axmol/Box2D/Dynamics/Joints/b2WeldJoint.cpp

220 lines
6.4 KiB
C++

/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Dynamics/Joints/b2WeldJoint.h>
#include <Box2D/Dynamics/b2Body.h>
#include <Box2D/Dynamics/b2TimeStep.h>
// Point-to-point constraint
// C = p2 - p1
// Cdot = v2 - v1
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
// J = [-I -r1_skew I r2_skew ]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)
// Angle constraint
// C = angle2 - angle1 - referenceAngle
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
// K = invI1 + invI2
void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
{
bodyA = bA;
bodyB = bB;
localAnchorA = bodyA->GetLocalPoint(anchor);
localAnchorB = bodyB->GetLocalPoint(anchor);
referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
}
b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def)
: b2Joint(def)
{
m_localAnchorA = def->localAnchorA;
m_localAnchorB = def->localAnchorB;
m_referenceAngle = def->referenceAngle;
m_impulse.SetZero();
}
void b2WeldJoint::InitVelocityConstraints(const b2TimeStep& step)
{
b2Body* bA = m_bodyA;
b2Body* bB = m_bodyB;
// Compute the effective mass matrix.
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
// J = [-I -r1_skew I r2_skew]
// [ 0 -1 0 1]
// r_skew = [-ry; rx]
// Matlab
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
float32 mA = bA->m_invMass, mB = bB->m_invMass;
float32 iA = bA->m_invI, iB = bB->m_invI;
m_mass.col1.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
m_mass.col2.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
m_mass.col3.x = -rA.y * iA - rB.y * iB;
m_mass.col1.y = m_mass.col2.x;
m_mass.col2.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
m_mass.col3.y = rA.x * iA + rB.x * iB;
m_mass.col1.z = m_mass.col3.x;
m_mass.col2.z = m_mass.col3.y;
m_mass.col3.z = iA + iB;
if (step.warmStarting)
{
// Scale impulses to support a variable time step.
m_impulse *= step.dtRatio;
b2Vec2 P(m_impulse.x, m_impulse.y);
bA->m_linearVelocity -= mA * P;
bA->m_angularVelocity -= iA * (b2Cross(rA, P) + m_impulse.z);
bB->m_linearVelocity += mB * P;
bB->m_angularVelocity += iB * (b2Cross(rB, P) + m_impulse.z);
}
else
{
m_impulse.SetZero();
}
}
void b2WeldJoint::SolveVelocityConstraints(const b2TimeStep& step)
{
B2_NOT_USED(step);
b2Body* bA = m_bodyA;
b2Body* bB = m_bodyB;
b2Vec2 vA = bA->m_linearVelocity;
float32 wA = bA->m_angularVelocity;
b2Vec2 vB = bB->m_linearVelocity;
float32 wB = bB->m_angularVelocity;
float32 mA = bA->m_invMass, mB = bB->m_invMass;
float32 iA = bA->m_invI, iB = bB->m_invI;
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
// Solve point-to-point constraint
b2Vec2 Cdot1 = vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA);
float32 Cdot2 = wB - wA;
b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);
b2Vec3 impulse = m_mass.Solve33(-Cdot);
m_impulse += impulse;
b2Vec2 P(impulse.x, impulse.y);
vA -= mA * P;
wA -= iA * (b2Cross(rA, P) + impulse.z);
vB += mB * P;
wB += iB * (b2Cross(rB, P) + impulse.z);
bA->m_linearVelocity = vA;
bA->m_angularVelocity = wA;
bB->m_linearVelocity = vB;
bB->m_angularVelocity = wB;
}
bool b2WeldJoint::SolvePositionConstraints(float32 baumgarte)
{
B2_NOT_USED(baumgarte);
b2Body* bA = m_bodyA;
b2Body* bB = m_bodyB;
float32 mA = bA->m_invMass, mB = bB->m_invMass;
float32 iA = bA->m_invI, iB = bB->m_invI;
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
b2Vec2 C1 = bB->m_sweep.c + rB - bA->m_sweep.c - rA;
float32 C2 = bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle;
// Handle large detachment.
const float32 k_allowedStretch = 10.0f * b2_linearSlop;
float32 positionError = C1.Length();
float32 angularError = b2Abs(C2);
if (positionError > k_allowedStretch)
{
iA *= 1.0f;
iB *= 1.0f;
}
m_mass.col1.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
m_mass.col2.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
m_mass.col3.x = -rA.y * iA - rB.y * iB;
m_mass.col1.y = m_mass.col2.x;
m_mass.col2.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
m_mass.col3.y = rA.x * iA + rB.x * iB;
m_mass.col1.z = m_mass.col3.x;
m_mass.col2.z = m_mass.col3.y;
m_mass.col3.z = iA + iB;
b2Vec3 C(C1.x, C1.y, C2);
b2Vec3 impulse = m_mass.Solve33(-C);
b2Vec2 P(impulse.x, impulse.y);
bA->m_sweep.c -= mA * P;
bA->m_sweep.a -= iA * (b2Cross(rA, P) + impulse.z);
bB->m_sweep.c += mB * P;
bB->m_sweep.a += iB * (b2Cross(rB, P) + impulse.z);
bA->SynchronizeTransform();
bB->SynchronizeTransform();
return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
}
b2Vec2 b2WeldJoint::GetAnchorA() const
{
return m_bodyA->GetWorldPoint(m_localAnchorA);
}
b2Vec2 b2WeldJoint::GetAnchorB() const
{
return m_bodyB->GetWorldPoint(m_localAnchorB);
}
b2Vec2 b2WeldJoint::GetReactionForce(float32 inv_dt) const
{
b2Vec2 P(m_impulse.x, m_impulse.y);
return inv_dt * P;
}
float32 b2WeldJoint::GetReactionTorque(float32 inv_dt) const
{
return inv_dt * m_impulse.z;
}