mirror of https://github.com/axmolengine/axmol.git
433 lines
13 KiB
C
433 lines
13 KiB
C
/* Copyright (c) 2007 Scott Lembcke
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "chipmunk_private.h"
|
|
|
|
//MARK: Post Step Callback Functions
|
|
|
|
typedef struct cpPostStepCallback {
|
|
cpPostStepFunc func;
|
|
void *key;
|
|
void *data;
|
|
} cpPostStepCallback;
|
|
|
|
void *
|
|
cpSpaceGetPostStepData(cpSpace *space, void *key)
|
|
{
|
|
cpArray *arr = space->postStepCallbacks;
|
|
for(int i=0; i<arr->num; i++){
|
|
cpPostStepCallback *callback = (cpPostStepCallback *)arr->arr[i];
|
|
if(callback->key == key) return callback->data;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
cpSpaceAddPostStepCallback(cpSpace *space, cpPostStepFunc func, void *key, void *data)
|
|
{
|
|
cpAssertWarn(space->locked,
|
|
"Adding a post-step callback when the space is not locked is unnecessary. "
|
|
"Post-step callbacks will not called until the end of the next call to cpSpaceStep() or the next query.");
|
|
|
|
if(!cpSpaceGetPostStepData(space, key)){
|
|
cpPostStepCallback *callback = (cpPostStepCallback *)cpcalloc(1, sizeof(cpPostStepCallback));
|
|
callback->func = func;
|
|
callback->key = key;
|
|
callback->data = data;
|
|
|
|
cpArrayPush(space->postStepCallbacks, callback);
|
|
}
|
|
}
|
|
|
|
//MARK: Locking Functions
|
|
|
|
void
|
|
cpSpaceLock(cpSpace *space)
|
|
{
|
|
space->locked++;
|
|
}
|
|
|
|
void
|
|
cpSpaceUnlock(cpSpace *space, cpBool runPostStep)
|
|
{
|
|
space->locked--;
|
|
cpAssertHard(space->locked >= 0, "Internal Error: Space lock underflow.");
|
|
|
|
if(space->locked == 0 && runPostStep && !space->skipPostStep){
|
|
space->skipPostStep = cpTrue;
|
|
|
|
cpArray *waking = space->rousedBodies;
|
|
for(int i=0, count=waking->num; i<count; i++){
|
|
cpSpaceActivateBody(space, (cpBody *)waking->arr[i]);
|
|
waking->arr[i] = NULL;
|
|
}
|
|
|
|
cpArray *arr = space->postStepCallbacks;
|
|
for(int i=0; i<arr->num; i++){
|
|
cpPostStepCallback *callback = (cpPostStepCallback *)arr->arr[i];
|
|
cpPostStepFunc func = callback->func;
|
|
|
|
// Mark the func as NULL in case calling it calls cpSpaceRunPostStepCallbacks() again.
|
|
callback->func = NULL;
|
|
if(func) func(space, callback->key, callback->data);
|
|
|
|
arr->arr[i] = NULL;
|
|
cpfree(callback);
|
|
}
|
|
|
|
waking->num = 0;
|
|
arr->num = 0;
|
|
space->skipPostStep = cpFalse;
|
|
}
|
|
}
|
|
|
|
//MARK: Contact Buffer Functions
|
|
|
|
struct cpContactBufferHeader {
|
|
cpTimestamp stamp;
|
|
cpContactBufferHeader *next;
|
|
unsigned int numContacts;
|
|
};
|
|
|
|
#define CP_CONTACTS_BUFFER_SIZE ((CP_BUFFER_BYTES - sizeof(cpContactBufferHeader))/sizeof(cpContact))
|
|
typedef struct cpContactBuffer {
|
|
cpContactBufferHeader header;
|
|
cpContact contacts[CP_CONTACTS_BUFFER_SIZE];
|
|
} cpContactBuffer;
|
|
|
|
static cpContactBufferHeader *
|
|
cpSpaceAllocContactBuffer(cpSpace *space)
|
|
{
|
|
cpContactBuffer *buffer = (cpContactBuffer *)cpcalloc(1, sizeof(cpContactBuffer));
|
|
cpArrayPush(space->allocatedBuffers, buffer);
|
|
return (cpContactBufferHeader *)buffer;
|
|
}
|
|
|
|
static cpContactBufferHeader *
|
|
cpContactBufferHeaderInit(cpContactBufferHeader *header, cpTimestamp stamp, cpContactBufferHeader *splice)
|
|
{
|
|
header->stamp = stamp;
|
|
header->next = (splice ? splice->next : header);
|
|
header->numContacts = 0;
|
|
|
|
return header;
|
|
}
|
|
|
|
void
|
|
cpSpacePushFreshContactBuffer(cpSpace *space)
|
|
{
|
|
cpTimestamp stamp = space->stamp;
|
|
|
|
cpContactBufferHeader *head = space->contactBuffersHead;
|
|
|
|
if(!head){
|
|
// No buffers have been allocated, make one
|
|
space->contactBuffersHead = cpContactBufferHeaderInit(cpSpaceAllocContactBuffer(space), stamp, NULL);
|
|
} else if(stamp - head->next->stamp > space->collisionPersistence){
|
|
// The tail buffer is available, rotate the ring
|
|
cpContactBufferHeader *tail = head->next;
|
|
space->contactBuffersHead = cpContactBufferHeaderInit(tail, stamp, tail);
|
|
} else {
|
|
// Allocate a new buffer and push it into the ring
|
|
cpContactBufferHeader *buffer = cpContactBufferHeaderInit(cpSpaceAllocContactBuffer(space), stamp, head);
|
|
space->contactBuffersHead = head->next = buffer;
|
|
}
|
|
}
|
|
|
|
|
|
cpContact *
|
|
cpContactBufferGetArray(cpSpace *space)
|
|
{
|
|
if(space->contactBuffersHead->numContacts + CP_MAX_CONTACTS_PER_ARBITER > CP_CONTACTS_BUFFER_SIZE){
|
|
// contact buffer could overflow on the next collision, push a fresh one.
|
|
cpSpacePushFreshContactBuffer(space);
|
|
}
|
|
|
|
cpContactBufferHeader *head = space->contactBuffersHead;
|
|
return ((cpContactBuffer *)head)->contacts + head->numContacts;
|
|
}
|
|
|
|
void
|
|
cpSpacePushContacts(cpSpace *space, int count)
|
|
{
|
|
cpAssertHard(count <= CP_MAX_CONTACTS_PER_ARBITER, "Internal Error: Contact buffer overflow!");
|
|
space->contactBuffersHead->numContacts += count;
|
|
}
|
|
|
|
static void
|
|
cpSpacePopContacts(cpSpace *space, int count){
|
|
space->contactBuffersHead->numContacts -= count;
|
|
}
|
|
|
|
//MARK: Collision Detection Functions
|
|
|
|
static void *
|
|
cpSpaceArbiterSetTrans(cpShape **shapes, cpSpace *space)
|
|
{
|
|
if(space->pooledArbiters->num == 0){
|
|
// arbiter pool is exhausted, make more
|
|
int count = CP_BUFFER_BYTES/sizeof(cpArbiter);
|
|
cpAssertHard(count, "Internal Error: Buffer size too small.");
|
|
|
|
cpArbiter *buffer = (cpArbiter *)cpcalloc(1, CP_BUFFER_BYTES);
|
|
cpArrayPush(space->allocatedBuffers, buffer);
|
|
|
|
for(int i=0; i<count; i++) cpArrayPush(space->pooledArbiters, buffer + i);
|
|
}
|
|
|
|
return cpArbiterInit((cpArbiter *)cpArrayPop(space->pooledArbiters), shapes[0], shapes[1]);
|
|
}
|
|
|
|
static inline cpBool
|
|
queryReject(cpShape *a, cpShape *b)
|
|
{
|
|
return (
|
|
// BBoxes must overlap
|
|
!cpBBIntersects(a->bb, b->bb)
|
|
// Don't collide shapes attached to the same body.
|
|
|| a->body == b->body
|
|
// Don't collide objects in the same non-zero group
|
|
|| (a->group && a->group == b->group)
|
|
// Don't collide objects that don't share at least on layer.
|
|
|| !(a->layers & b->layers)
|
|
// Don't collide infinite mass objects
|
|
|| (a->body->m == INFINITY && b->body->m == INFINITY)
|
|
);
|
|
}
|
|
|
|
// Callback from the spatial hash.
|
|
void
|
|
cpSpaceCollideShapes(cpShape *a, cpShape *b, cpSpace *space)
|
|
{
|
|
// Reject any of the simple cases
|
|
if(queryReject(a,b)) return;
|
|
|
|
cpCollisionHandler *handler = cpSpaceLookupHandler(space, a->collision_type, b->collision_type);
|
|
|
|
cpBool sensor = a->sensor || b->sensor;
|
|
if(sensor && handler == &cpDefaultCollisionHandler) return;
|
|
|
|
// Shape 'a' should have the lower shape type. (required by cpCollideShapes() )
|
|
if(a->klass->type > b->klass->type){
|
|
cpShape *temp = a;
|
|
a = b;
|
|
b = temp;
|
|
}
|
|
|
|
// Narrow-phase collision detection.
|
|
cpContact *contacts = cpContactBufferGetArray(space);
|
|
int numContacts = cpCollideShapes(a, b, contacts);
|
|
if(!numContacts) return; // Shapes are not colliding.
|
|
cpSpacePushContacts(space, numContacts);
|
|
|
|
// Get an arbiter from space->arbiterSet for the two shapes.
|
|
// This is where the persistant contact magic comes from.
|
|
cpShape *shape_pair[] = {a, b};
|
|
cpHashValue arbHashID = CP_HASH_PAIR((cpHashValue)a, (cpHashValue)b);
|
|
cpArbiter *arb = (cpArbiter *)cpHashSetInsert(space->cachedArbiters, arbHashID, shape_pair, space, (cpHashSetTransFunc)cpSpaceArbiterSetTrans);
|
|
cpArbiterUpdate(arb, contacts, numContacts, handler, a, b);
|
|
|
|
// Call the begin function first if it's the first step
|
|
if(arb->state == cpArbiterStateFirstColl && !handler->begin(arb, space, handler->data)){
|
|
cpArbiterIgnore(arb); // permanently ignore the collision until separation
|
|
}
|
|
|
|
if(
|
|
// Ignore the arbiter if it has been flagged
|
|
(arb->state != cpArbiterStateIgnore) &&
|
|
// Call preSolve
|
|
handler->preSolve(arb, space, handler->data) &&
|
|
// Process, but don't add collisions for sensors.
|
|
!sensor
|
|
){
|
|
cpArrayPush(space->arbiters, arb);
|
|
} else {
|
|
cpSpacePopContacts(space, numContacts);
|
|
|
|
arb->contacts = NULL;
|
|
arb->numContacts = 0;
|
|
|
|
// Normally arbiters are set as used after calling the post-solve callback.
|
|
// However, post-solve callbacks are not called for sensors or arbiters rejected from pre-solve.
|
|
if(arb->state != cpArbiterStateIgnore) arb->state = cpArbiterStateNormal;
|
|
}
|
|
|
|
// Time stamp the arbiter so we know it was used recently.
|
|
arb->stamp = space->stamp;
|
|
}
|
|
|
|
// Hashset filter func to throw away old arbiters.
|
|
cpBool
|
|
cpSpaceArbiterSetFilter(cpArbiter *arb, cpSpace *space)
|
|
{
|
|
cpTimestamp ticks = space->stamp - arb->stamp;
|
|
|
|
cpBody *a = arb->body_a, *b = arb->body_b;
|
|
|
|
// TODO should make an arbiter state for this so it doesn't require filtering arbiters for dangling body pointers on body removal.
|
|
// Preserve arbiters on sensors and rejected arbiters for sleeping objects.
|
|
// This prevents errant separate callbacks from happenening.
|
|
if(
|
|
(cpBodyIsStatic(a) || cpBodyIsSleeping(a)) &&
|
|
(cpBodyIsStatic(b) || cpBodyIsSleeping(b))
|
|
){
|
|
return cpTrue;
|
|
}
|
|
|
|
// Arbiter was used last frame, but not this one
|
|
if(ticks >= 1 && arb->state != cpArbiterStateCached){
|
|
arb->state = cpArbiterStateCached;
|
|
cpArbiterCallSeparate(arb, space);
|
|
}
|
|
|
|
if(ticks >= space->collisionPersistence){
|
|
arb->contacts = NULL;
|
|
arb->numContacts = 0;
|
|
|
|
cpArrayPush(space->pooledArbiters, arb);
|
|
return cpFalse;
|
|
}
|
|
|
|
return cpTrue;
|
|
}
|
|
|
|
//MARK: All Important cpSpaceStep() Function
|
|
|
|
void
|
|
cpShapeUpdateFunc(cpShape *shape, void *unused)
|
|
{
|
|
cpBody *body = shape->body;
|
|
cpShapeUpdate(shape, body->p, body->rot);
|
|
}
|
|
|
|
void
|
|
cpSpaceStep(cpSpace *space, cpFloat dt)
|
|
{
|
|
// don't step if the timestep is 0!
|
|
if(dt == 0.0f) return;
|
|
|
|
space->stamp++;
|
|
|
|
cpFloat prev_dt = space->curr_dt;
|
|
space->curr_dt = dt;
|
|
|
|
cpArray *bodies = space->bodies;
|
|
cpArray *constraints = space->constraints;
|
|
cpArray *arbiters = space->arbiters;
|
|
|
|
// Reset and empty the arbiter lists.
|
|
for(int i=0; i<arbiters->num; i++){
|
|
cpArbiter *arb = (cpArbiter *)arbiters->arr[i];
|
|
arb->state = cpArbiterStateNormal;
|
|
|
|
// If both bodies are awake, unthread the arbiter from the contact graph.
|
|
if(!cpBodyIsSleeping(arb->body_a) && !cpBodyIsSleeping(arb->body_b)){
|
|
cpArbiterUnthread(arb);
|
|
}
|
|
}
|
|
arbiters->num = 0;
|
|
|
|
cpSpaceLock(space); {
|
|
// Integrate positions
|
|
for(int i=0; i<bodies->num; i++){
|
|
cpBody *body = (cpBody *)bodies->arr[i];
|
|
body->position_func(body, dt);
|
|
}
|
|
|
|
// Find colliding pairs.
|
|
cpSpacePushFreshContactBuffer(space);
|
|
cpSpatialIndexEach(space->activeShapes, (cpSpatialIndexIteratorFunc)cpShapeUpdateFunc, NULL);
|
|
cpSpatialIndexReindexQuery(space->activeShapes, (cpSpatialIndexQueryFunc)cpSpaceCollideShapes, space);
|
|
} cpSpaceUnlock(space, cpFalse);
|
|
|
|
// Rebuild the contact graph (and detect sleeping components if sleeping is enabled)
|
|
cpSpaceProcessComponents(space, dt);
|
|
|
|
cpSpaceLock(space); {
|
|
// Clear out old cached arbiters and call separate callbacks
|
|
cpHashSetFilter(space->cachedArbiters, (cpHashSetFilterFunc)cpSpaceArbiterSetFilter, space);
|
|
|
|
// Prestep the arbiters and constraints.
|
|
cpFloat slop = space->collisionSlop;
|
|
cpFloat biasCoef = 1.0f - cpfpow(space->collisionBias, dt);
|
|
for(int i=0; i<arbiters->num; i++){
|
|
cpArbiterPreStep((cpArbiter *)arbiters->arr[i], dt, slop, biasCoef);
|
|
}
|
|
|
|
for(int i=0; i<constraints->num; i++){
|
|
cpConstraint *constraint = (cpConstraint *)constraints->arr[i];
|
|
|
|
cpConstraintPreSolveFunc preSolve = constraint->preSolve;
|
|
if(preSolve) preSolve(constraint, space);
|
|
|
|
constraint->klass->preStep(constraint, dt);
|
|
}
|
|
|
|
// Integrate velocities.
|
|
cpFloat damping = cpfpow(space->damping, dt);
|
|
cpVect gravity = space->gravity;
|
|
for(int i=0; i<bodies->num; i++){
|
|
cpBody *body = (cpBody *)bodies->arr[i];
|
|
body->velocity_func(body, gravity, damping, dt);
|
|
}
|
|
|
|
// Apply cached impulses
|
|
cpFloat dt_coef = (prev_dt == 0.0f ? 0.0f : dt/prev_dt);
|
|
for(int i=0; i<arbiters->num; i++){
|
|
cpArbiterApplyCachedImpulse((cpArbiter *)arbiters->arr[i], dt_coef);
|
|
}
|
|
|
|
for(int i=0; i<constraints->num; i++){
|
|
cpConstraint *constraint = (cpConstraint *)constraints->arr[i];
|
|
constraint->klass->applyCachedImpulse(constraint, dt_coef);
|
|
}
|
|
|
|
// Run the impulse solver.
|
|
for(int i=0; i<space->iterations; i++){
|
|
for(int j=0; j<arbiters->num; j++){
|
|
cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j]);
|
|
}
|
|
|
|
for(int j=0; j<constraints->num; j++){
|
|
cpConstraint *constraint = (cpConstraint *)constraints->arr[j];
|
|
constraint->klass->applyImpulse(constraint);
|
|
}
|
|
}
|
|
|
|
// Run the constraint post-solve callbacks
|
|
for(int i=0; i<constraints->num; i++){
|
|
cpConstraint *constraint = (cpConstraint *)constraints->arr[i];
|
|
|
|
cpConstraintPostSolveFunc postSolve = constraint->postSolve;
|
|
if(postSolve) postSolve(constraint, space);
|
|
}
|
|
|
|
// run the post-solve callbacks
|
|
for(int i=0; i<arbiters->num; i++){
|
|
cpArbiter *arb = (cpArbiter *) arbiters->arr[i];
|
|
|
|
cpCollisionHandler *handler = arb->handler;
|
|
handler->postSolve(arb, space, handler->data);
|
|
}
|
|
} cpSpaceUnlock(space, cpTrue);
|
|
}
|