampleCount = static_cast<size_t>(minf(decaySamples, 100'000.0f));
|
|
}
|
|
else
|
|
{
|
|
/* Otherwise, if the late reverb already starts at -60dB or less, only
|
|
* include the time to get to the late reverb.
|
|
*/
|
|
const float decaySamples{(props->Reverb.ReflectionsDelay + props->Reverb.LateReverbDelay)
|
|
* frequency};
|
|
pipeline.mFadeSampleCount = static_cast<size_t>(minf(decaySamples, 100'000.0f));
|
|
}
|
|
}
|
|
|
|
|
|
/**************************************
|
|
* Effect Processing *
|
|
**************************************/
|
|
|
|
/* Applies a scattering matrix to the 4-line (vector) input. This is used
|
|
* for both the below vector all-pass model and to perform modal feed-back
|
|
* delay network (FDN) mixing.
|
|
*
|
|
* The matrix is derived from a skew-symmetric matrix to form a 4D rotation
|
|
* matrix with a single unitary rotational parameter:
|
|
*
|
|
* [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
|
|
* [ -a, d, c, -b ]
|
|
* [ -b, -c, d, a ]
|
|
* [ -c, b, -a, d ]
|
|
*
|
|
* The rotation is constructed from the effect's diffusion parameter,
|
|
* yielding:
|
|
*
|
|
* 1 = x^2 + 3 y^2
|
|
*
|
|
* Where a, b, and c are the coefficient y with differing signs, and d is the
|
|
* coefficient x. The final matrix is thus:
|
|
*
|
|
* [ x, y, -y, y ] n = sqrt(matrix_order - 1)
|
|
* [ -y, x, y, y ] t = diffusion_parameter * atan(n)
|
|
* [ y, -y, x, y ] x = cos(t)
|
|
* [ -y, -y, -y, x ] y = sin(t) / n
|
|
*
|
|
* Any square orthogonal matrix with an order that is a power of two will
|
|
* work (where ^T is transpose, ^-1 is inverse):
|
|
*
|
|
* M^T = M^-1
|
|
*
|
|
* Using that knowledge, finding an appropriate matrix can be accomplished
|
|
* naively by searching all combinations of:
|
|
*
|
|
* M = D + S - S^T
|
|
*
|
|
* Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
|
|
* whose combination of signs are being iterated.
|
|
*/
|
|
inline auto VectorPartialScatter(const std::array<float,NUM_LINES> &RESTRICT in,
|
|
const float xCoeff, const float yCoeff) -> std::array<float,NUM_LINES>
|
|
{
|
|
return std::array<float,NUM_LINES>{{
|
|
xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]),
|
|
xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]),
|
|
xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]),
|
|
xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] )
|
|
}};
|
|
}
|
|
|
|
/* Utilizes the above, but reverses the input channels. */
|
|
void VectorScatterRevDelayIn(const DelayLineI delay, size_t offset, const float xCoeff,
|
|
const float yCoeff, const al::span<const ReverbUpdateLine,NUM_LINES> in, const size_t count)
|
|
{
|
|
ASSUME(count > 0);
|
|
|
|
for(size_t i{0u};i < count;)
|
|
{
|
|
offset &= delay.Mask;
|
|
size_t td{minz(delay.Mask+1 - offset, count-i)};
|
|
do {
|
|
std::array<float,NUM_LINES> f;
|
|
for(size_t j{0u};j < NUM_LINES;j++)
|
|
f[NUM_LINES-1-j] = in[j][i];
|
|
++i;
|
|
|
|
delay.Line[offset++] = VectorPartialScatter(f, xCoeff, yCoeff);
|
|
} while(--td);
|
|
}
|
|
}
|
|
|
|
/* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
|
|
* filter to the 4-line input.
|
|
*
|
|
* It works by vectorizing a regular all-pass filter and replacing the delay
|
|
* element with a scattering matrix (like the one above) and a diagonal
|
|
* matrix of delay elements.
|
|
*
|
|
* Two static specializations are used for transitional (cross-faded) delay
|
|
* line processing and non-transitional processing.
|
|
*/
|
|
void VecAllpass::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
|
|
const float xCoeff, const float yCoeff, const size_t todo)
|
|
{
|
|
const DelayLineI delay{Delay};
|
|
const float feedCoeff{Coeff};
|
|
|
|
ASSUME(todo > 0);
|
|
|
|
size_t vap_offset[NUM_LINES];
|
|
for(size_t j{0u};j < NUM_LINES;j++)
|
|
vap_offset[j] = offset - Offset[j];
|
|
for(size_t i{0u};i < todo;)
|
|
{
|
|
for(size_t j{0u};j < NUM_LINES;j++)
|
|
vap_offset[j] &= delay.Mask;
|
|
offset &= delay.Mask;
|
|
|
|
size_t maxoff{offset};
|
|
for(size_t j{0u};j < NUM_LINES;j++)
|
|
maxoff = maxz(maxoff, vap_offset[j]);
|
|
size_t td{minz(delay.Mask+1 - maxoff, todo - i)};
|
|
|
|
do {
|
|
std::array<float,NUM_LINES> f;
|
|
for(size_t j{0u};j < NUM_LINES;j++)
|
|
{
|
|
const float input{samples[j][i]};
|
|
const float out{delay.Line[vap_offset[j]++][j] - feedCoeff*input};
|
|
f[j] = input + feedCoeff*out;
|
|
|
|
samples[j][i] = out;
|
|
}
|
|
++i;
|
|
|
|
delay.Line[offset++] = VectorPartialScatter(f, xCoeff, yCoeff);
|
|
} while(--td);
|
|
}
|
|
}
|
|
|
|
/* This generates early reflections.
|
|
*
|
|
* This is done by obtaining the primary reflections (those arriving from the
|
|
* same direction as the source) from the main delay line. These are
|
|
* attenuated and all-pass filtered (based on the diffusion parameter).
|
|
*
|
|
* The early lines are then fed in reverse (according to the approximately
|
|
* opposite spatial location of the A-Format lines) to create the secondary
|
|
* reflections (those arriving from the opposite direction as the source).
|
|
*
|
|
* The early response is then completed by combining the primary reflections
|
|
* with the delayed and attenuated output from the early lines.
|
|
*
|
|
* Finally, the early response is reversed, scattered (based on diffusion),
|
|
* and fed into the late reverb section of the main delay line.
|
|
*/
|
|
void ReverbPipeline::processEarly(size_t offset, const size_t samplesToDo,
|
|
const al::span<ReverbUpdateLine, NUM_LINES> tempSamples,
|
|
const al::span<FloatBufferLine, NUM_LINES> outSamples)
|
|
{
|
|
const DelayLineI early_delay{mEarly.Delay};
|
|
const DelayLineI in_delay{mEarlyDelayIn};
|
|
const float mixX{mMixX};
|
|
const float mixY{mMixY};
|
|
|
|
ASSUME(samplesToDo > 0);
|
|
|
|
for(size_t base{0};base < samplesToDo;)
|
|
{
|
|
const size_t todo{minz(samplesToDo-base, MAX_UPDATE_SAMPLES)};
|
|
|
|
/* First, load decorrelated samples from the main delay line as the
|
|
* primary reflections.
|
|
*/
|
|
const float fadeStep{1.0f / static_cast<float>(todo)};
|
|
for(size_t j{0u};j < NUM_LINES;j++)
|
|
{
|
|
size_t early_delay_tap0{offset - mEarlyDelayTap[j][0]};
|
|
size_t early_delay_tap1{offset - mEarlyDelayTap[j][1]};
|
|
const float coeff{mEarlyDelayCoeff[j]};
|
|
const float coeffStep{early_delay_tap0 != early_delay_tap1 ? coeff*fadeStep : 0.0f};
|
|
float fadeCount{0.0f};
|
|
|
|
for(size_t i{0u};i < todo;)
|
|
{
|
|
early_delay_tap0 &= in_delay.Mask;
|
|
early_delay_tap1 &= in_delay.Mask;
|
|
const size_t max_tap{maxz(early_delay_tap0, early_delay_tap1)};
|
|
size_t td{minz(in_delay.Mask+1 - max_tap, todo-i)};
|
|
do {
|
|
const float fade0{coeff - coeffStep*fadeCount};
|
|
const float fade1{coeffStep*fadeCount};
|
|
fadeCount += 1.0f;
|
|
tempSamples[j][i++] = in_delay.Line[early_delay_tap0++][j]*fade0 +
|
|
in_delay.Line[early_delay_tap1++][j]*fade1;
|
|
} while(--td);
|
|
}
|
|
|
|
mEarlyDelayTap[j][0] = mEarlyDelayTap[j][1];
|
|
}
|
|
|
|
/* Apply a vector all-pass, to help color the initial reflections based
|
|
* on the diffusion strength.
|
|
*/
|
|
mEarly.VecAp.process(tempSamples, offset, mixX, mixY, todo);
|
|
|
|
/* Apply a delay and bounce to generate secondary reflections, combine
|
|
* with the primary reflections and write out the result for mixing.
|
|
*/
|
|
for(size_t j{0u};j < NUM_LINES;j++)
|
|
early_delay.write(offset, NUM_LINES-1-j, tempSamples[j].data(), todo);
|
|
for(size_t j{0u};j < NUM_LINES;j++)
|
|
{
|
|
size_t feedb_tap{offset - mEarly.Offset[j]};
|
|
const float feedb_coeff{mEarly.Coeff[j]};
|
|
float *RESTRICT out{al::assume_aligned<16>(outSamples[j].data() + base)};
|
|
|
|
for(size_t i{0u};i < todo;)
|
|
{
|
|
feedb_tap &= early_delay.Mask;
|
|
size_t td{minz(early_delay.Mask+1 - feedb_tap, todo - i)};
|
|
do {
|
|
tempSamples[j][i] += early_delay.Line[feedb_tap++][j]*feedb_coeff;
|
|
out[i] = tempSamples[j][i];
|
|
++i;
|
|
} while(--td);
|
|
}
|
|
}
|
|
|
|
/* Finally, write the result to the late delay line input for the late
|
|
* reverb stage to pick up at the appropriate time, applying a scatter
|
|
* and bounce to improve the initial diffusion in the late reverb.
|
|
*/
|
|
VectorScatterRevDelayIn(mLateDelayIn, offset, mixX, mixY, tempSamples, todo);
|
|
|
|
base += todo;
|
|
offset += todo;
|
|
}
|
|
}
|
|
|
|
void Modulation::calcDelays(size_t todo)
|
|
{
|
|
uint idx{Index};
|
|
const uint step{Step};
|
|
const float depth{Depth};
|
|
for(size_t i{0};i < todo;++i)
|
|
{
|
|
idx += step;
|
|
const float x{static_cast<float>(idx&MOD_FRACMASK) * (1.0f/MOD_FRACONE)};
|
|
/* Approximate sin(x*2pi). As long as it roughly fits a sinusoid shape
|
|
* and stays within [-1...+1], it needn't be perfect.
|
|
*/
|
|
const float lfo{!(idx&(MOD_FRACONE>>1))
|
|
? ((-16.0f * x * x) + (8.0f * x))
|
|
: ((16.0f * x * x) + (-8.0f * x) + (-16.0f * x) + 8.0f)};
|
|
ModDelays[i] = (lfo+1.0f) * depth;
|
|
}
|
|
Index = idx;
|
|
}
|
|
|
|
|
|
/* This generates the reverb tail using a modified feed-back delay network
|
|
* (FDN).
|
|
*
|
|
* Results from the early reflections are mixed with the output from the
|
|
* modulated late delay lines.
|
|
*
|
|
* The late response is then completed by T60 and all-pass filtering the mix.
|
|
*
|
|
* Finally, the lines are reversed (so they feed their opposite directions)
|
|
* and scattered with the FDN matrix before re-feeding the delay lines.
|
|
*/
|
|
void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo,
|
|
const al::span<ReverbUpdateLine, NUM_LINES> tempSamples,
|
|
const al::span<FloatBufferLine, NUM_LINES> outSamples)
|
|
{
|
|
const DelayLineI late_delay{mLate.Delay};
|
|
const DelayLineI in_delay{mLateDelayIn};
|
|
const float mixX{mMixX};
|
|
const float mixY{mMixY};
|
|
|
|
ASSUME(samplesToDo > 0);
|
|
|
|
for(size_t base{0};base < samplesToDo;)
|
|
{
|
|
const size_t todo{minz(samplesToDo-base, minz(mLate.Offset[0], MAX_UPDATE_SAMPLES))};
|
|
ASSUME(todo > 0);
|
|
|
|
/* First, calculate the modulated delays for the late feedback. */
|
|
mLate.Mod.calcDelays(todo);
|
|
|
|
/* Next, load decorrelated samples from the main and feedback delay
|
|
* lines. Filter the signal to apply its frequency-dependent decay.
|
|
*/
|
|
const float fadeStep{1.0f / static_cast<float>(todo)};
|
|
for(size_t j{0u};j < NUM_LINES;j++)
|
|
{
|
|
size_t late_delay_tap0{offset - mLateDelayTap[j][0]};
|
|
size_t late_delay_tap1{offset - mLateDelayTap[j][1]};
|
|
size_t late_feedb_tap{offset - mLate.Offset[j]};
|
|
const float midGain{mLate.T60[j].MidGain};
|
|
const float densityGain{mLate.DensityGain * midGain};
|
|
const float densityStep{late_delay_tap0 != late_delay_tap1 ?
|
|
densityGain*fadeStep : 0.0f};
|
|
float fadeCount{0.0f};
|
|
|
|
for(size_t i{0u};i < todo;)
|
|
{
|
|
late_delay_tap0 &= in_delay.Mask;
|
|
late_delay_tap1 &= in_delay.Mask;
|
|
size_t td{minz(todo-i, in_delay.Mask+1 - maxz(late_delay_tap0, late_delay_tap1))};
|
|
do {
|
|
/* Calculate the read offset and offset between it and the
|
|
* next sample.
|
|
*/
|
|
const float fdelay{mLate.Mod.ModDelays[i]};
|
|
const size_t idelay{float2uint(fdelay * float{gCubicTable.sTableSteps})};
|
|
const size_t delay{late_feedb_tap - (idelay>>gCubicTable.sTableBits)};
|
|
const size_t delayoffset{idelay & gCubicTable.sTableMask};
|
|
++late_feedb_tap;
|
|
|
|
/* Get the samples around by the delayed offset. */
|
|
const float out0{late_delay.Line[(delay ) & late_delay.Mask][j]};
|
|
const float out1{late_delay.Line[(delay-1) & late_delay.Mask][j]};
|
|
const float out2{late_delay.Line[(delay-2) & late_delay.Mask][j]};
|
|
const float out3{late_delay.Line[(delay-3) & late_delay.Mask][j]};
|
|
|
|
/* The output is obtained by interpolating the four samples
|
|
* that were acquired above, and combined with the main
|
|
* delay tap.
|
|
*/
|
|
const float out{out0*gCubicTable.getCoeff0(delayoffset)
|
|
+ out1*gCubicTable.getCoeff1(delayoffset)
|
|
+ out2*gCubicTable.getCoeff2(delayoffset)
|
|
+ out3*gCubicTable.getCoeff3(delayoffset)};
|
|
const float fade0{densityGain - densityStep*fadeCount};
|
|
const float fade1{densityStep*fadeCount};
|
|
fadeCount += 1.0f;
|
|
tempSamples[j][i] = out*midGain +
|
|
in_delay.Line[late_delay_tap0++][j]*fade0 +
|
|
in_delay.Line[late_delay_tap1++][j]*fade1;
|
|
++i;
|
|
} while(--td);
|
|
}
|
|
mLateDelayTap[j][0] = mLateDelayTap[j][1];
|
|
|
|
mLate.T60[j].process({tempSamples[j].data(), todo});
|
|
}
|
|
|
|
/* Apply a vector all-pass to improve micro-surface diffusion, and
|
|
* write out the results for mixing.
|
|
*/
|
|
mLate.VecAp.process(tempSamples, offset, mixX, mixY, todo);
|
|
for(size_t j{0u};j < NUM_LINES;j++)
|
|
std::copy_n(tempSamples[j].begin(), todo, outSamples[j].begin()+base);
|
|
|
|
/* Finally, scatter and bounce the results to refeed the feedback buffer. */
|
|
VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, tempSamples, todo);
|
|
|
|
base += todo;
|
|
offset += todo;
|
|
}
|
|
}
|
|
|
|
void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
|
|
{
|
|
const size_t offset{mOffset};
|
|
|
|
ASSUME(samplesToDo > 0);
|
|
|
|
auto &oldpipeline = mPipelines[mCurrentPipeline^1];
|
|
auto &pipeline = mPipelines[mCurrentPipeline];
|
|
|
|
if(mPipelineState >= Fading)
|
|
{
|
|
/* Convert B-Format to A-Format for processing. */
|
|
const size_t numInput{minz(samplesIn.size(), NUM_LINES)};
|
|
const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo};
|
|
for(size_t c{0u};c < NUM_LINES;c++)
|
|
{
|
|
std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
|
|
for(size_t i{0};i < numInput;++i)
|
|
{
|
|
const float gain{B2A[c][i]};
|
|
const float *RESTRICT input{al::assume_aligned<16>(samplesIn[i].data())};
|
|
|
|
auto mix_sample = [gain](const float sample, const float in) noexcept -> float
|
|
{ return sample + in*gain; };
|
|
std::transform(tmpspan.begin(), tmpspan.end(), input, tmpspan.begin(),
|
|
mix_sample);
|
|
}
|
|
|
|
/* Band-pass the incoming samples and feed the initial delay line. */
|
|
auto&& filter = DualBiquad{pipeline.mFilter[c].Lp, pipeline.mFilter[c].Hp};
|
|
filter.process(tmpspan, tmpspan.data());
|
|
pipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo);
|
|
}
|
|
if(mPipelineState == Fading)
|
|
{
|
|
/* Give the old pipeline silence if it's still fading out. */
|
|
for(size_t c{0u};c < NUM_LINES;c++)
|
|
{
|
|
std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
|
|
|
|
auto&& filter = DualBiquad{oldpipeline.mFilter[c].Lp, oldpipeline.mFilter[c].Hp};
|
|
filter.process(tmpspan, tmpspan.data());
|
|
oldpipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* At the start of a fade, fade in input for the current pipeline, and
|
|
* fade out input for the old pipeline.
|
|
*/
|
|
const size_t numInput{minz(samplesIn.size(), NUM_LINES)};
|
|
const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo};
|
|
const float fadeStep{1.0f / static_cast<float>(samplesToDo)};
|
|
|
|
for(size_t c{0u};c < NUM_LINES;c++)
|
|
{
|
|
std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
|
|
for(size_t i{0};i < numInput;++i)
|
|
{
|
|
const float gain{B2A[c][i]};
|
|
const float *RESTRICT input{al::assume_aligned<16>(samplesIn[i].data())};
|
|
|
|
auto mix_sample = [gain](const float sample, const float in) noexcept -> float
|
|
{ return sample + in*gain; };
|
|
std::transform(tmpspan.begin(), tmpspan.end(), input, tmpspan.begin(),
|
|
mix_sample);
|
|
}
|
|
float stepCount{0.0f};
|
|
for(float &sample : tmpspan)
|
|
{
|
|
stepCount += 1.0f;
|
|
sample *= stepCount*fadeStep;
|
|
}
|
|
|
|
auto&& filter = DualBiquad{pipeline.mFilter[c].Lp, pipeline.mFilter[c].Hp};
|
|
filter.process(tmpspan, tmpspan.data());
|
|
pipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo);
|
|
}
|
|
for(size_t c{0u};c < NUM_LINES;c++)
|
|
{
|
|
std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
|
|
for(size_t i{0};i < numInput;++i)
|
|
{
|
|
const float gain{B2A[c][i]};
|
|
const float *RESTRICT input{al::assume_aligned<16>(samplesIn[i].data())};
|
|
|
|
auto mix_sample = [gain](const float sample, const float in) noexcept -> float
|
|
{ return sample + in*gain; };
|
|
std::transform(tmpspan.begin(), tmpspan.end(), input, tmpspan.begin(),
|
|
mix_sample);
|
|
}
|
|
float stepCount{0.0f};
|
|
for(float &sample : tmpspan)
|
|
{
|
|
stepCount += 1.0f;
|
|
sample *= 1.0f - stepCount*fadeStep;
|
|
}
|
|
|
|
auto&& filter = DualBiquad{oldpipeline.mFilter[c].Lp, oldpipeline.mFilter[c].Hp};
|
|
filter.process(tmpspan, tmpspan.data());
|
|
oldpipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo);
|
|
}
|
|
mPipelineState = Fading;
|
|
}
|
|
|
|
/* Process reverb for these samples. and mix them to the output. */
|
|
pipeline.processEarly(offset, samplesToDo, mTempSamples, mEarlySamples);
|
|
pipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples);
|
|
mixOut(pipeline, samplesOut, samplesToDo);
|
|
|
|
if(mPipelineState != Normal)
|
|
{
|
|
if(mPipelineState == Cleanup)
|
|
{
|
|
size_t numSamples{mSampleBuffer.size()/2};
|
|
size_t pipelineOffset{numSamples * (mCurrentPipeline^1)};
|
|
std::fill_n(mSampleBuffer.data()+pipelineOffset, numSamples,
|
|
decltype(mSampleBuffer)::value_type{});
|
|
|
|
oldpipeline.clear();
|
|
mPipelineState = Normal;
|
|
}
|
|
else
|
|
{
|
|
/* If this is the final mix for this old pipeline, set the target
|
|
* gains to 0 to ensure a complete fade out, and set the state to
|
|
* Cleanup so the next invocation cleans up the delay buffers and
|
|
* filters.
|
|
*/
|
|
if(samplesToDo >= oldpipeline.mFadeSampleCount)
|
|
{
|
|
for(auto &gains : oldpipeline.mEarly.TargetGains)
|
|
std::fill(std::begin(gains), std::end(gains), 0.0f);
|
|
for(auto &gains : oldpipeline.mLate.TargetGains)
|
|
std::fill(std::begin(gains), std::end(gains), 0.0f);
|
|
oldpipeline.mFadeSampleCount = 0;
|
|
mPipelineState = Cleanup;
|
|
}
|
|
else
|
|
oldpipeline.mFadeSampleCount -= samplesToDo;
|
|
|
|
/* Process the old reverb for these samples. */
|
|
oldpipeline.processEarly(offset, samplesToDo, mTempSamples, mEarlySamples);
|
|
oldpipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples);
|
|
mixOut(oldpipeline, samplesOut, samplesToDo);
|
|
}
|
|
}
|
|
|
|
mOffset = offset + samplesToDo;
|
|
}
|
|
|
|
|
|
struct ReverbStateFactory final : public EffectStateFactory {
|
|
al::intrusive_ptr<EffectState> create() override
|
|
{ return al::intrusive_ptr<EffectState>{new ReverbState{}}; }
|
|
};
|
|
|
|
struct StdReverbStateFactory final : public EffectStateFactory {
|
|
al::intrusive_ptr<EffectState> create() override
|
|
{ return al::intrusive_ptr<EffectState>{new ReverbState{}}; }
|
|
};
|
|
|
|
} // namespace
|
|
|
|
EffectStateFactory *ReverbStateFactory_getFactory()
|
|
{
|
|
static ReverbStateFactory ReverbFactory{};
|
|
return &ReverbFactory;
|
|
}
|
|
|
|
EffectStateFactory *StdReverbStateFactory_getFactory()
|
|
{
|
|
static StdReverbStateFactory ReverbFactory{};
|
|
return &ReverbFactory;
|
|
}
|