mirror of https://github.com/axmolengine/axmol.git
382 lines
12 KiB
C
382 lines
12 KiB
C
/* Copyright (c) 2007 Scott Lembcke
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
//#include <stdio.h>
|
|
|
|
#include "chipmunk_private.h"
|
|
|
|
typedef int (*collisionFunc)(const cpShape *, const cpShape *, cpContact *);
|
|
|
|
// Add contact points for circle to circle collisions.
|
|
// Used by several collision tests.
|
|
static int
|
|
circle2circleQuery(const cpVect p1, const cpVect p2, const cpFloat r1, const cpFloat r2, cpContact *con)
|
|
{
|
|
cpFloat mindist = r1 + r2;
|
|
cpVect delta = cpvsub(p2, p1);
|
|
cpFloat distsq = cpvlengthsq(delta);
|
|
if(distsq >= mindist*mindist) return 0;
|
|
|
|
cpFloat dist = cpfsqrt(distsq);
|
|
|
|
// Allocate and initialize the contact.
|
|
cpContactInit(
|
|
con,
|
|
cpvadd(p1, cpvmult(delta, 0.5f + (r1 - 0.5f*mindist)/(dist ? dist : INFINITY))),
|
|
(dist ? cpvmult(delta, 1.0f/dist) : cpv(1.0f, 0.0f)),
|
|
dist - mindist,
|
|
0
|
|
);
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Collide circle shapes.
|
|
static int
|
|
circle2circle(const cpShape *shape1, const cpShape *shape2, cpContact *arr)
|
|
{
|
|
cpCircleShape *circ1 = (cpCircleShape *)shape1; //TODO
|
|
cpCircleShape *circ2 = (cpCircleShape *)shape2;
|
|
|
|
return circle2circleQuery(circ1->tc, circ2->tc, circ1->r, circ2->r, arr);
|
|
}
|
|
|
|
static int
|
|
circle2segment(const cpCircleShape *circleShape, const cpSegmentShape *segmentShape, cpContact *con)
|
|
{
|
|
cpVect seg_a = segmentShape->ta;
|
|
cpVect seg_b = segmentShape->tb;
|
|
cpVect center = circleShape->tc;
|
|
|
|
cpVect seg_delta = cpvsub(seg_b, seg_a);
|
|
cpFloat closest_t = cpfclamp01(cpvdot(seg_delta, cpvsub(center, seg_a))/cpvlengthsq(seg_delta));
|
|
cpVect closest = cpvadd(seg_a, cpvmult(seg_delta, closest_t));
|
|
|
|
if(circle2circleQuery(center, closest, circleShape->r, segmentShape->r, con)){
|
|
cpVect n = con[0].n;
|
|
|
|
// Reject endcap collisions if tangents are provided.
|
|
if(
|
|
(closest_t == 0.0f && cpvdot(n, segmentShape->a_tangent) < 0.0) ||
|
|
(closest_t == 1.0f && cpvdot(n, segmentShape->b_tangent) < 0.0)
|
|
) return 0;
|
|
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Helper function for working with contact buffers
|
|
// This used to malloc/realloc memory on the fly but was repurposed.
|
|
static cpContact *
|
|
nextContactPoint(cpContact *arr, int *numPtr)
|
|
{
|
|
int index = *numPtr;
|
|
|
|
if(index < CP_MAX_CONTACTS_PER_ARBITER){
|
|
(*numPtr) = index + 1;
|
|
return &arr[index];
|
|
} else {
|
|
return &arr[CP_MAX_CONTACTS_PER_ARBITER - 1];
|
|
}
|
|
}
|
|
|
|
// Find the minimum separating axis for the give poly and axis list.
|
|
static inline int
|
|
findMSA(const cpPolyShape *poly, const cpPolyShapeAxis *axes, const int num, cpFloat *min_out)
|
|
{
|
|
int min_index = 0;
|
|
cpFloat min = cpPolyShapeValueOnAxis(poly, axes->n, axes->d);
|
|
if(min > 0.0f) return -1;
|
|
|
|
for(int i=1; i<num; i++){
|
|
cpFloat dist = cpPolyShapeValueOnAxis(poly, axes[i].n, axes[i].d);
|
|
if(dist > 0.0f) {
|
|
return -1;
|
|
} else if(dist > min){
|
|
min = dist;
|
|
min_index = i;
|
|
}
|
|
}
|
|
|
|
(*min_out) = min;
|
|
return min_index;
|
|
}
|
|
|
|
// Add contacts for probably penetrating vertexes.
|
|
// This handles the degenerate case where an overlap was detected, but no vertexes fall inside
|
|
// the opposing polygon. (like a star of david)
|
|
static inline int
|
|
findVertsFallback(cpContact *arr, const cpPolyShape *poly1, const cpPolyShape *poly2, const cpVect n, const cpFloat dist)
|
|
{
|
|
int num = 0;
|
|
|
|
for(int i=0; i<poly1->numVerts; i++){
|
|
cpVect v = poly1->tVerts[i];
|
|
if(cpPolyShapeContainsVertPartial(poly2, v, cpvneg(n)))
|
|
cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i));
|
|
}
|
|
|
|
for(int i=0; i<poly2->numVerts; i++){
|
|
cpVect v = poly2->tVerts[i];
|
|
if(cpPolyShapeContainsVertPartial(poly1, v, n))
|
|
cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i));
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
// Add contacts for penetrating vertexes.
|
|
static inline int
|
|
findVerts(cpContact *arr, const cpPolyShape *poly1, const cpPolyShape *poly2, const cpVect n, const cpFloat dist)
|
|
{
|
|
int num = 0;
|
|
|
|
for(int i=0; i<poly1->numVerts; i++){
|
|
cpVect v = poly1->tVerts[i];
|
|
if(cpPolyShapeContainsVert(poly2, v))
|
|
cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i));
|
|
}
|
|
|
|
for(int i=0; i<poly2->numVerts; i++){
|
|
cpVect v = poly2->tVerts[i];
|
|
if(cpPolyShapeContainsVert(poly1, v))
|
|
cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i));
|
|
}
|
|
|
|
return (num ? num : findVertsFallback(arr, poly1, poly2, n, dist));
|
|
}
|
|
|
|
// Collide poly shapes together.
|
|
static int
|
|
poly2poly(const cpShape *shape1, const cpShape *shape2, cpContact *arr)
|
|
{
|
|
cpPolyShape *poly1 = (cpPolyShape *)shape1;
|
|
cpPolyShape *poly2 = (cpPolyShape *)shape2;
|
|
|
|
cpFloat min1;
|
|
int mini1 = findMSA(poly2, poly1->tAxes, poly1->numVerts, &min1);
|
|
if(mini1 == -1) return 0;
|
|
|
|
cpFloat min2;
|
|
int mini2 = findMSA(poly1, poly2->tAxes, poly2->numVerts, &min2);
|
|
if(mini2 == -1) return 0;
|
|
|
|
// There is overlap, find the penetrating verts
|
|
if(min1 > min2)
|
|
return findVerts(arr, poly1, poly2, poly1->tAxes[mini1].n, min1);
|
|
else
|
|
return findVerts(arr, poly1, poly2, cpvneg(poly2->tAxes[mini2].n), min2);
|
|
}
|
|
|
|
// Like cpPolyValueOnAxis(), but for segments.
|
|
static inline cpFloat
|
|
segValueOnAxis(const cpSegmentShape *seg, const cpVect n, const cpFloat d)
|
|
{
|
|
cpFloat a = cpvdot(n, seg->ta) - seg->r;
|
|
cpFloat b = cpvdot(n, seg->tb) - seg->r;
|
|
return cpfmin(a, b) - d;
|
|
}
|
|
|
|
// Identify vertexes that have penetrated the segment.
|
|
static inline void
|
|
findPointsBehindSeg(cpContact *arr, int *num, const cpSegmentShape *seg, const cpPolyShape *poly, const cpFloat pDist, const cpFloat coef)
|
|
{
|
|
cpFloat dta = cpvcross(seg->tn, seg->ta);
|
|
cpFloat dtb = cpvcross(seg->tn, seg->tb);
|
|
cpVect n = cpvmult(seg->tn, coef);
|
|
|
|
for(int i=0; i<poly->numVerts; i++){
|
|
cpVect v = poly->tVerts[i];
|
|
if(cpvdot(v, n) < cpvdot(seg->tn, seg->ta)*coef + seg->r){
|
|
cpFloat dt = cpvcross(seg->tn, v);
|
|
if(dta >= dt && dt >= dtb){
|
|
cpContactInit(nextContactPoint(arr, num), v, n, pDist, CP_HASH_PAIR(poly->shape.hashid, i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This one is complicated and gross. Just don't go there...
|
|
// TODO: Comment me!
|
|
static int
|
|
seg2poly(const cpShape *shape1, const cpShape *shape2, cpContact *arr)
|
|
{
|
|
cpSegmentShape *seg = (cpSegmentShape *)shape1;
|
|
cpPolyShape *poly = (cpPolyShape *)shape2;
|
|
cpPolyShapeAxis *axes = poly->tAxes;
|
|
|
|
cpFloat segD = cpvdot(seg->tn, seg->ta);
|
|
cpFloat minNorm = cpPolyShapeValueOnAxis(poly, seg->tn, segD) - seg->r;
|
|
cpFloat minNeg = cpPolyShapeValueOnAxis(poly, cpvneg(seg->tn), -segD) - seg->r;
|
|
if(minNeg > 0.0f || minNorm > 0.0f) return 0;
|
|
|
|
int mini = 0;
|
|
cpFloat poly_min = segValueOnAxis(seg, axes->n, axes->d);
|
|
if(poly_min > 0.0f) return 0;
|
|
for(int i=0; i<poly->numVerts; i++){
|
|
cpFloat dist = segValueOnAxis(seg, axes[i].n, axes[i].d);
|
|
if(dist > 0.0f){
|
|
return 0;
|
|
} else if(dist > poly_min){
|
|
poly_min = dist;
|
|
mini = i;
|
|
}
|
|
}
|
|
|
|
int num = 0;
|
|
|
|
cpVect poly_n = cpvneg(axes[mini].n);
|
|
|
|
cpVect va = cpvadd(seg->ta, cpvmult(poly_n, seg->r));
|
|
cpVect vb = cpvadd(seg->tb, cpvmult(poly_n, seg->r));
|
|
if(cpPolyShapeContainsVert(poly, va))
|
|
cpContactInit(nextContactPoint(arr, &num), va, poly_n, poly_min, CP_HASH_PAIR(seg->shape.hashid, 0));
|
|
if(cpPolyShapeContainsVert(poly, vb))
|
|
cpContactInit(nextContactPoint(arr, &num), vb, poly_n, poly_min, CP_HASH_PAIR(seg->shape.hashid, 1));
|
|
|
|
// Floating point precision problems here.
|
|
// This will have to do for now.
|
|
// poly_min -= cp_collision_slop; // TODO is this needed anymore?
|
|
|
|
if(minNorm >= poly_min || minNeg >= poly_min) {
|
|
if(minNorm > minNeg)
|
|
findPointsBehindSeg(arr, &num, seg, poly, minNorm, 1.0f);
|
|
else
|
|
findPointsBehindSeg(arr, &num, seg, poly, minNeg, -1.0f);
|
|
}
|
|
|
|
// If no other collision points are found, try colliding endpoints.
|
|
if(num == 0){
|
|
cpVect poly_a = poly->tVerts[mini];
|
|
cpVect poly_b = poly->tVerts[(mini + 1)%poly->numVerts];
|
|
|
|
if(circle2circleQuery(seg->ta, poly_a, seg->r, 0.0f, arr)) return 1;
|
|
if(circle2circleQuery(seg->tb, poly_a, seg->r, 0.0f, arr)) return 1;
|
|
if(circle2circleQuery(seg->ta, poly_b, seg->r, 0.0f, arr)) return 1;
|
|
if(circle2circleQuery(seg->tb, poly_b, seg->r, 0.0f, arr)) return 1;
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
// This one is less gross, but still gross.
|
|
// TODO: Comment me!
|
|
static int
|
|
circle2poly(const cpShape *shape1, const cpShape *shape2, cpContact *con)
|
|
{
|
|
cpCircleShape *circ = (cpCircleShape *)shape1;
|
|
cpPolyShape *poly = (cpPolyShape *)shape2;
|
|
cpPolyShapeAxis *axes = poly->tAxes;
|
|
|
|
int mini = 0;
|
|
cpFloat min = cpvdot(axes->n, circ->tc) - axes->d - circ->r;
|
|
for(int i=0; i<poly->numVerts; i++){
|
|
cpFloat dist = cpvdot(axes[i].n, circ->tc) - axes[i].d - circ->r;
|
|
if(dist > 0.0f){
|
|
return 0;
|
|
} else if(dist > min) {
|
|
min = dist;
|
|
mini = i;
|
|
}
|
|
}
|
|
|
|
cpVect n = axes[mini].n;
|
|
cpVect a = poly->tVerts[mini];
|
|
cpVect b = poly->tVerts[(mini + 1)%poly->numVerts];
|
|
cpFloat dta = cpvcross(n, a);
|
|
cpFloat dtb = cpvcross(n, b);
|
|
cpFloat dt = cpvcross(n, circ->tc);
|
|
|
|
if(dt < dtb){
|
|
return circle2circleQuery(circ->tc, b, circ->r, 0.0f, con);
|
|
} else if(dt < dta) {
|
|
cpContactInit(
|
|
con,
|
|
cpvsub(circ->tc, cpvmult(n, circ->r + min/2.0f)),
|
|
cpvneg(n),
|
|
min,
|
|
0
|
|
);
|
|
|
|
return 1;
|
|
} else {
|
|
return circle2circleQuery(circ->tc, a, circ->r, 0.0f, con);
|
|
}
|
|
}
|
|
|
|
static const collisionFunc builtinCollisionFuncs[9] = {
|
|
circle2circle,
|
|
NULL,
|
|
NULL,
|
|
(collisionFunc)circle2segment,
|
|
NULL,
|
|
NULL,
|
|
circle2poly,
|
|
seg2poly,
|
|
poly2poly,
|
|
};
|
|
static const collisionFunc *colfuncs = builtinCollisionFuncs;
|
|
|
|
//static collisionFunc *colfuncs = NULL;
|
|
//
|
|
//static void
|
|
//addColFunc(const cpShapeType a, const cpShapeType b, const collisionFunc func)
|
|
//{
|
|
// colfuncs[a + b*CP_NUM_SHAPES] = func;
|
|
//}
|
|
//
|
|
//#ifdef __cplusplus
|
|
//extern "C" {
|
|
//#endif
|
|
// void cpInitCollisionFuncs(void);
|
|
//
|
|
// // Initializes the array of collision functions.
|
|
// // Called by cpInitChipmunk().
|
|
// void
|
|
// cpInitCollisionFuncs(void)
|
|
// {
|
|
// if(!colfuncs)
|
|
// colfuncs = (collisionFunc *)cpcalloc(CP_NUM_SHAPES*CP_NUM_SHAPES, sizeof(collisionFunc));
|
|
//
|
|
// addColFunc(CP_CIRCLE_SHAPE, CP_CIRCLE_SHAPE, circle2circle);
|
|
// addColFunc(CP_CIRCLE_SHAPE, CP_SEGMENT_SHAPE, circle2segment);
|
|
// addColFunc(CP_SEGMENT_SHAPE, CP_POLY_SHAPE, seg2poly);
|
|
// addColFunc(CP_CIRCLE_SHAPE, CP_POLY_SHAPE, circle2poly);
|
|
// addColFunc(CP_POLY_SHAPE, CP_POLY_SHAPE, poly2poly);
|
|
// }
|
|
//#ifdef __cplusplus
|
|
//}
|
|
//#endif
|
|
|
|
int
|
|
cpCollideShapes(const cpShape *a, const cpShape *b, cpContact *arr)
|
|
{
|
|
// Their shape types must be in order.
|
|
cpAssertSoft(a->klass->type <= b->klass->type, "Collision shapes passed to cpCollideShapes() are not sorted.");
|
|
|
|
collisionFunc cfunc = colfuncs[a->klass->type + b->klass->type*CP_NUM_SHAPES];
|
|
return (cfunc) ? cfunc(a, b, arr) : 0;
|
|
}
|