mirror of https://github.com/axmolengine/axmol.git
1147 lines
34 KiB
C++
1147 lines
34 KiB
C++
// SPDX-License-Identifier: Apache-2.0
|
|
// ----------------------------------------------------------------------------
|
|
// Copyright 2011-2021 Arm Limited
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
|
// use this file except in compliance with the License. You may obtain a copy
|
|
// of the License at:
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
// License for the specific language governing permissions and limitations
|
|
// under the License.
|
|
// ----------------------------------------------------------------------------
|
|
|
|
/**
|
|
* @brief Functions to generate block size descriptor and decimation tables.
|
|
*/
|
|
|
|
#include "astcenc_internal.h"
|
|
|
|
/**
|
|
* @brief Decode the properties of an encoded 2D block mode.
|
|
*
|
|
* @param block_mode The encoded block mode.
|
|
* @param[out] x_weights The number of weights in the X dimension.
|
|
* @param[out] y_weights The number of weights in the Y dimension.
|
|
* @param[out] is_dual_plane True if this block mode has two weight planes.
|
|
* @param[out] quant_mode The quantization level for the weights.
|
|
*
|
|
* @return Returns true of valid mode, false otherwise.
|
|
*/
|
|
static bool decode_block_mode_2d(
|
|
unsigned int block_mode,
|
|
unsigned int& x_weights,
|
|
unsigned int& y_weights,
|
|
bool& is_dual_plane,
|
|
unsigned int& quant_mode
|
|
) {
|
|
unsigned int base_quant_mode = (block_mode >> 4) & 1;
|
|
unsigned int H = (block_mode >> 9) & 1;
|
|
unsigned int D = (block_mode >> 10) & 1;
|
|
unsigned int A = (block_mode >> 5) & 0x3;
|
|
|
|
x_weights = 0;
|
|
y_weights = 0;
|
|
|
|
if ((block_mode & 3) != 0)
|
|
{
|
|
base_quant_mode |= (block_mode & 3) << 1;
|
|
unsigned int B = (block_mode >> 7) & 3;
|
|
switch ((block_mode >> 2) & 3)
|
|
{
|
|
case 0:
|
|
x_weights = B + 4;
|
|
y_weights = A + 2;
|
|
break;
|
|
case 1:
|
|
x_weights = B + 8;
|
|
y_weights = A + 2;
|
|
break;
|
|
case 2:
|
|
x_weights = A + 2;
|
|
y_weights = B + 8;
|
|
break;
|
|
case 3:
|
|
B &= 1;
|
|
if (block_mode & 0x100)
|
|
{
|
|
x_weights = B + 2;
|
|
y_weights = A + 2;
|
|
}
|
|
else
|
|
{
|
|
x_weights = A + 2;
|
|
y_weights = B + 6;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
base_quant_mode |= ((block_mode >> 2) & 3) << 1;
|
|
if (((block_mode >> 2) & 3) == 0)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
unsigned int B = (block_mode >> 9) & 3;
|
|
switch ((block_mode >> 7) & 3)
|
|
{
|
|
case 0:
|
|
x_weights = 12;
|
|
y_weights = A + 2;
|
|
break;
|
|
case 1:
|
|
x_weights = A + 2;
|
|
y_weights = 12;
|
|
break;
|
|
case 2:
|
|
x_weights = A + 6;
|
|
y_weights = B + 6;
|
|
D = 0;
|
|
H = 0;
|
|
break;
|
|
case 3:
|
|
switch ((block_mode >> 5) & 3)
|
|
{
|
|
case 0:
|
|
x_weights = 6;
|
|
y_weights = 10;
|
|
break;
|
|
case 1:
|
|
x_weights = 10;
|
|
y_weights = 6;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned int weight_count = x_weights * y_weights * (D + 1);
|
|
quant_mode = (base_quant_mode - 2) + 6 * H;
|
|
is_dual_plane = D != 0;
|
|
|
|
unsigned int weight_bits = get_ise_sequence_bitcount(weight_count, (quant_method)quant_mode);
|
|
return (weight_count <= BLOCK_MAX_WEIGHTS &&
|
|
weight_bits >= BLOCK_MIN_WEIGHT_BITS &&
|
|
weight_bits <= BLOCK_MAX_WEIGHT_BITS);
|
|
}
|
|
|
|
/**
|
|
* @brief Decode the properties of an encoded 3D block mode.
|
|
*
|
|
* @param block_mode The encoded block mode.
|
|
* @param[out] x_weights The number of weights in the X dimension.
|
|
* @param[out] y_weights The number of weights in the Y dimension.
|
|
* @param[out] z_weights The number of weights in the Z dimension.
|
|
* @param[out] is_dual_plane True if this block mode has two weight planes.
|
|
* @param[out] quant_mode The quantization level for the weights.
|
|
*
|
|
* @return Returns true of valid mode, false otherwise.
|
|
*/
|
|
static bool decode_block_mode_3d(
|
|
unsigned int block_mode,
|
|
unsigned int& x_weights,
|
|
unsigned int& y_weights,
|
|
unsigned int& z_weights,
|
|
bool& is_dual_plane,
|
|
unsigned int& quant_mode
|
|
) {
|
|
unsigned int base_quant_mode = (block_mode >> 4) & 1;
|
|
unsigned int H = (block_mode >> 9) & 1;
|
|
unsigned int D = (block_mode >> 10) & 1;
|
|
unsigned int A = (block_mode >> 5) & 0x3;
|
|
|
|
x_weights = 0;
|
|
y_weights = 0;
|
|
z_weights = 0;
|
|
|
|
if ((block_mode & 3) != 0)
|
|
{
|
|
base_quant_mode |= (block_mode & 3) << 1;
|
|
unsigned int B = (block_mode >> 7) & 3;
|
|
unsigned int C = (block_mode >> 2) & 0x3;
|
|
x_weights = A + 2;
|
|
y_weights = B + 2;
|
|
z_weights = C + 2;
|
|
}
|
|
else
|
|
{
|
|
base_quant_mode |= ((block_mode >> 2) & 3) << 1;
|
|
if (((block_mode >> 2) & 3) == 0)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
int B = (block_mode >> 9) & 3;
|
|
if (((block_mode >> 7) & 3) != 3)
|
|
{
|
|
D = 0;
|
|
H = 0;
|
|
}
|
|
switch ((block_mode >> 7) & 3)
|
|
{
|
|
case 0:
|
|
x_weights = 6;
|
|
y_weights = B + 2;
|
|
z_weights = A + 2;
|
|
break;
|
|
case 1:
|
|
x_weights = A + 2;
|
|
y_weights = 6;
|
|
z_weights = B + 2;
|
|
break;
|
|
case 2:
|
|
x_weights = A + 2;
|
|
y_weights = B + 2;
|
|
z_weights = 6;
|
|
break;
|
|
case 3:
|
|
x_weights = 2;
|
|
y_weights = 2;
|
|
z_weights = 2;
|
|
switch ((block_mode >> 5) & 3)
|
|
{
|
|
case 0:
|
|
x_weights = 6;
|
|
break;
|
|
case 1:
|
|
y_weights = 6;
|
|
break;
|
|
case 2:
|
|
z_weights = 6;
|
|
break;
|
|
case 3:
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned int weight_count = x_weights * y_weights * z_weights * (D + 1);
|
|
quant_mode = (base_quant_mode - 2) + 6 * H;
|
|
is_dual_plane = D != 0;
|
|
|
|
unsigned int weight_bits = get_ise_sequence_bitcount(weight_count, (quant_method)quant_mode);
|
|
return (weight_count <= BLOCK_MAX_WEIGHTS &&
|
|
weight_bits >= BLOCK_MIN_WEIGHT_BITS &&
|
|
weight_bits <= BLOCK_MAX_WEIGHT_BITS);
|
|
}
|
|
|
|
/**
|
|
* @brief Create a 2D decimation entry for a block-size and weight-decimation pair.
|
|
*
|
|
* @param x_texels The number of texels in the X dimension.
|
|
* @param y_texels The number of texels in the Y dimension.
|
|
* @param x_weights The number of weights in the X dimension.
|
|
* @param y_weights The number of weights in the Y dimension.
|
|
* @param[out] di The decimation info structure to populate.
|
|
*/
|
|
static void init_decimation_info_2d(
|
|
unsigned int x_texels,
|
|
unsigned int y_texels,
|
|
unsigned int x_weights,
|
|
unsigned int y_weights,
|
|
decimation_info& di
|
|
) {
|
|
unsigned int texels_per_block = x_texels * y_texels;
|
|
unsigned int weights_per_block = x_weights * y_weights;
|
|
|
|
uint8_t weight_count_of_texel[BLOCK_MAX_TEXELS];
|
|
uint8_t grid_weights_of_texel[BLOCK_MAX_TEXELS][4];
|
|
uint8_t weights_of_texel[BLOCK_MAX_TEXELS][4];
|
|
|
|
uint8_t texel_count_of_weight[BLOCK_MAX_WEIGHTS];
|
|
uint8_t max_texel_count_of_weight = 0;
|
|
uint8_t texels_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
|
|
uint8_t texel_weights_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
|
|
|
|
promise(weights_per_block > 0);
|
|
promise(texels_per_block > 0);
|
|
promise(x_texels > 0);
|
|
promise(y_texels > 0);
|
|
|
|
for (unsigned int i = 0; i < weights_per_block; i++)
|
|
{
|
|
texel_count_of_weight[i] = 0;
|
|
}
|
|
|
|
for (unsigned int i = 0; i < texels_per_block; i++)
|
|
{
|
|
weight_count_of_texel[i] = 0;
|
|
}
|
|
|
|
for (unsigned int y = 0; y < y_texels; y++)
|
|
{
|
|
for (unsigned int x = 0; x < x_texels; x++)
|
|
{
|
|
unsigned int texel = y * x_texels + x;
|
|
|
|
unsigned int x_weight = (((1024 + x_texels / 2) / (x_texels - 1)) * x * (x_weights - 1) + 32) >> 6;
|
|
unsigned int y_weight = (((1024 + y_texels / 2) / (y_texels - 1)) * y * (y_weights - 1) + 32) >> 6;
|
|
|
|
unsigned int x_weight_frac = x_weight & 0xF;
|
|
unsigned int y_weight_frac = y_weight & 0xF;
|
|
unsigned int x_weight_int = x_weight >> 4;
|
|
unsigned int y_weight_int = y_weight >> 4;
|
|
|
|
unsigned int qweight[4];
|
|
qweight[0] = x_weight_int + y_weight_int * x_weights;
|
|
qweight[1] = qweight[0] + 1;
|
|
qweight[2] = qweight[0] + x_weights;
|
|
qweight[3] = qweight[2] + 1;
|
|
|
|
// Truncated-precision bilinear interpolation
|
|
unsigned int prod = x_weight_frac * y_weight_frac;
|
|
|
|
unsigned int weight[4];
|
|
weight[3] = (prod + 8) >> 4;
|
|
weight[1] = x_weight_frac - weight[3];
|
|
weight[2] = y_weight_frac - weight[3];
|
|
weight[0] = 16 - x_weight_frac - y_weight_frac + weight[3];
|
|
|
|
for (unsigned int i = 0; i < 4; i++)
|
|
{
|
|
if (weight[i] != 0)
|
|
{
|
|
grid_weights_of_texel[texel][weight_count_of_texel[texel]] = static_cast<uint8_t>(qweight[i]);
|
|
weights_of_texel[texel][weight_count_of_texel[texel]] = static_cast<uint8_t>(weight[i]);
|
|
weight_count_of_texel[texel]++;
|
|
texels_of_weight[qweight[i]][texel_count_of_weight[qweight[i]]] = static_cast<uint8_t>(texel);
|
|
texel_weights_of_weight[qweight[i]][texel_count_of_weight[qweight[i]]] = static_cast<uint8_t>(weight[i]);
|
|
texel_count_of_weight[qweight[i]]++;
|
|
max_texel_count_of_weight = astc::max(max_texel_count_of_weight, texel_count_of_weight[qweight[i]]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned int i = 0; i < texels_per_block; i++)
|
|
{
|
|
di.texel_weight_count[i] = weight_count_of_texel[i];
|
|
|
|
for (unsigned int j = 0; j < weight_count_of_texel[i]; j++)
|
|
{
|
|
di.texel_weights_int_4t[j][i] = weights_of_texel[i][j];
|
|
di.texel_weights_float_4t[j][i] = ((float)weights_of_texel[i][j]) * (1.0f / WEIGHTS_TEXEL_SUM);
|
|
di.texel_weights_4t[j][i] = grid_weights_of_texel[i][j];
|
|
}
|
|
|
|
// Init all 4 entries so we can rely on zeros for vectorization
|
|
for (unsigned int j = weight_count_of_texel[i]; j < 4; j++)
|
|
{
|
|
di.texel_weights_int_4t[j][i] = 0;
|
|
di.texel_weights_float_4t[j][i] = 0.0f;
|
|
di.texel_weights_4t[j][i] = 0;
|
|
}
|
|
}
|
|
|
|
for (unsigned int i = 0; i < weights_per_block; i++)
|
|
{
|
|
unsigned int texel_count_wt = texel_count_of_weight[i];
|
|
di.weight_texel_count[i] = (uint8_t)texel_count_wt;
|
|
|
|
for (unsigned int j = 0; j < texel_count_wt; j++)
|
|
{
|
|
uint8_t texel = texels_of_weight[i][j];
|
|
|
|
// Create transposed versions of these for better vectorization
|
|
di.weight_texel[j][i] = texel;
|
|
di.weights_flt[j][i] = (float)texel_weights_of_weight[i][j];
|
|
|
|
// perform a layer of array unrolling. An aspect of this unrolling is that
|
|
// one of the texel-weight indexes is an identity-mapped index; we will use this
|
|
// fact to reorder the indexes so that the first one is the identity index.
|
|
int swap_idx = -1;
|
|
for (unsigned int k = 0; k < 4; k++)
|
|
{
|
|
uint8_t dttw = di.texel_weights_4t[k][texel];
|
|
float dttwf = di.texel_weights_float_4t[k][texel];
|
|
if (dttw == i && dttwf != 0.0f)
|
|
{
|
|
swap_idx = k;
|
|
}
|
|
di.texel_weights_texel[i][j][k] = dttw;
|
|
di.texel_weights_float_texel[i][j][k] = dttwf;
|
|
}
|
|
|
|
if (swap_idx != 0)
|
|
{
|
|
uint8_t vi = di.texel_weights_texel[i][j][0];
|
|
float vf = di.texel_weights_float_texel[i][j][0];
|
|
di.texel_weights_texel[i][j][0] = di.texel_weights_texel[i][j][swap_idx];
|
|
di.texel_weights_float_texel[i][j][0] = di.texel_weights_float_texel[i][j][swap_idx];
|
|
di.texel_weights_texel[i][j][swap_idx] = vi;
|
|
di.texel_weights_float_texel[i][j][swap_idx] = vf;
|
|
}
|
|
}
|
|
|
|
// Initialize array tail so we can over-fetch with SIMD later to avoid loop tails
|
|
// Match last texel in active lane in SIMD group, for better gathers
|
|
uint8_t last_texel = di.weight_texel[texel_count_wt - 1][i];
|
|
for (unsigned int j = texel_count_wt; j < max_texel_count_of_weight; j++)
|
|
{
|
|
di.weight_texel[j][i] = last_texel;
|
|
di.weights_flt[j][i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// Initialize array tail so we can over-fetch with SIMD later to avoid loop tails
|
|
unsigned int texels_per_block_simd = round_up_to_simd_multiple_vla(texels_per_block);
|
|
for (unsigned int i = texels_per_block; i < texels_per_block_simd; i++)
|
|
{
|
|
di.texel_weight_count[i] = 0;
|
|
|
|
for (unsigned int j = 0; j < 4; j++)
|
|
{
|
|
di.texel_weights_float_4t[j][i] = 0;
|
|
di.texel_weights_4t[j][i] = 0;
|
|
di.texel_weights_int_4t[j][i] = 0;
|
|
}
|
|
}
|
|
|
|
// Initialize array tail so we can over-fetch with SIMD later to avoid loop tails
|
|
// Match last texel in active lane in SIMD group, for better gathers
|
|
unsigned int last_texel_count_wt = texel_count_of_weight[weights_per_block - 1];
|
|
uint8_t last_texel = di.weight_texel[last_texel_count_wt - 1][weights_per_block - 1];
|
|
|
|
unsigned int weights_per_block_simd = round_up_to_simd_multiple_vla(weights_per_block);
|
|
for (unsigned int i = weights_per_block; i < weights_per_block_simd; i++)
|
|
{
|
|
di.weight_texel_count[i] = 0;
|
|
|
|
for (unsigned int j = 0; j < max_texel_count_of_weight; j++)
|
|
{
|
|
di.weight_texel[j][i] = last_texel;
|
|
di.weights_flt[j][i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
di.texel_count = static_cast<uint8_t>(texels_per_block);
|
|
di.weight_count = static_cast<uint8_t>(weights_per_block);
|
|
di.weight_x = static_cast<uint8_t>(x_weights);
|
|
di.weight_y = static_cast<uint8_t>(y_weights);
|
|
di.weight_z = 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Create a 3D decimation entry for a block-size and weight-decimation pair.
|
|
*
|
|
* @param x_texels The number of texels in the X dimension.
|
|
* @param y_texels The number of texels in the Y dimension.
|
|
* @param z_texels The number of texels in the Z dimension.
|
|
* @param x_weights The number of weights in the X dimension.
|
|
* @param y_weights The number of weights in the Y dimension.
|
|
* @param z_weights The number of weights in the Z dimension.
|
|
* @param[out] di The decimation info structure to populate.
|
|
*/
|
|
static void init_decimation_info_3d(
|
|
unsigned int x_texels,
|
|
unsigned int y_texels,
|
|
unsigned int z_texels,
|
|
unsigned int x_weights,
|
|
unsigned int y_weights,
|
|
unsigned int z_weights,
|
|
decimation_info& di
|
|
) {
|
|
unsigned int texels_per_block = x_texels * y_texels * z_texels;
|
|
unsigned int weights_per_block = x_weights * y_weights * z_weights;
|
|
|
|
uint8_t weight_count_of_texel[BLOCK_MAX_TEXELS];
|
|
uint8_t grid_weights_of_texel[BLOCK_MAX_TEXELS][4];
|
|
uint8_t weights_of_texel[BLOCK_MAX_TEXELS][4];
|
|
|
|
uint8_t texel_count_of_weight[BLOCK_MAX_WEIGHTS];
|
|
uint8_t max_texel_count_of_weight = 0;
|
|
uint8_t texels_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
|
|
uint8_t texel_weights_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
|
|
|
|
promise(weights_per_block > 0);
|
|
promise(texels_per_block > 0);
|
|
|
|
for (unsigned int i = 0; i < weights_per_block; i++)
|
|
{
|
|
texel_count_of_weight[i] = 0;
|
|
}
|
|
|
|
for (unsigned int i = 0; i < texels_per_block; i++)
|
|
{
|
|
weight_count_of_texel[i] = 0;
|
|
}
|
|
|
|
for (unsigned int z = 0; z < z_texels; z++)
|
|
{
|
|
for (unsigned int y = 0; y < y_texels; y++)
|
|
{
|
|
for (unsigned int x = 0; x < x_texels; x++)
|
|
{
|
|
int texel = (z * y_texels + y) * x_texels + x;
|
|
|
|
int x_weight = (((1024 + x_texels / 2) / (x_texels - 1)) * x * (x_weights - 1) + 32) >> 6;
|
|
int y_weight = (((1024 + y_texels / 2) / (y_texels - 1)) * y * (y_weights - 1) + 32) >> 6;
|
|
int z_weight = (((1024 + z_texels / 2) / (z_texels - 1)) * z * (z_weights - 1) + 32) >> 6;
|
|
|
|
int x_weight_frac = x_weight & 0xF;
|
|
int y_weight_frac = y_weight & 0xF;
|
|
int z_weight_frac = z_weight & 0xF;
|
|
int x_weight_int = x_weight >> 4;
|
|
int y_weight_int = y_weight >> 4;
|
|
int z_weight_int = z_weight >> 4;
|
|
int qweight[4];
|
|
int weight[4];
|
|
qweight[0] = (z_weight_int * y_weights + y_weight_int) * x_weights + x_weight_int;
|
|
qweight[3] = ((z_weight_int + 1) * y_weights + (y_weight_int + 1)) * x_weights + (x_weight_int + 1);
|
|
|
|
// simplex interpolation
|
|
int fs = x_weight_frac;
|
|
int ft = y_weight_frac;
|
|
int fp = z_weight_frac;
|
|
|
|
int cas = ((fs > ft) << 2) + ((ft > fp) << 1) + ((fs > fp));
|
|
int N = x_weights;
|
|
int NM = x_weights * y_weights;
|
|
|
|
int s1, s2, w0, w1, w2, w3;
|
|
switch (cas)
|
|
{
|
|
case 7:
|
|
s1 = 1;
|
|
s2 = N;
|
|
w0 = 16 - fs;
|
|
w1 = fs - ft;
|
|
w2 = ft - fp;
|
|
w3 = fp;
|
|
break;
|
|
case 3:
|
|
s1 = N;
|
|
s2 = 1;
|
|
w0 = 16 - ft;
|
|
w1 = ft - fs;
|
|
w2 = fs - fp;
|
|
w3 = fp;
|
|
break;
|
|
case 5:
|
|
s1 = 1;
|
|
s2 = NM;
|
|
w0 = 16 - fs;
|
|
w1 = fs - fp;
|
|
w2 = fp - ft;
|
|
w3 = ft;
|
|
break;
|
|
case 4:
|
|
s1 = NM;
|
|
s2 = 1;
|
|
w0 = 16 - fp;
|
|
w1 = fp - fs;
|
|
w2 = fs - ft;
|
|
w3 = ft;
|
|
break;
|
|
case 2:
|
|
s1 = N;
|
|
s2 = NM;
|
|
w0 = 16 - ft;
|
|
w1 = ft - fp;
|
|
w2 = fp - fs;
|
|
w3 = fs;
|
|
break;
|
|
case 0:
|
|
s1 = NM;
|
|
s2 = N;
|
|
w0 = 16 - fp;
|
|
w1 = fp - ft;
|
|
w2 = ft - fs;
|
|
w3 = fs;
|
|
break;
|
|
default:
|
|
s1 = NM;
|
|
s2 = N;
|
|
w0 = 16 - fp;
|
|
w1 = fp - ft;
|
|
w2 = ft - fs;
|
|
w3 = fs;
|
|
break;
|
|
}
|
|
|
|
qweight[1] = qweight[0] + s1;
|
|
qweight[2] = qweight[1] + s2;
|
|
weight[0] = w0;
|
|
weight[1] = w1;
|
|
weight[2] = w2;
|
|
weight[3] = w3;
|
|
|
|
for (unsigned int i = 0; i < 4; i++)
|
|
{
|
|
if (weight[i] != 0)
|
|
{
|
|
grid_weights_of_texel[texel][weight_count_of_texel[texel]] = static_cast<uint8_t>(qweight[i]);
|
|
weights_of_texel[texel][weight_count_of_texel[texel]] = static_cast<uint8_t>(weight[i]);
|
|
weight_count_of_texel[texel]++;
|
|
texels_of_weight[qweight[i]][texel_count_of_weight[qweight[i]]] = static_cast<uint8_t>(texel);
|
|
texel_weights_of_weight[qweight[i]][texel_count_of_weight[qweight[i]]] = static_cast<uint8_t>(weight[i]);
|
|
texel_count_of_weight[qweight[i]]++;
|
|
max_texel_count_of_weight = astc::max(max_texel_count_of_weight, texel_count_of_weight[qweight[i]]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned int i = 0; i < texels_per_block; i++)
|
|
{
|
|
di.texel_weight_count[i] = weight_count_of_texel[i];
|
|
|
|
// Init all 4 entries so we can rely on zeros for vectorization
|
|
for (unsigned int j = 0; j < 4; j++)
|
|
{
|
|
di.texel_weights_int_4t[j][i] = 0;
|
|
di.texel_weights_float_4t[j][i] = 0.0f;
|
|
di.texel_weights_4t[j][i] = 0;
|
|
}
|
|
|
|
for (unsigned int j = 0; j < weight_count_of_texel[i]; j++)
|
|
{
|
|
di.texel_weights_int_4t[j][i] = weights_of_texel[i][j];
|
|
di.texel_weights_float_4t[j][i] = ((float)weights_of_texel[i][j]) * (1.0f / WEIGHTS_TEXEL_SUM);
|
|
di.texel_weights_4t[j][i] = grid_weights_of_texel[i][j];
|
|
}
|
|
}
|
|
|
|
for (unsigned int i = 0; i < weights_per_block; i++)
|
|
{
|
|
unsigned int texel_count_wt = texel_count_of_weight[i];
|
|
di.weight_texel_count[i] = (uint8_t)texel_count_wt;
|
|
|
|
for (unsigned int j = 0; j < texel_count_wt; j++)
|
|
{
|
|
unsigned int texel = texels_of_weight[i][j];
|
|
|
|
// Create transposed versions of these for better vectorization
|
|
di.weight_texel[j][i] = static_cast<uint8_t>(texel);
|
|
di.weights_flt[j][i] = static_cast<float>(texel_weights_of_weight[i][j]);
|
|
|
|
// perform a layer of array unrolling. An aspect of this unrolling is that
|
|
// one of the texel-weight indexes is an identity-mapped index; we will use this
|
|
// fact to reorder the indexes so that the first one is the identity index.
|
|
int swap_idx = -1;
|
|
for (unsigned int k = 0; k < 4; k++)
|
|
{
|
|
uint8_t dttw = di.texel_weights_4t[k][texel];
|
|
float dttwf = di.texel_weights_float_4t[k][texel];
|
|
if (dttw == i && dttwf != 0.0f)
|
|
{
|
|
swap_idx = k;
|
|
}
|
|
di.texel_weights_texel[i][j][k] = dttw;
|
|
di.texel_weights_float_texel[i][j][k] = dttwf;
|
|
}
|
|
|
|
if (swap_idx != 0)
|
|
{
|
|
uint8_t vi = di.texel_weights_texel[i][j][0];
|
|
float vf = di.texel_weights_float_texel[i][j][0];
|
|
di.texel_weights_texel[i][j][0] = di.texel_weights_texel[i][j][swap_idx];
|
|
di.texel_weights_float_texel[i][j][0] = di.texel_weights_float_texel[i][j][swap_idx];
|
|
di.texel_weights_texel[i][j][swap_idx] = vi;
|
|
di.texel_weights_float_texel[i][j][swap_idx] = vf;
|
|
}
|
|
}
|
|
|
|
// Initialize array tail so we can over-fetch with SIMD later to avoid loop tails
|
|
// Match last texel in active lane in SIMD group, for better gathers
|
|
uint8_t last_texel = di.weight_texel[texel_count_wt - 1][i];
|
|
for (unsigned int j = texel_count_wt; j < max_texel_count_of_weight; j++)
|
|
{
|
|
di.weight_texel[j][i] = last_texel;
|
|
di.weights_flt[j][i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// Initialize array tail so we can over-fetch with SIMD later to avoid loop tails
|
|
unsigned int texels_per_block_simd = round_up_to_simd_multiple_vla(texels_per_block);
|
|
for (unsigned int i = texels_per_block; i < texels_per_block_simd; i++)
|
|
{
|
|
di.texel_weight_count[i] = 0;
|
|
|
|
for (unsigned int j = 0; j < 4; j++)
|
|
{
|
|
di.texel_weights_float_4t[j][i] = 0;
|
|
di.texel_weights_4t[j][i] = 0;
|
|
di.texel_weights_int_4t[j][i] = 0;
|
|
}
|
|
}
|
|
|
|
// Initialize array tail so we can over-fetch with SIMD later to avoid loop tails
|
|
// Match last texel in active lane in SIMD group, for better gathers
|
|
int last_texel_count_wt = texel_count_of_weight[weights_per_block - 1];
|
|
uint8_t last_texel = di.weight_texel[last_texel_count_wt - 1][weights_per_block - 1];
|
|
|
|
unsigned int weights_per_block_simd = round_up_to_simd_multiple_vla(weights_per_block);
|
|
for (unsigned int i = weights_per_block; i < weights_per_block_simd; i++)
|
|
{
|
|
di.weight_texel_count[i] = 0;
|
|
|
|
for (int j = 0; j < max_texel_count_of_weight; j++)
|
|
{
|
|
di.weight_texel[j][i] = last_texel;
|
|
di.weights_flt[j][i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
di.texel_count = static_cast<uint8_t>(texels_per_block);
|
|
di.weight_count = static_cast<uint8_t>(weights_per_block);
|
|
di.weight_x = static_cast<uint8_t>(x_weights);
|
|
di.weight_y = static_cast<uint8_t>(y_weights);
|
|
di.weight_z = static_cast<uint8_t>(z_weights);
|
|
}
|
|
|
|
/**
|
|
* @brief Assign the texels to use for kmeans clustering.
|
|
*
|
|
* The max limit is @c BLOCK_MAX_KMEANS_TEXELS; above this a random selection is used.
|
|
* The @c bsd.texel_count is an input and must be populated beforehand.
|
|
*
|
|
* @param[in,out] bsd The block size descriptor to populate.
|
|
*/
|
|
static void assign_kmeans_texels(
|
|
block_size_descriptor& bsd
|
|
) {
|
|
// Use all texels for kmeans on a small block
|
|
if (bsd.texel_count <= BLOCK_MAX_KMEANS_TEXELS)
|
|
{
|
|
for (uint8_t i = 0; i < bsd.texel_count; i++)
|
|
{
|
|
bsd.kmeans_texels[i] = i;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Select a random subset of BLOCK_MAX_KMEANS_TEXELS for kmeans on a large block
|
|
uint64_t rng_state[2];
|
|
astc::rand_init(rng_state);
|
|
|
|
// Initialize array used for tracking used indices
|
|
bool seen[BLOCK_MAX_TEXELS];
|
|
for (uint8_t i = 0; i < bsd.texel_count; i++)
|
|
{
|
|
seen[i] = false;
|
|
}
|
|
|
|
// Assign 64 random indices, retrying if we see repeats
|
|
unsigned int arr_elements_set = 0;
|
|
while (arr_elements_set < BLOCK_MAX_KMEANS_TEXELS)
|
|
{
|
|
uint8_t texel = static_cast<uint8_t>(astc::rand(rng_state));
|
|
texel = texel % bsd.texel_count;
|
|
if (!seen[texel])
|
|
{
|
|
bsd.kmeans_texels[arr_elements_set++] = texel;
|
|
seen[texel] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Allocate a single 2D decimation table entry.
|
|
*
|
|
* @param x_texels The number of texels in the X dimension.
|
|
* @param y_texels The number of texels in the Y dimension.
|
|
* @param x_weights The number of weights in the X dimension.
|
|
* @param y_weights The number of weights in the Y dimension.
|
|
*
|
|
* @return The new entry's index in the compacted decimation table array.
|
|
*/
|
|
static int construct_dt_entry_2d(
|
|
unsigned int x_texels,
|
|
unsigned int y_texels,
|
|
unsigned int x_weights,
|
|
unsigned int y_weights,
|
|
block_size_descriptor& bsd
|
|
) {
|
|
unsigned int dm_index = bsd.decimation_mode_count;
|
|
unsigned int weight_count = x_weights * y_weights;
|
|
assert(weight_count <= BLOCK_MAX_WEIGHTS);
|
|
|
|
bool try_2planes = (2 * weight_count) <= BLOCK_MAX_WEIGHTS;
|
|
|
|
decimation_info *di = aligned_malloc<decimation_info>(sizeof(decimation_info), ASTCENC_VECALIGN);
|
|
init_decimation_info_2d(x_texels, y_texels, x_weights, y_weights, *di);
|
|
|
|
int maxprec_1plane = -1;
|
|
int maxprec_2planes = -1;
|
|
for (int i = 0; i < 12; i++)
|
|
{
|
|
unsigned int bits_1plane = get_ise_sequence_bitcount(weight_count, (quant_method)i);
|
|
if (bits_1plane >= BLOCK_MIN_WEIGHT_BITS && bits_1plane <= BLOCK_MAX_WEIGHT_BITS)
|
|
{
|
|
maxprec_1plane = i;
|
|
}
|
|
|
|
if (try_2planes)
|
|
{
|
|
unsigned int bits_2planes = get_ise_sequence_bitcount(2 * weight_count, (quant_method)i);
|
|
if (bits_2planes >= BLOCK_MIN_WEIGHT_BITS && bits_2planes <= BLOCK_MAX_WEIGHT_BITS)
|
|
{
|
|
maxprec_2planes = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// At least one of the two should be valid ...
|
|
assert(maxprec_1plane >= 0 || maxprec_2planes >= 0);
|
|
bsd.decimation_modes[dm_index].maxprec_1plane = static_cast<int8_t>(maxprec_1plane);
|
|
bsd.decimation_modes[dm_index].maxprec_2planes = static_cast<int8_t>(maxprec_2planes);
|
|
|
|
// Default to not enabled - we'll populate these based on active block modes
|
|
bsd.decimation_modes[dm_index].percentile_hit = false;
|
|
|
|
bsd.decimation_tables[dm_index] = di;
|
|
|
|
bsd.decimation_mode_count++;
|
|
return dm_index;
|
|
}
|
|
|
|
/**
|
|
* @brief Allocate block modes and decimation tables for a single 2D block size.
|
|
*
|
|
* @param x_texels The number of texels in the X dimension.
|
|
* @param y_texels The number of texels in the Y dimension.
|
|
* @param can_omit_modes Can we discard modes that astcenc won't use, even if legal?
|
|
* @param mode_cutoff Percentile cutoff in range [0,1]. Low values more likely to be used.
|
|
* @param[out] bsd The block size descriptor to populate.
|
|
*/
|
|
static void construct_block_size_descriptor_2d(
|
|
unsigned int x_texels,
|
|
unsigned int y_texels,
|
|
bool can_omit_modes,
|
|
float mode_cutoff,
|
|
block_size_descriptor& bsd
|
|
) {
|
|
// Store a remap table for storing packed decimation modes.
|
|
// Indexing uses [Y * 16 + X] and max size for each axis is 12.
|
|
static const unsigned int MAX_DMI = 12 * 16 + 12;
|
|
int decimation_mode_index[MAX_DMI];
|
|
|
|
bsd.xdim = static_cast<uint8_t>(x_texels);
|
|
bsd.ydim = static_cast<uint8_t>(y_texels);
|
|
bsd.zdim = 1;
|
|
bsd.texel_count = static_cast<uint8_t>(x_texels * y_texels);
|
|
bsd.decimation_mode_count = 0;
|
|
|
|
for (unsigned int i = 0; i < MAX_DMI; i++)
|
|
{
|
|
decimation_mode_index[i] = -1;
|
|
}
|
|
|
|
// Gather all the decimation grids that can be used with the current block
|
|
#if !defined(ASTCENC_DECOMPRESS_ONLY)
|
|
const float *percentiles = get_2d_percentile_table(x_texels, y_texels);
|
|
#else
|
|
// Unused in decompress-only builds
|
|
(void)can_omit_modes;
|
|
(void)mode_cutoff;
|
|
#endif
|
|
|
|
// Construct the list of block formats referencing the decimation tables
|
|
unsigned int packed_idx = 0;
|
|
unsigned int always_block_mode_count = 0;
|
|
unsigned int always_decimation_mode_count = 0;
|
|
|
|
// Iterate twice; first time keep the "always" blocks, second time keep the "non-always" blocks.
|
|
// This ensures that the always block modes and decimation modes are at the start of the list.
|
|
for (unsigned int j = 0; j < 2; j ++)
|
|
{
|
|
for (unsigned int i = 0; i < WEIGHTS_MAX_BLOCK_MODES; i++)
|
|
{
|
|
unsigned int x_weights, y_weights;
|
|
bool is_dual_plane;
|
|
|
|
unsigned int quant_mode;
|
|
|
|
#if !defined(ASTCENC_DECOMPRESS_ONLY)
|
|
float percentile = percentiles[i];
|
|
bool selected = (percentile <= mode_cutoff) || !can_omit_modes;
|
|
|
|
if (j == 0 && percentile != 0.0f)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (j == 1 && percentile == 0.0f)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
#else
|
|
// Decompressor builds can never discard modes, as we cannot make any
|
|
// assumptions about the modes the original compressor used
|
|
bool selected = true;
|
|
|
|
if (j == 1)
|
|
{
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
// ASSUMPTION: No compressor will use more weights in a dimension than
|
|
// the block has actual texels, because it wastes bits. Decompression
|
|
// of an image which violates this assumption will fail, even though it
|
|
// is technically permitted by the specification.
|
|
|
|
// Skip modes that are invalid, too large, or not selected by heuristic
|
|
bool valid = decode_block_mode_2d(i, x_weights, y_weights, is_dual_plane, quant_mode);
|
|
if (!selected || !valid || (x_weights > x_texels) || (y_weights > y_texels))
|
|
{
|
|
bsd.block_mode_packed_index[i] = BLOCK_BAD_BLOCK_MODE;
|
|
continue;
|
|
}
|
|
|
|
// Allocate and initialize the decimation table entry if we've not used it yet
|
|
int decimation_mode = decimation_mode_index[y_weights * 16 + x_weights];
|
|
if (decimation_mode == -1)
|
|
{
|
|
decimation_mode = construct_dt_entry_2d(x_texels, y_texels, x_weights, y_weights, bsd);
|
|
decimation_mode_index[y_weights * 16 + x_weights] = decimation_mode;
|
|
|
|
#if !defined(ASTCENC_DECOMPRESS_ONLY)
|
|
if (percentile == 0.0f)
|
|
{
|
|
always_decimation_mode_count++;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if !defined(ASTCENC_DECOMPRESS_ONLY)
|
|
// Flatten the block mode heuristic into some precomputed flags
|
|
if (percentile == 0.0f)
|
|
{
|
|
always_block_mode_count++;
|
|
bsd.block_modes[packed_idx].percentile_hit = true;
|
|
bsd.decimation_modes[decimation_mode].percentile_hit = true;
|
|
}
|
|
else if (percentile <= mode_cutoff)
|
|
{
|
|
bsd.block_modes[packed_idx].percentile_hit = true;
|
|
bsd.decimation_modes[decimation_mode].percentile_hit = true;
|
|
}
|
|
else
|
|
{
|
|
bsd.block_modes[packed_idx].percentile_hit = false;
|
|
}
|
|
#endif
|
|
|
|
bsd.block_modes[packed_idx].decimation_mode = static_cast<uint8_t>(decimation_mode);
|
|
bsd.block_modes[packed_idx].quant_mode = static_cast<uint8_t>(quant_mode);
|
|
bsd.block_modes[packed_idx].is_dual_plane = static_cast<uint8_t>(is_dual_plane);
|
|
bsd.block_modes[packed_idx].mode_index = static_cast<uint16_t>(i);
|
|
bsd.block_mode_packed_index[i] = static_cast<uint16_t>(packed_idx);
|
|
packed_idx++;
|
|
}
|
|
}
|
|
|
|
bsd.block_mode_count = packed_idx;
|
|
bsd.always_block_mode_count = always_block_mode_count;
|
|
bsd.always_decimation_mode_count = always_decimation_mode_count;
|
|
|
|
#if !defined(ASTCENC_DECOMPRESS_ONLY)
|
|
assert(bsd.always_block_mode_count > 0);
|
|
assert(bsd.always_decimation_mode_count > 0);
|
|
|
|
delete[] percentiles;
|
|
#endif
|
|
|
|
// Ensure the end of the array contains valid data (should never get read)
|
|
for (unsigned int i = bsd.decimation_mode_count; i < WEIGHTS_MAX_DECIMATION_MODES; i++)
|
|
{
|
|
bsd.decimation_modes[i].maxprec_1plane = -1;
|
|
bsd.decimation_modes[i].maxprec_2planes = -1;
|
|
bsd.decimation_modes[i].percentile_hit = false;
|
|
bsd.decimation_tables[i] = nullptr;
|
|
}
|
|
|
|
// Determine the texels to use for kmeans clustering.
|
|
assign_kmeans_texels(bsd);
|
|
}
|
|
|
|
/**
|
|
* @brief Allocate block modes and decimation tables for a single £D block size.
|
|
*
|
|
* TODO: This function doesn't include all of the heuristics that we use for 2D block sizes such as
|
|
* the percentile mode cutoffs. If 3D becomes more widely used we should look at this.
|
|
*
|
|
* @param x_texels The number of texels in the X dimension.
|
|
* @param y_texels The number of texels in the Y dimension.
|
|
* @param z_texels The number of texels in the Z dimension.
|
|
* @param[out] bsd The block size descriptor to populate.
|
|
*/
|
|
static void construct_block_size_descriptor_3d(
|
|
unsigned int x_texels,
|
|
unsigned int y_texels,
|
|
unsigned int z_texels,
|
|
block_size_descriptor& bsd
|
|
) {
|
|
// Store a remap table for storing packed decimation modes.
|
|
// Indexing uses [Z * 64 + Y * 8 + X] and max size for each axis is 6.
|
|
static constexpr unsigned int MAX_DMI = 6 * 64 + 6 * 8 + 6;
|
|
int decimation_mode_index[MAX_DMI];
|
|
unsigned int decimation_mode_count = 0;
|
|
|
|
bsd.xdim = static_cast<uint8_t>(x_texels);
|
|
bsd.ydim = static_cast<uint8_t>(y_texels);
|
|
bsd.zdim = static_cast<uint8_t>(z_texels);
|
|
bsd.texel_count = static_cast<uint8_t>(x_texels * y_texels * z_texels);
|
|
|
|
for (unsigned int i = 0; i < MAX_DMI; i++)
|
|
{
|
|
decimation_mode_index[i] = -1;
|
|
}
|
|
|
|
// gather all the infill-modes that can be used with the current block size
|
|
for (unsigned int x_weights = 2; x_weights <= x_texels; x_weights++)
|
|
{
|
|
for (unsigned int y_weights = 2; y_weights <= y_texels; y_weights++)
|
|
{
|
|
for (unsigned int z_weights = 2; z_weights <= z_texels; z_weights++)
|
|
{
|
|
unsigned int weight_count = x_weights * y_weights * z_weights;
|
|
if (weight_count > BLOCK_MAX_WEIGHTS)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
decimation_info *di = aligned_malloc<decimation_info>(sizeof(decimation_info), ASTCENC_VECALIGN);
|
|
decimation_mode_index[z_weights * 64 + y_weights * 8 + x_weights] = decimation_mode_count;
|
|
init_decimation_info_3d(x_texels, y_texels, z_texels, x_weights, y_weights, z_weights, *di);
|
|
|
|
int maxprec_1plane = -1;
|
|
int maxprec_2planes = -1;
|
|
for (unsigned int i = 0; i < 12; i++)
|
|
{
|
|
unsigned int bits_1plane = get_ise_sequence_bitcount(weight_count, (quant_method)i);
|
|
if (bits_1plane >= BLOCK_MIN_WEIGHT_BITS && bits_1plane <= BLOCK_MAX_WEIGHT_BITS)
|
|
{
|
|
maxprec_1plane = i;
|
|
}
|
|
|
|
unsigned int bits_2planes = get_ise_sequence_bitcount(2 * weight_count, (quant_method)i);
|
|
if (bits_2planes >= BLOCK_MIN_WEIGHT_BITS && bits_2planes <= BLOCK_MAX_WEIGHT_BITS)
|
|
{
|
|
maxprec_2planes = i;
|
|
}
|
|
}
|
|
|
|
if ((2 * weight_count) > BLOCK_MAX_WEIGHTS)
|
|
{
|
|
maxprec_2planes = -1;
|
|
}
|
|
|
|
bsd.decimation_modes[decimation_mode_count].maxprec_1plane = static_cast<int8_t>(maxprec_1plane);
|
|
bsd.decimation_modes[decimation_mode_count].maxprec_2planes = static_cast<int8_t>(maxprec_2planes);
|
|
bsd.decimation_modes[decimation_mode_count].percentile_hit = false;
|
|
bsd.decimation_tables[decimation_mode_count] = di;
|
|
decimation_mode_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ensure the end of the array contains valid data (should never get read)
|
|
for (unsigned int i = decimation_mode_count; i < WEIGHTS_MAX_DECIMATION_MODES; i++)
|
|
{
|
|
bsd.decimation_modes[i].maxprec_1plane = -1;
|
|
bsd.decimation_modes[i].maxprec_2planes = -1;
|
|
bsd.decimation_modes[i].percentile_hit = false;
|
|
bsd.decimation_tables[i] = nullptr;
|
|
}
|
|
|
|
bsd.decimation_mode_count = decimation_mode_count;
|
|
|
|
// Construct the list of block formats
|
|
unsigned int packed_idx = 0;
|
|
for (unsigned int i = 0; i < WEIGHTS_MAX_BLOCK_MODES; i++)
|
|
{
|
|
unsigned int x_weights, y_weights, z_weights;
|
|
bool is_dual_plane;
|
|
unsigned int quant_mode;
|
|
bool permit_encode = true;
|
|
|
|
if (decode_block_mode_3d(i, x_weights, y_weights, z_weights, is_dual_plane, quant_mode))
|
|
{
|
|
if (x_weights > x_texels || y_weights > y_texels || z_weights > z_texels)
|
|
{
|
|
permit_encode = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
permit_encode = false;
|
|
}
|
|
|
|
if (!permit_encode)
|
|
{
|
|
bsd.block_mode_packed_index[i] = BLOCK_BAD_BLOCK_MODE;
|
|
continue;
|
|
}
|
|
|
|
int decimation_mode = decimation_mode_index[z_weights * 64 + y_weights * 8 + x_weights];
|
|
bsd.block_modes[packed_idx].decimation_mode = static_cast<uint8_t>(decimation_mode);
|
|
bsd.block_modes[packed_idx].quant_mode = static_cast<uint8_t>(quant_mode);
|
|
bsd.block_modes[packed_idx].is_dual_plane = static_cast<uint8_t>(is_dual_plane);
|
|
bsd.block_modes[packed_idx].mode_index = static_cast<uint16_t>(i);
|
|
|
|
// No percentile table, so enable everything all the time ...
|
|
bsd.block_modes[packed_idx].percentile_hit = true;
|
|
bsd.decimation_modes[decimation_mode].percentile_hit = true;
|
|
|
|
bsd.block_mode_packed_index[i] = static_cast<uint16_t>(packed_idx);
|
|
|
|
packed_idx++;
|
|
}
|
|
|
|
bsd.block_mode_count = packed_idx;
|
|
|
|
// These are never used = the MODE0 fast path is skipped for 3D blocks
|
|
bsd.always_block_mode_count = 0;
|
|
bsd.always_decimation_mode_count = 0;
|
|
|
|
// Determine the texels to use for kmeans clustering.
|
|
assign_kmeans_texels(bsd);
|
|
}
|
|
|
|
/* See header for documentation. */
|
|
void init_block_size_descriptor(
|
|
unsigned int x_texels,
|
|
unsigned int y_texels,
|
|
unsigned int z_texels,
|
|
bool can_omit_modes,
|
|
float mode_cutoff,
|
|
block_size_descriptor& bsd
|
|
) {
|
|
if (z_texels > 1)
|
|
{
|
|
construct_block_size_descriptor_3d(x_texels, y_texels, z_texels, bsd);
|
|
}
|
|
else
|
|
{
|
|
construct_block_size_descriptor_2d(x_texels, y_texels, can_omit_modes, mode_cutoff, bsd);
|
|
}
|
|
|
|
init_partition_tables(bsd);
|
|
}
|
|
|
|
/* See header for documentation. */
|
|
void term_block_size_descriptor(
|
|
block_size_descriptor& bsd
|
|
) {
|
|
for (unsigned int i = 0; i < bsd.decimation_mode_count; i++)
|
|
{
|
|
aligned_free<const decimation_info>(bsd.decimation_tables[i]);
|
|
}
|
|
}
|