axmol/cocos/renderer/CCRenderer.cpp

1115 lines
34 KiB
C++

/****************************************************************************
Copyright (c) 2013-2016 Chukong Technologies Inc.
Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
http://www.cocos2d-x.org
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "renderer/CCRenderer.h"
#include <algorithm>
#include "renderer/CCTrianglesCommand.h"
#include "renderer/CCCustomCommand.h"
#include "renderer/CCCallbackCommand.h"
#include "renderer/CCGroupCommand.h"
#include "renderer/CCMeshCommand.h"
#include "renderer/CCGLProgramCache.h"
#include "renderer/CCMaterial.h"
#include "renderer/CCTechnique.h"
#include "renderer/CCPass.h"
#include "renderer/CCTexture2D.h"
#include "base/CCConfiguration.h"
#include "base/CCDirector.h"
#include "base/CCEventDispatcher.h"
#include "base/CCEventListenerCustom.h"
#include "base/CCEventType.h"
#include "2d/CCCamera.h"
#include "2d/CCScene.h"
#include "xxhash.h"
#include "renderer/backend/Backend.h"
NS_CC_BEGIN
// helper
static bool compareRenderCommand(RenderCommand* a, RenderCommand* b)
{
return a->getGlobalOrder() < b->getGlobalOrder();
}
static bool compare3DCommand(RenderCommand* a, RenderCommand* b)
{
return a->getDepth() > b->getDepth();
}
// queue
RenderQueue::RenderQueue()
{
}
void RenderQueue::push_back(RenderCommand* command)
{
float z = command->getGlobalOrder();
if(z < 0)
{
_commands[QUEUE_GROUP::GLOBALZ_NEG].push_back(command);
}
else if(z > 0)
{
_commands[QUEUE_GROUP::GLOBALZ_POS].push_back(command);
}
else
{
if(command->is3D())
{
if(command->isTransparent())
{
_commands[QUEUE_GROUP::TRANSPARENT_3D].push_back(command);
}
else
{
_commands[QUEUE_GROUP::OPAQUE_3D].push_back(command);
}
}
else
{
_commands[QUEUE_GROUP::GLOBALZ_ZERO].push_back(command);
}
}
}
ssize_t RenderQueue::size() const
{
ssize_t result(0);
for(int index = 0; index < QUEUE_GROUP::QUEUE_COUNT; ++index)
{
result += _commands[index].size();
}
return result;
}
void RenderQueue::sort()
{
// Don't sort _queue0, it already comes sorted
std::stable_sort(std::begin(_commands[QUEUE_GROUP::TRANSPARENT_3D]), std::end(_commands[QUEUE_GROUP::TRANSPARENT_3D]), compare3DCommand);
std::stable_sort(std::begin(_commands[QUEUE_GROUP::GLOBALZ_NEG]), std::end(_commands[QUEUE_GROUP::GLOBALZ_NEG]), compareRenderCommand);
std::stable_sort(std::begin(_commands[QUEUE_GROUP::GLOBALZ_POS]), std::end(_commands[QUEUE_GROUP::GLOBALZ_POS]), compareRenderCommand);
}
RenderCommand* RenderQueue::operator[](ssize_t index) const
{
for(int queIndex = 0; queIndex < QUEUE_GROUP::QUEUE_COUNT; ++queIndex)
{
if(index < static_cast<ssize_t>(_commands[queIndex].size()))
return _commands[queIndex][index];
else
{
index -= _commands[queIndex].size();
}
}
CCASSERT(false, "invalid index");
return nullptr;
}
void RenderQueue::clear()
{
for(int i = 0; i < QUEUE_COUNT; ++i)
{
_commands[i].clear();
}
}
void RenderQueue::realloc(size_t reserveSize)
{
for(int i = 0; i < QUEUE_COUNT; ++i)
{
_commands[i] = std::vector<RenderCommand*>();
_commands[i].reserve(reserveSize);
}
}
//
//
//
static const int DEFAULT_RENDER_QUEUE = 0;
//
// constructors, destructor, init
//
Renderer::Renderer()
{
_groupCommandManager = new (std::nothrow) GroupCommandManager();
_commandGroupStack.push(DEFAULT_RENDER_QUEUE);
RenderQueue defaultRenderQueue;
_renderGroups.push_back(defaultRenderQueue);
_queuedTriangleCommands.reserve(BATCH_TRIAGCOMMAND_RESERVED_SIZE);
// for the batched TriangleCommand
_triBatchesToDraw = (TriBatchToDraw*) malloc(sizeof(_triBatchesToDraw[0]) * _triBatchesToDrawCapacity);
_renderPipelineCache.reserve(100);
}
Renderer::~Renderer()
{
_renderGroups.clear();
_groupCommandManager->release();
free(_triBatchesToDraw);
#if CC_ENABLE_CACHE_TEXTURE_DATA
Director::getInstance()->getEventDispatcher()->removeEventListener(_cacheTextureListener);
#endif
CC_SAFE_RELEASE(_commandBuffer);
for (auto pipeline :_renderPipelineCache)
{
pipeline.second->release();
}
_renderPipelineCache.clear();
}
void Renderer::init()
{
// Should invoke _triangleCommandBufferManager.init() first.
_triangleCommandBufferManager.init();
_vertexBuffer = _triangleCommandBufferManager.getVertexBuffer();
_indexBuffer = _triangleCommandBufferManager.getIndexBuffer();
auto device = backend::Device::getInstance();
_commandBuffer = device->newCommandBuffer();
}
void Renderer::addCommand(RenderCommand* command)
{
int renderQueueID =_commandGroupStack.top();
addCommand(command, renderQueueID);
}
void Renderer::addCommand(RenderCommand* command, int renderQueueID)
{
CCASSERT(!_isRendering, "Cannot add command while rendering");
CCASSERT(renderQueueID >=0, "Invalid render queue");
CCASSERT(command->getType() != RenderCommand::Type::UNKNOWN_COMMAND, "Invalid Command Type");
_renderGroups[renderQueueID].push_back(command);
}
void Renderer::pushGroup(int renderQueueID)
{
CCASSERT(!_isRendering, "Cannot change render queue while rendering");
_commandGroupStack.push(renderQueueID);
}
void Renderer::popGroup()
{
CCASSERT(!_isRendering, "Cannot change render queue while rendering");
_commandGroupStack.pop();
}
int Renderer::createRenderQueue()
{
RenderQueue newRenderQueue;
_renderGroups.push_back(newRenderQueue);
return (int)_renderGroups.size() - 1;
}
void Renderer::processGroupCommand(GroupCommand* command)
{
flush();
int renderQueueID = ((GroupCommand*) command)->getRenderQueueID();
visitRenderQueue(_renderGroups[renderQueueID]);
}
void Renderer::processRenderCommand(RenderCommand* command)
{
auto commandType = command->getType();
switch(commandType)
{
case RenderCommand::Type::TRIANGLES_COMMAND:
{
// flush other queues
flush3D();
auto cmd = static_cast<TrianglesCommand*>(command);
// flush own queue when buffer is full
if(_queuedTotalVertexCount + cmd->getVertexCount() > VBO_SIZE || _queuedTotalIndexCount + cmd->getIndexCount() > INDEX_VBO_SIZE)
{
CCASSERT(cmd->getVertexCount()>= 0 && cmd->getVertexCount() < VBO_SIZE, "VBO for vertex is not big enough, please break the data down or use customized render command");
CCASSERT(cmd->getIndexCount()>= 0 && cmd->getIndexCount() < INDEX_VBO_SIZE, "VBO for index is not big enough, please break the data down or use customized render command");
drawBatchedTriangles();
_queuedTotalIndexCount = _queuedTotalVertexCount = 0;
#ifdef CC_USE_METAL
_queuedIndexCount = _queuedVertexCount = 0;
_triangleCommandBufferManager.prepareNextBuffer();
_vertexBuffer = _triangleCommandBufferManager.getVertexBuffer();
_indexBuffer = _triangleCommandBufferManager.getIndexBuffer();
#endif
}
// queue it
_queuedTriangleCommands.push_back(cmd);
#ifdef CC_USE_METAL
_queuedIndexCount += cmd->getIndexCount();
_queuedVertexCount += cmd->getVertexCount();
#endif
_queuedTotalVertexCount += cmd->getVertexCount();
_queuedTotalIndexCount += cmd->getIndexCount();
}
break;
case RenderCommand::Type::MESH_COMMAND:
{
flush2D();
auto cmd = static_cast<MeshCommand*>(command);
if (cmd->isSkipBatching() || _lastBatchedMeshCommand == nullptr || _lastBatchedMeshCommand->getMaterialID() != cmd->getMaterialID())
{
flush3D();
if(cmd->isSkipBatching())
{
// XXX: execute() will call bind() and unbind()
// but unbind() shouldn't be call if the next command is a MESH_COMMAND with Material.
// Once most of cocos2d-x moves to Pass/StateBlock, only bind() should be used.
cmd->execute();
}
else
{
cmd->preBatchDraw();
cmd->batchDraw();
_lastBatchedMeshCommand = cmd;
}
}
else
{
// CCGL_DEBUG_INSERT_EVENT_MARKER("RENDERER_MESH_COMMAND");
cmd->batchDraw();
}
}
break;
case RenderCommand::Type::GROUP_COMMAND:
processGroupCommand(static_cast<GroupCommand*>(command));
break;
case RenderCommand::Type::CUSTOM_COMMAND:
flush();
drawCustomCommand(command);
break;
case RenderCommand::Type::CALLBACK_COMMAND:
flush();
static_cast<CallbackCommand*>(command)->execute();
break;
default:
assert(false);
break;
}
}
void Renderer::visitRenderQueue(RenderQueue& queue)
{
//
//Process Global-Z < 0 Objects
//
doVisitRenderQueue(queue.getSubQueue(RenderQueue::QUEUE_GROUP::GLOBALZ_NEG));
//
//Process Opaque Object
//
doVisitRenderQueue(queue.getSubQueue(RenderQueue::QUEUE_GROUP::OPAQUE_3D));
//
//Process 3D Transparent object
//
doVisitRenderQueue(queue.getSubQueue(RenderQueue::QUEUE_GROUP::TRANSPARENT_3D));
//
//Process Global-Z = 0 Queue
//
doVisitRenderQueue(queue.getSubQueue(RenderQueue::QUEUE_GROUP::GLOBALZ_ZERO));
//
//Process Global-Z > 0 Queue
//
doVisitRenderQueue(queue.getSubQueue(RenderQueue::QUEUE_GROUP::GLOBALZ_POS));
}
void Renderer::doVisitRenderQueue(const std::vector<RenderCommand*>& renderCommands)
{
for (const auto& command : renderCommands)
{
processRenderCommand(command);
}
flush();
}
void Renderer::render()
{
//TODO: setup camera or MVP
_isRendering = true;
// if (_glViewAssigned)
{
//Process render commands
//1. Sort render commands based on ID
for (auto &renderqueue : _renderGroups)
{
renderqueue.sort();
}
visitRenderQueue(_renderGroups[0]);
}
clean();
_isRendering = false;
}
void Renderer::beginFrame()
{
_commandBuffer->beginFrame();
}
void Renderer::endFrame()
{
_commandBuffer->endFrame();
#ifdef CC_USE_METAL
_triangleCommandBufferManager.putbackAllBuffers();
_vertexBuffer = _triangleCommandBufferManager.getVertexBuffer();
_indexBuffer = _triangleCommandBufferManager.getIndexBuffer();
#endif
_queuedTotalIndexCount = 0;
_queuedTotalVertexCount = 0;
}
void Renderer::clean()
{
// Clear render group
for (size_t j = 0, size = _renderGroups.size() ; j < size; j++)
{
//commands are owned by nodes
// for (const auto &cmd : _renderGroups[j])
// {
// cmd->releaseToCommandPool();
// }
_renderGroups[j].clear();
}
// Clear batch commands
_queuedTriangleCommands.clear();
_lastBatchedMeshCommand = nullptr;
}
void Renderer::setDepthTest(bool value)
{
_depthStencilDescriptor.depthTestEnabled = value;
_renderPassDescriptor.needDepthAttachment = value;
}
void Renderer::setDepthWrite(bool value)
{
_depthStencilDescriptor.depthWriteEnabled = value;
_renderPassDescriptor.needDepthAttachment = value;
}
void Renderer::setDepthCompareFunction(backend::CompareFunction func)
{
_depthStencilDescriptor.depthCompareFunction = func;
}
backend::CompareFunction Renderer::getDepthCompareFunction() const
{
return _depthStencilDescriptor.depthCompareFunction;
}
bool Renderer::Renderer::getDepthTest() const
{
return _depthStencilDescriptor.depthTestEnabled;
}
bool Renderer::getDepthWrite() const
{
return _depthStencilDescriptor.depthWriteEnabled;
}
void Renderer::setStencilTest(bool value)
{
_depthStencilDescriptor.stencilTestEnabled = value;
_renderPassDescriptor.needStencilAttachment = value;
_renderPassDescriptor.needStencilAttachment = value;
}
void Renderer::setStencilCompareFunction(backend::CompareFunction func, unsigned int ref, unsigned int readMask)
{
_depthStencilDescriptor.frontFaceStencil.stencilCompareFunction = func;
_depthStencilDescriptor.backFaceStencil.stencilCompareFunction = func;
_depthStencilDescriptor.frontFaceStencil.readMask = readMask;
_depthStencilDescriptor.backFaceStencil.readMask = readMask;
_stencilRef = ref;
}
void Renderer::setStencilOperation(backend::StencilOperation stencilFailureOp,
backend::StencilOperation depthFailureOp,
backend::StencilOperation stencilDepthPassOp)
{
_depthStencilDescriptor.frontFaceStencil.stencilFailureOperation = stencilFailureOp;
_depthStencilDescriptor.backFaceStencil.stencilFailureOperation = stencilFailureOp;
_depthStencilDescriptor.frontFaceStencil.depthFailureOperation = depthFailureOp;
_depthStencilDescriptor.backFaceStencil.depthFailureOperation = depthFailureOp;
_depthStencilDescriptor.frontFaceStencil.depthStencilPassOperation = stencilDepthPassOp;
_depthStencilDescriptor.backFaceStencil.depthStencilPassOperation = stencilDepthPassOp;
}
void Renderer::setStencilWriteMask(unsigned int mask)
{
_depthStencilDescriptor.frontFaceStencil.writeMask = mask;
_depthStencilDescriptor.backFaceStencil.writeMask = mask;
}
bool Renderer::getStencilTest() const
{
return _depthStencilDescriptor.stencilTestEnabled;
}
backend::StencilOperation Renderer::getStencilFailureOperation() const
{
return _depthStencilDescriptor.frontFaceStencil.stencilFailureOperation;
}
backend::StencilOperation Renderer::getStencilPassDepthFailureOperation() const
{
return _depthStencilDescriptor.frontFaceStencil.depthFailureOperation;
}
backend::StencilOperation Renderer::getStencilDepthPassOperation() const
{
return _depthStencilDescriptor.frontFaceStencil.depthStencilPassOperation;
}
backend::CompareFunction Renderer::getStencilCompareFunction() const
{
return _depthStencilDescriptor.depthCompareFunction;
}
unsigned int Renderer::getStencilReadMask() const
{
return _depthStencilDescriptor.frontFaceStencil.readMask;
}
unsigned int Renderer::getStencilWriteMask() const
{
return _depthStencilDescriptor.frontFaceStencil.writeMask;
}
unsigned int Renderer::getStencilReferenceValue() const
{
return _stencilRef;
}
void Renderer::setViewPort(int x, int y, unsigned int w, unsigned int h)
{
_viewport.x = x;
_viewport.y = y;
_viewport.w = w;
_viewport.h = h;
}
void Renderer::fillVerticesAndIndices(const TrianglesCommand* cmd, unsigned int vertexBufferOffset)
{
size_t vertexCount = cmd->getVertexCount();
memcpy(&_verts[_filledVertex], cmd->getVertices(), sizeof(V3F_C4B_T2F) * vertexCount);
// fill vertex, and convert them to world coordinates
const Mat4& modelView = cmd->getModelView();
for (size_t i=0; i < vertexCount; ++i)
{
modelView.transformPoint(&(_verts[i + _filledVertex].vertices));
}
// fill index
const unsigned short* indices = cmd->getIndices();
size_t indexCount = cmd->getIndexCount();
for (size_t i = 0; i < indexCount; ++i)
{
_indices[_filledIndex + i] = vertexBufferOffset + _filledVertex + indices[i];
}
_filledVertex += vertexCount;
_filledIndex += indexCount;
}
void Renderer::drawBatchedTriangles()
{
if(_queuedTriangleCommands.empty())
return;
/************** 1: Setup up vertices/indices *************/
#ifdef CC_USE_METAL
unsigned int vertexBufferFillOffset = _queuedTotalVertexCount - _queuedVertexCount;
unsigned int indexBufferFillOffset = _queuedTotalIndexCount - _queuedIndexCount;
#else
unsigned int vertexBufferFillOffset = 0;
unsigned int indexBufferFillOffset = 0;
#endif
_triBatchesToDraw[0].offset = indexBufferFillOffset;
_triBatchesToDraw[0].indicesToDraw = 0;
_triBatchesToDraw[0].cmd = nullptr;
int batchesTotal = 0;
int prevMaterialID = -1;
bool firstCommand = true;
_filledVertex = 0;
_filledIndex = 0;
for(const auto& cmd : _queuedTriangleCommands)
{
auto currentMaterialID = cmd->getMaterialID();
const bool batchable = !cmd->isSkipBatching();
fillVerticesAndIndices(cmd, vertexBufferFillOffset);
// in the same batch ?
if (batchable && (prevMaterialID == currentMaterialID || firstCommand))
{
CC_ASSERT((firstCommand || _triBatchesToDraw[batchesTotal].cmd->getMaterialID() == cmd->getMaterialID()) && "argh... error in logic");
_triBatchesToDraw[batchesTotal].indicesToDraw += cmd->getIndexCount();
_triBatchesToDraw[batchesTotal].cmd = cmd;
}
else
{
// is this the first one?
if (!firstCommand)
{
batchesTotal++;
_triBatchesToDraw[batchesTotal].offset =
_triBatchesToDraw[batchesTotal-1].offset + _triBatchesToDraw[batchesTotal-1].indicesToDraw;
}
_triBatchesToDraw[batchesTotal].cmd = cmd;
_triBatchesToDraw[batchesTotal].indicesToDraw = (int) cmd->getIndexCount();
// is this a single batch ? Prevent creating a batch group then
if (!batchable)
currentMaterialID = -1;
}
// capacity full ?
if (batchesTotal + 1 >= _triBatchesToDrawCapacity)
{
_triBatchesToDrawCapacity *= 1.4;
_triBatchesToDraw = (TriBatchToDraw*) realloc(_triBatchesToDraw, sizeof(_triBatchesToDraw[0]) * _triBatchesToDrawCapacity);
}
prevMaterialID = currentMaterialID;
firstCommand = false;
}
batchesTotal++;
#ifdef CC_USE_METAL
_vertexBuffer->updateSubData(_verts, vertexBufferFillOffset * sizeof(_verts[0]), _filledVertex * sizeof(_verts[0]));
_indexBuffer->updateSubData(_indices, indexBufferFillOffset * sizeof(_indices[0]), _filledIndex * sizeof(_indices[0]));
#else
_vertexBuffer->updateData(_verts, _filledVertex * sizeof(_verts[0]));
_indexBuffer->updateData(_indices, _filledIndex * sizeof(_indices[0]));
#endif
/************** 2: Draw *************/
for (int i = 0; i < batchesTotal; ++i)
{
beginRenderPass(_triBatchesToDraw[i].cmd);
_commandBuffer->setVertexBuffer(0, _vertexBuffer);
_commandBuffer->setIndexBuffer(_indexBuffer);
auto& pipelineDescriptor = _triBatchesToDraw[i].cmd->getPipelineDescriptor();
_commandBuffer->setProgramState(pipelineDescriptor.programState);
_commandBuffer->drawElements(backend::PrimitiveType::TRIANGLE,
backend::IndexFormat::U_SHORT,
_triBatchesToDraw[i].indicesToDraw,
_triBatchesToDraw[i].offset * sizeof(_indices[0]));
_commandBuffer->endRenderPass();
_drawnBatches++;
_drawnVertices += _triBatchesToDraw[i].indicesToDraw;
}
/************** 3: Cleanup *************/
_queuedTriangleCommands.clear();
#ifdef CC_USE_METAL
_queuedIndexCount = 0;
_queuedVertexCount = 0;
#endif
}
void Renderer::drawCustomCommand(RenderCommand *command)
{
auto cmd = static_cast<CustomCommand*>(command);
beginRenderPass(command);
_commandBuffer->setVertexBuffer(0, cmd->getVertexBuffer());
_commandBuffer->setProgramState(cmd->getPipelineDescriptor().programState);
auto drawType = cmd->getDrawType();
_commandBuffer->setLineWidth(cmd->getLineWidth());
if (CustomCommand::DrawType::ELEMENT == drawType)
{
_commandBuffer->setIndexBuffer(cmd->getIndexBuffer());
_commandBuffer->drawElements(cmd->getPrimitiveType(),
cmd->getIndexFormat(),
cmd->getIndexDrawCount(),
cmd->getIndexDrawOffset());
_drawnVertices += cmd->getIndexDrawCount();
}
else
{
_commandBuffer->drawArrays(cmd->getPrimitiveType(),
cmd->getVertexDrawStart(),
cmd->getVertexDrawCount());
_drawnVertices += cmd->getVertexDrawCount();
}
_drawnBatches++;
_commandBuffer->endRenderPass();
}
void Renderer::flush()
{
flush2D();
flush3D();
}
void Renderer::flush2D()
{
flushTriangles();
}
void Renderer::flush3D()
{
if (_lastBatchedMeshCommand)
{
_lastBatchedMeshCommand->postBatchDraw();
_lastBatchedMeshCommand = nullptr;
}
}
void Renderer::flushTriangles()
{
drawBatchedTriangles();
}
// helpers
bool Renderer::checkVisibility(const Mat4 &transform, const Size &size)
{
// auto director = Director::getInstance();
// auto scene = director->getRunningScene();
//
// //If draw to Rendertexture, return true directly.
// // only cull the default camera. The culling algorithm is valid for default camera.
// if (!scene || (scene && scene->_defaultCamera != Camera::getVisitingCamera()))
// return true;
//
// Rect visibleRect(director->getVisibleOrigin(), director->getVisibleSize());
//
// // transform center point to screen space
// float hSizeX = size.width/2;
// float hSizeY = size.height/2;
// Vec3 v3p(hSizeX, hSizeY, 0);
// transform.transformPoint(&v3p);
// Vec2 v2p = Camera::getVisitingCamera()->projectGL(v3p);
//
// // convert content size to world coordinates
// float wshw = std::max(fabsf(hSizeX * transform.m[0] + hSizeY * transform.m[4]), fabsf(hSizeX * transform.m[0] - hSizeY * transform.m[4]));
// float wshh = std::max(fabsf(hSizeX * transform.m[1] + hSizeY * transform.m[5]), fabsf(hSizeX * transform.m[1] - hSizeY * transform.m[5]));
//
// // enlarge visible rect half size in screen coord
// visibleRect.origin.x -= wshw;
// visibleRect.origin.y -= wshh;
// visibleRect.size.width += wshw * 2;
// visibleRect.size.height += wshh * 2;
// bool ret = visibleRect.containsPoint(v2p);
// return ret;
// todo: minggo
return true;
}
backend::RenderPipeline* Renderer::getRenderPipeline(const backend::RenderPipelineDescriptor& descriptor)
{
struct
{
void* program;
void* blendState;
unsigned int vertexLayoutInfo[32];
backend::TextureFormat colorAttachment;
backend::TextureFormat depthAttachment;
backend::TextureFormat stencilAttachment;
}hashMe;
memset(&hashMe, 0, sizeof(hashMe));
hashMe.program = descriptor.programState->getProgram();
hashMe.blendState = descriptor.blendState;
hashMe.colorAttachment = descriptor.colorAttachmentsFormat[0];
hashMe.depthAttachment = descriptor.depthAttachmentFormat;
hashMe.stencilAttachment = descriptor.stencilAttachmentFormat;
int index = 0;
for(const auto& vertexLayout : descriptor.vertexLayouts)
{
if (!vertexLayout.isValid())
continue;
const auto& attributes = vertexLayout.getAttributes();
for (const auto& attribute : attributes)
{
/*
stepFunction:1 stride:15 offest:10 format:5 needNormalized:1
bit31 bit30 ~ bit16 bit15 ~ bit6 bit5 ~ bit1 bit0
*/
hashMe.vertexLayoutInfo[index++] =
((unsigned int)vertexLayout.getVertexStepMode() & 0x1) << 31 |
((unsigned int)(vertexLayout.getStride() & 0x7FFF)) << 16 |
((unsigned int)attribute.offset & 0x3FF) << 6 |
((unsigned int)attribute.format & 0x1F) << 1 |
((unsigned int)attribute.needToBeNormallized & 0x1);
}
}
unsigned int hash = XXH32((const void*)&hashMe, sizeof(hashMe), 0);
auto iter = _renderPipelineCache.find(hash);
if (_renderPipelineCache.end() == iter)
{
auto renderPipeline = backend::Device::getInstance()->newRenderPipeline(descriptor);
_renderPipelineCache.emplace(hash, renderPipeline);
return renderPipeline;
}
else
return iter->second;
}
void Renderer::setRenderPipeline(const PipelineDescriptor& pipelineDescriptor, const backend::RenderPassDescriptor& renderPassDescriptor)
{
backend::RenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.programState = pipelineDescriptor.programState;
renderPipelineDescriptor.vertexLayouts.push_back(pipelineDescriptor.vertexLayout);
auto device = backend::Device::getInstance();
auto blendState = device->createBlendState(pipelineDescriptor.blendDescriptor);
renderPipelineDescriptor.blendState = blendState;
backend::DepthStencilState* depthStencilState = nullptr;
if (_depthStencilDescriptor.depthTestEnabled ||
_depthStencilDescriptor.depthWriteEnabled ||
_depthStencilDescriptor.stencilTestEnabled)
{
depthStencilState = device->createDepthStencilState(_depthStencilDescriptor);
}
if (renderPassDescriptor.needColorAttachment)
{
// FIXME: now just handle color attachment 0.
if (renderPassDescriptor.colorAttachmentsTexture[0])
renderPipelineDescriptor.colorAttachmentsFormat[0] = renderPassDescriptor.colorAttachmentsTexture[0]->getTextureFormat();
}
if (renderPassDescriptor.needDepthAttachment)
{
if (renderPassDescriptor.depthAttachmentTexture)
renderPipelineDescriptor.depthAttachmentFormat = renderPassDescriptor.depthAttachmentTexture->getTextureFormat();
else
renderPipelineDescriptor.depthAttachmentFormat = backend::TextureFormat::D24S8;
}
if (renderPassDescriptor.needStencilAttachment)
{
if (renderPassDescriptor.stencilAttachmentTexture)
renderPipelineDescriptor.stencilAttachmentFormat = renderPassDescriptor.stencilAttachmentTexture->getTextureFormat();
else
renderPipelineDescriptor.stencilAttachmentFormat = backend::TextureFormat::D24S8;
}
_commandBuffer->setRenderPipeline(getRenderPipeline(renderPipelineDescriptor));
_commandBuffer->setDepthStencilState(depthStencilState);
}
void Renderer::beginRenderPass(RenderCommand* cmd)
{
_commandBuffer->beginRenderPass(_renderPassDescriptor);
_commandBuffer->setViewport(_viewport.x, _viewport.y, _viewport.w, _viewport.h);
_commandBuffer->setCullMode(_cullMode);
_commandBuffer->setWinding(_winding);
_commandBuffer->setScissorRect(_scissorState.isEnabled, _scissorState.rect.x, _scissorState.rect.y, _scissorState.rect.width, _scissorState.rect.height);
setRenderPipeline(cmd->getPipelineDescriptor(), _renderPassDescriptor);
_commandBuffer->setStencilReferenceValue(_stencilRef);
}
void Renderer::setRenderTarget(RenderTargetFlag flags, Texture2D* colorAttachment, Texture2D* depthAttachment, Texture2D* stencilAttachment)
{
_renderTargetFlag = flags;
if (flags & RenderTargetFlag::COLOR)
{
_renderPassDescriptor.needColorAttachment = true;
if (colorAttachment)
_renderPassDescriptor.colorAttachmentsTexture[0] = colorAttachment->getBackendTexture();
else
_renderPassDescriptor.colorAttachmentsTexture[0] = nullptr;
_colorAttachment = colorAttachment;
}
else
{
_colorAttachment = nullptr;
_renderPassDescriptor.needColorAttachment = false;
_renderPassDescriptor.colorAttachmentsTexture[0] = nullptr;
}
if (flags & RenderTargetFlag::DEPTH)
{
_renderPassDescriptor.needDepthAttachment = true;
if (depthAttachment)
_renderPassDescriptor.depthAttachmentTexture = depthAttachment->getBackendTexture();
else
_renderPassDescriptor.depthAttachmentTexture = nullptr;
_depthAttachment = depthAttachment;
}
else
{
_renderPassDescriptor.needDepthAttachment = false;
_renderPassDescriptor.depthAttachmentTexture = nullptr;
_depthAttachment = nullptr;
}
if (flags & RenderTargetFlag::STENCIL)
{
_stencilAttachment = stencilAttachment;
_renderPassDescriptor.needStencilAttachment = true;
if (_stencilAttachment)
_renderPassDescriptor.stencilAttachmentTexture = stencilAttachment->getBackendTexture();
else
_renderPassDescriptor.stencilAttachmentTexture = nullptr;
}
else
{
_stencilAttachment = nullptr;
_renderPassDescriptor.needStencilAttachment = false;
_renderPassDescriptor.stencilAttachmentTexture = nullptr;
}
}
void Renderer::clear(ClearFlag flags, const Color4F& color, float depth, unsigned int stencil)
{
_clearFlag = flags;
CallbackCommand* command = new CallbackCommand();
command->func = [=]() -> void {
backend::RenderPassDescriptor descriptor;
if (flags & ClearFlag::COLOR)
{
_clearColor = color;
descriptor.clearColorValue = {color.r, color.g, color.b, color.a};
descriptor.needClearColor = true;
descriptor.needColorAttachment = true;
descriptor.colorAttachmentsTexture[0] = _renderPassDescriptor.colorAttachmentsTexture[0];
}
if (flags & ClearFlag::DEPTH)
{
descriptor.clearDepthValue = depth;
descriptor.needClearDepth = true;
descriptor.needDepthAttachment = true;
descriptor.depthAttachmentTexture = _renderPassDescriptor.depthAttachmentTexture;
}
if (flags & ClearFlag::STENCIL)
{
descriptor.clearStencilValue = stencil;
descriptor.needClearStencil = true;
descriptor.needStencilAttachment = true;
descriptor.stencilAttachmentTexture = _renderPassDescriptor.stencilAttachmentTexture;
}
_commandBuffer->beginRenderPass(descriptor);
_commandBuffer->endRenderPass();
delete command;
};
addCommand(command);
}
Texture2D* Renderer::getColorAttachment() const
{
return _colorAttachment;
}
Texture2D* Renderer::getDepthAttachment() const
{
return _depthAttachment;
}
Texture2D* Renderer::getStencilAttachment() const
{
return _stencilAttachment;
}
const Color4F& Renderer::getClearColor() const
{
return _clearColor;
}
float Renderer::getClearDepth() const
{
return _renderPassDescriptor.clearDepthValue;
}
unsigned int Renderer::getClearStencil() const
{
return _renderPassDescriptor.clearStencilValue;
}
ClearFlag Renderer::getClearFlag() const
{
return _clearFlag;
}
RenderTargetFlag Renderer::getRenderTargetFlag() const
{
return _renderTargetFlag;
}
void Renderer::setScissorTest(bool enabled)
{
_scissorState.isEnabled = enabled;
}
bool Renderer::getScissorTest() const
{
return _scissorState.isEnabled;
}
const ScissorRect& Renderer::getScissorRect() const
{
return _scissorState.rect;
}
void Renderer::setScissorRect(float x, float y, float width, float height)
{
_scissorState.rect.x = x;
_scissorState.rect.y = y;
_scissorState.rect.width = width;
_scissorState.rect.height = height;
}
// TriangleCommandBufferManager
Renderer::TriangleCommandBufferManager::~TriangleCommandBufferManager()
{
for (auto& vertexBuffer : _vertexBufferPool)
vertexBuffer->release();
for (auto& indexBuffer : _indexBufferPool)
indexBuffer->release();
}
void Renderer::TriangleCommandBufferManager::init()
{
createBuffer();
}
void Renderer::TriangleCommandBufferManager::putbackAllBuffers()
{
_currentBufferIndex = 0;
}
void Renderer::TriangleCommandBufferManager::prepareNextBuffer()
{
if (_currentBufferIndex < (int)_vertexBufferPool.size() - 1)
{
++_currentBufferIndex;
return;
}
createBuffer();
++_currentBufferIndex;
}
backend::Buffer* Renderer::TriangleCommandBufferManager::getVertexBuffer() const
{
return _vertexBufferPool[_currentBufferIndex];
}
backend::Buffer* Renderer::TriangleCommandBufferManager::getIndexBuffer() const
{
return _indexBufferPool[_currentBufferIndex];
}
void Renderer::TriangleCommandBufferManager::createBuffer()
{
auto device = backend::Device::getInstance();
#ifdef CC_USE_METAL
// Metal doesn't need to update buffer to make sure it has the correct size.
auto vertexBuffer = device->newBuffer(Renderer::VBO_SIZE * sizeof(_verts[0]), backend::BufferType::VERTEX, backend::BufferUsage::DYNAMIC);
if (!vertexBuffer)
return;
auto indexBuffer = device->newBuffer(Renderer::INDEX_VBO_SIZE * sizeof(_indices[0]), backend::BufferType::INDEX, backend::BufferUsage::DYNAMIC);
if (!indexBuffer)
{
vertexBuffer->release();
return;
}
#else
auto tmpData = malloc(Renderer::VBO_SIZE * sizeof(V3F_C4B_T2F));
if (!tmpData)
return;
auto vertexBuffer = device->newBuffer(Renderer::VBO_SIZE * sizeof(V3F_C4B_T2F), backend::BufferType::VERTEX, backend::BufferUsage::DYNAMIC);
if (!vertexBuffer)
{
free(tmpData);
return;
}
vertexBuffer->updateData(tmpData, Renderer::VBO_SIZE * sizeof(V3F_C4B_T2F));
auto indexBuffer = device->newBuffer(Renderer::INDEX_VBO_SIZE * sizeof(unsigned short), backend::BufferType::INDEX, backend::BufferUsage::DYNAMIC);
if (! indexBuffer)
{
free(tmpData);
vertexBuffer->release();
return;
}
indexBuffer->updateData(tmpData, Renderer::INDEX_VBO_SIZE * sizeof(unsigned short));
free(tmpData);
#endif
_vertexBufferPool.push_back(vertexBuffer);
_indexBufferPool.push_back(indexBuffer);
}
NS_CC_END