mirror of https://github.com/axmolengine/axmol.git
155 lines
5.2 KiB
C
155 lines
5.2 KiB
C
/*
|
|
Copyright (c) 2008, Luke Benstead.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
|
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
#include <memory.h>
|
|
#include <assert.h>
|
|
|
|
#include "kazmath/utility.h"
|
|
#include "kazmath/vec4.h"
|
|
#include "kazmath/mat4.h"
|
|
|
|
|
|
kmVec4* kmVec4Fill(kmVec4* pOut, kmScalar x, kmScalar y, kmScalar z, kmScalar w)
|
|
{
|
|
pOut->x = x;
|
|
pOut->y = y;
|
|
pOut->z = z;
|
|
pOut->w = w;
|
|
return pOut;
|
|
}
|
|
|
|
|
|
/// Adds 2 4D vectors together. The result is store in pOut, the function returns
|
|
/// pOut so that it can be nested in another function.
|
|
kmVec4* kmVec4Add(kmVec4* pOut, const kmVec4* pV1, const kmVec4* pV2) {
|
|
pOut->x = pV1->x + pV2->x;
|
|
pOut->y = pV1->y + pV2->y;
|
|
pOut->z = pV1->z + pV2->z;
|
|
pOut->w = pV1->w + pV2->w;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/// Returns the dot product of 2 4D vectors
|
|
kmScalar kmVec4Dot(const kmVec4* pV1, const kmVec4* pV2) {
|
|
return ( pV1->x * pV2->x
|
|
+ pV1->y * pV2->y
|
|
+ pV1->z * pV2->z
|
|
+ pV1->w * pV2->w );
|
|
}
|
|
|
|
/// Returns the length of a 4D vector, this uses a sqrt so if the squared length will do use
|
|
/// kmVec4LengthSq
|
|
kmScalar kmVec4Length(const kmVec4* pIn) {
|
|
return sqrtf(kmSQR(pIn->x) + kmSQR(pIn->y) + kmSQR(pIn->z) + kmSQR(pIn->w));
|
|
}
|
|
|
|
/// Returns the length of the 4D vector squared.
|
|
kmScalar kmVec4LengthSq(const kmVec4* pIn) {
|
|
return kmSQR(pIn->x) + kmSQR(pIn->y) + kmSQR(pIn->z) + kmSQR(pIn->w);
|
|
}
|
|
|
|
/// Returns the interpolation of 2 4D vectors based on t. Currently not implemented!
|
|
kmVec4* kmVec4Lerp(kmVec4* pOut, const kmVec4* pV1, const kmVec4* pV2, kmScalar t) {
|
|
assert(0);
|
|
return pOut;
|
|
}
|
|
|
|
/// Normalizes a 4D vector. The result is stored in pOut. pOut is returned
|
|
kmVec4* kmVec4Normalize(kmVec4* pOut, const kmVec4* pIn) {
|
|
kmScalar l = 1.0f / kmVec4Length(pIn);
|
|
|
|
pOut->x *= l;
|
|
pOut->y *= l;
|
|
pOut->z *= l;
|
|
pOut->w *= l;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/// Scales a vector to the required length. This performs a Normalize before multiplying by S.
|
|
kmVec4* kmVec4Scale(kmVec4* pOut, const kmVec4* pIn, const kmScalar s) {
|
|
kmVec4Normalize(pOut, pIn);
|
|
|
|
pOut->x *= s;
|
|
pOut->y *= s;
|
|
pOut->z *= s;
|
|
pOut->w *= s;
|
|
return pOut;
|
|
}
|
|
|
|
/// Subtracts one 4D pV2 from pV1. The result is stored in pOut. pOut is returned
|
|
kmVec4* kmVec4Subtract(kmVec4* pOut, const kmVec4* pV1, const kmVec4* pV2) {
|
|
pOut->x = pV1->x - pV2->x;
|
|
pOut->y = pV1->y - pV2->y;
|
|
pOut->z = pV1->z - pV2->z;
|
|
pOut->w = pV1->w - pV2->w;
|
|
|
|
return pOut;
|
|
}
|
|
|
|
/// Transforms a 4D vector by a matrix, the result is stored in pOut, and pOut is returned.
|
|
kmVec4* kmVec4Transform(kmVec4* pOut, const kmVec4* pV, const kmMat4* pM) {
|
|
pOut->x = pV->x * pM->mat[0] + pV->y * pM->mat[4] + pV->z * pM->mat[8] + pV->w * pM->mat[12];
|
|
pOut->y = pV->x * pM->mat[1] + pV->y * pM->mat[5] + pV->z * pM->mat[9] + pV->w * pM->mat[13];
|
|
pOut->z = pV->x * pM->mat[2] + pV->y * pM->mat[6] + pV->z * pM->mat[10] + pV->w * pM->mat[14];
|
|
pOut->w = pV->x * pM->mat[3] + pV->y * pM->mat[7] + pV->z * pM->mat[11] + pV->w * pM->mat[15];
|
|
return pOut;
|
|
}
|
|
|
|
/// Loops through an input array transforming each vec4 by the matrix.
|
|
kmVec4* kmVec4TransformArray(kmVec4* pOut, unsigned int outStride,
|
|
const kmVec4* pV, unsigned int vStride, const kmMat4* pM, unsigned int count) {
|
|
unsigned int i = 0;
|
|
//Go through all of the vectors
|
|
while (i < count) {
|
|
const kmVec4* in = pV + (i * vStride); //Get a pointer to the current input
|
|
kmVec4* out = pOut + (i * outStride); //and the current output
|
|
kmVec4Transform(out, in, pM); //Perform transform on it
|
|
++i;
|
|
}
|
|
|
|
return pOut;
|
|
}
|
|
|
|
int kmVec4AreEqual(const kmVec4* p1, const kmVec4* p2) {
|
|
return (
|
|
(p1->x < p2->x + kmEpsilon && p1->x > p2->x - kmEpsilon) &&
|
|
(p1->y < p2->y + kmEpsilon && p1->y > p2->y - kmEpsilon) &&
|
|
(p1->z < p2->z + kmEpsilon && p1->z > p2->z - kmEpsilon) &&
|
|
(p1->w < p2->w + kmEpsilon && p1->w > p2->w - kmEpsilon)
|
|
);
|
|
}
|
|
|
|
kmVec4* kmVec4Assign(kmVec4* pOut, const kmVec4* pIn) {
|
|
assert(pOut != pIn);
|
|
|
|
memcpy(pOut, pIn, sizeof(float) * 4);
|
|
|
|
return pOut;
|
|
}
|
|
|