axmol/3rdparty/flatbuffers/stl_emulation.h

515 lines
19 KiB
C++

/*
* Copyright 2017 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLATBUFFERS_STL_EMULATION_H_
#define FLATBUFFERS_STL_EMULATION_H_
// clang-format off
#include "flatbuffers/base.h"
#include <string>
#include <type_traits>
#include <vector>
#include <memory>
#include <limits>
#ifndef FLATBUFFERS_USE_STD_OPTIONAL
// Detect C++17 compatible compiler.
// __cplusplus >= 201703L - a compiler has support of 'static inline' variables.
#if (defined(__cplusplus) && __cplusplus >= 201703L) \
|| (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define FLATBUFFERS_USE_STD_OPTIONAL 1
#else
#define FLATBUFFERS_USE_STD_OPTIONAL 0
#endif // (defined(__cplusplus) && __cplusplus >= 201703L) ...
#endif // FLATBUFFERS_USE_STD_OPTIONAL
#if FLATBUFFERS_USE_STD_OPTIONAL
#include <optional>
#endif
#ifndef FLATBUFFERS_USE_STD_SPAN
// Testing __cpp_lib_span requires including either <version> or <span>,
// both of which were added in C++20.
// See: https://en.cppreference.com/w/cpp/utility/feature_test
#if defined(__cplusplus) && __cplusplus >= 202002L \
|| (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L)
#define FLATBUFFERS_USE_STD_SPAN 1
#endif
#endif // FLATBUFFERS_USE_STD_SPAN
#if defined(FLATBUFFERS_USE_STD_SPAN)
#include <array>
#include <span>
#else
// Disable non-trivial ctors if FLATBUFFERS_SPAN_MINIMAL defined.
#if !defined(FLATBUFFERS_TEMPLATES_ALIASES)
#define FLATBUFFERS_SPAN_MINIMAL
#else
// Enable implicit construction of a span<T,N> from a std::array<T,N>.
#include <array>
#endif
#endif // defined(FLATBUFFERS_USE_STD_SPAN)
// This header provides backwards compatibility for older versions of the STL.
namespace flatbuffers {
#if defined(FLATBUFFERS_TEMPLATES_ALIASES)
template <typename T>
using numeric_limits = std::numeric_limits<T>;
#else
template <typename T> class numeric_limits :
public std::numeric_limits<T> {};
#endif // defined(FLATBUFFERS_TEMPLATES_ALIASES)
#if defined(FLATBUFFERS_TEMPLATES_ALIASES)
template <typename T> using is_scalar = std::is_scalar<T>;
template <typename T, typename U> using is_same = std::is_same<T,U>;
template <typename T> using is_floating_point = std::is_floating_point<T>;
template <typename T> using is_unsigned = std::is_unsigned<T>;
template <typename T> using is_enum = std::is_enum<T>;
template <typename T> using make_unsigned = std::make_unsigned<T>;
template<bool B, class T, class F>
using conditional = std::conditional<B, T, F>;
template<class T, T v>
using integral_constant = std::integral_constant<T, v>;
template <bool B>
using bool_constant = integral_constant<bool, B>;
using true_type = std::true_type;
using false_type = std::false_type;
#else
// MSVC 2010 doesn't support C++11 aliases.
template <typename T> struct is_scalar : public std::is_scalar<T> {};
template <typename T, typename U> struct is_same : public std::is_same<T,U> {};
template <typename T> struct is_floating_point :
public std::is_floating_point<T> {};
template <typename T> struct is_unsigned : public std::is_unsigned<T> {};
template <typename T> struct is_enum : public std::is_enum<T> {};
template <typename T> struct make_unsigned : public std::make_unsigned<T> {};
template<bool B, class T, class F>
struct conditional : public std::conditional<B, T, F> {};
template<class T, T v>
struct integral_constant : public std::integral_constant<T, v> {};
template <bool B>
struct bool_constant : public integral_constant<bool, B> {};
typedef bool_constant<true> true_type;
typedef bool_constant<false> false_type;
#endif // defined(FLATBUFFERS_TEMPLATES_ALIASES)
#if defined(FLATBUFFERS_TEMPLATES_ALIASES)
template <class T> using unique_ptr = std::unique_ptr<T>;
#else
// MSVC 2010 doesn't support C++11 aliases.
// We're manually "aliasing" the class here as we want to bring unique_ptr
// into the flatbuffers namespace. We have unique_ptr in the flatbuffers
// namespace we have a completely independent implementation (see below)
// for C++98 STL implementations.
template <class T> class unique_ptr : public std::unique_ptr<T> {
public:
unique_ptr() {}
explicit unique_ptr(T* p) : std::unique_ptr<T>(p) {}
unique_ptr(std::unique_ptr<T>&& u) { *this = std::move(u); }
unique_ptr(unique_ptr&& u) { *this = std::move(u); }
unique_ptr& operator=(std::unique_ptr<T>&& u) {
std::unique_ptr<T>::reset(u.release());
return *this;
}
unique_ptr& operator=(unique_ptr&& u) {
std::unique_ptr<T>::reset(u.release());
return *this;
}
unique_ptr& operator=(T* p) {
return std::unique_ptr<T>::operator=(p);
}
};
#endif // defined(FLATBUFFERS_TEMPLATES_ALIASES)
#if FLATBUFFERS_USE_STD_OPTIONAL
template<class T>
using Optional = std::optional<T>;
using nullopt_t = std::nullopt_t;
inline constexpr nullopt_t nullopt = std::nullopt;
#else
// Limited implementation of Optional<T> type for a scalar T.
// This implementation limited by trivial types compatible with
// std::is_arithmetic<T> or std::is_enum<T> type traits.
// A tag to indicate an empty flatbuffers::optional<T>.
struct nullopt_t {
explicit FLATBUFFERS_CONSTEXPR_CPP11 nullopt_t(int) {}
};
#if defined(FLATBUFFERS_CONSTEXPR_DEFINED)
namespace internal {
template <class> struct nullopt_holder {
static constexpr nullopt_t instance_ = nullopt_t(0);
};
template<class Dummy>
constexpr nullopt_t nullopt_holder<Dummy>::instance_;
}
static constexpr const nullopt_t &nullopt = internal::nullopt_holder<void>::instance_;
#else
namespace internal {
template <class> struct nullopt_holder {
static const nullopt_t instance_;
};
template<class Dummy>
const nullopt_t nullopt_holder<Dummy>::instance_ = nullopt_t(0);
}
static const nullopt_t &nullopt = internal::nullopt_holder<void>::instance_;
#endif
template<class T>
class Optional FLATBUFFERS_FINAL_CLASS {
// Non-scalar 'T' would extremely complicated Optional<T>.
// Use is_scalar<T> checking because flatbuffers flatbuffers::is_arithmetic<T>
// isn't implemented.
static_assert(flatbuffers::is_scalar<T>::value, "unexpected type T");
public:
~Optional() {}
FLATBUFFERS_CONSTEXPR_CPP11 Optional() FLATBUFFERS_NOEXCEPT
: value_(), has_value_(false) {}
FLATBUFFERS_CONSTEXPR_CPP11 Optional(nullopt_t) FLATBUFFERS_NOEXCEPT
: value_(), has_value_(false) {}
FLATBUFFERS_CONSTEXPR_CPP11 Optional(T val) FLATBUFFERS_NOEXCEPT
: value_(val), has_value_(true) {}
FLATBUFFERS_CONSTEXPR_CPP11 Optional(const Optional &other) FLATBUFFERS_NOEXCEPT
: value_(other.value_), has_value_(other.has_value_) {}
FLATBUFFERS_CONSTEXPR_CPP14 Optional &operator=(const Optional &other) FLATBUFFERS_NOEXCEPT {
value_ = other.value_;
has_value_ = other.has_value_;
return *this;
}
FLATBUFFERS_CONSTEXPR_CPP14 Optional &operator=(nullopt_t) FLATBUFFERS_NOEXCEPT {
value_ = T();
has_value_ = false;
return *this;
}
FLATBUFFERS_CONSTEXPR_CPP14 Optional &operator=(T val) FLATBUFFERS_NOEXCEPT {
value_ = val;
has_value_ = true;
return *this;
}
void reset() FLATBUFFERS_NOEXCEPT {
*this = nullopt;
}
void swap(Optional &other) FLATBUFFERS_NOEXCEPT {
std::swap(value_, other.value_);
std::swap(has_value_, other.has_value_);
}
FLATBUFFERS_CONSTEXPR_CPP11 FLATBUFFERS_EXPLICIT_CPP11 operator bool() const FLATBUFFERS_NOEXCEPT {
return has_value_;
}
FLATBUFFERS_CONSTEXPR_CPP11 bool has_value() const FLATBUFFERS_NOEXCEPT {
return has_value_;
}
FLATBUFFERS_CONSTEXPR_CPP11 const T& operator*() const FLATBUFFERS_NOEXCEPT {
return value_;
}
const T& value() const {
FLATBUFFERS_ASSERT(has_value());
return value_;
}
T value_or(T default_value) const FLATBUFFERS_NOEXCEPT {
return has_value() ? value_ : default_value;
}
private:
T value_;
bool has_value_;
};
template<class T>
FLATBUFFERS_CONSTEXPR_CPP11 bool operator==(const Optional<T>& opt, nullopt_t) FLATBUFFERS_NOEXCEPT {
return !opt;
}
template<class T>
FLATBUFFERS_CONSTEXPR_CPP11 bool operator==(nullopt_t, const Optional<T>& opt) FLATBUFFERS_NOEXCEPT {
return !opt;
}
template<class T, class U>
FLATBUFFERS_CONSTEXPR_CPP11 bool operator==(const Optional<T>& lhs, const U& rhs) FLATBUFFERS_NOEXCEPT {
return static_cast<bool>(lhs) && (*lhs == rhs);
}
template<class T, class U>
FLATBUFFERS_CONSTEXPR_CPP11 bool operator==(const T& lhs, const Optional<U>& rhs) FLATBUFFERS_NOEXCEPT {
return static_cast<bool>(rhs) && (lhs == *rhs);
}
template<class T, class U>
FLATBUFFERS_CONSTEXPR_CPP11 bool operator==(const Optional<T>& lhs, const Optional<U>& rhs) FLATBUFFERS_NOEXCEPT {
return static_cast<bool>(lhs) != static_cast<bool>(rhs)
? false
: !static_cast<bool>(lhs) ? false : (*lhs == *rhs);
}
#endif // FLATBUFFERS_USE_STD_OPTIONAL
// Very limited and naive partial implementation of C++20 std::span<T,Extent>.
#if defined(FLATBUFFERS_USE_STD_SPAN)
inline constexpr std::size_t dynamic_extent = std::dynamic_extent;
template<class T, std::size_t Extent = std::dynamic_extent>
using span = std::span<T, Extent>;
#else // !defined(FLATBUFFERS_USE_STD_SPAN)
FLATBUFFERS_CONSTEXPR std::size_t dynamic_extent = static_cast<std::size_t>(-1);
// Exclude this code if MSVC2010 or non-STL Android is active.
// The non-STL Android doesn't have `std::is_convertible` required for SFINAE.
#if !defined(FLATBUFFERS_SPAN_MINIMAL)
namespace internal {
// This is SFINAE helper class for checking of a common condition:
// > This overload only participates in overload resolution
// > Check whether a pointer to an array of From can be converted
// > to a pointer to an array of To.
// This helper is used for checking of 'From -> const From'.
template<class To, std::size_t Extent, class From, std::size_t N>
struct is_span_convertible {
using type =
typename std::conditional<std::is_convertible<From (*)[], To (*)[]>::value
&& (Extent == dynamic_extent || N == Extent),
int, void>::type;
};
template<typename T>
struct SpanIterator {
// TODO: upgrade to std::random_access_iterator_tag.
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = typename std::remove_cv<T>::type;
using reference = T&;
using pointer = T*;
// Convince MSVC compiler that this iterator is trusted (it is verified).
#ifdef _MSC_VER
using _Unchecked_type = pointer;
#endif // _MSC_VER
SpanIterator(pointer ptr) : ptr_(ptr) {}
reference operator*() const { return *ptr_; }
pointer operator->() { return ptr_; }
SpanIterator& operator++() { ptr_++; return *this; }
SpanIterator operator++(int) { auto tmp = *this; ++(*this); return tmp; }
friend bool operator== (const SpanIterator& lhs, const SpanIterator& rhs) { return lhs.ptr_ == rhs.ptr_; }
friend bool operator!= (const SpanIterator& lhs, const SpanIterator& rhs) { return lhs.ptr_ != rhs.ptr_; }
private:
pointer ptr_;
};
} // namespace internal
#endif // !defined(FLATBUFFERS_SPAN_MINIMAL)
// T - element type; must be a complete type that is not an abstract
// class type.
// Extent - the number of elements in the sequence, or dynamic.
template<class T, std::size_t Extent = dynamic_extent>
class span FLATBUFFERS_FINAL_CLASS {
public:
typedef T element_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
typedef std::size_t size_type;
static FLATBUFFERS_CONSTEXPR size_type extent = Extent;
// Returns the number of elements in the span.
FLATBUFFERS_CONSTEXPR_CPP11 size_type size() const FLATBUFFERS_NOEXCEPT {
return count_;
}
// Returns the size of the sequence in bytes.
FLATBUFFERS_CONSTEXPR_CPP11
size_type size_bytes() const FLATBUFFERS_NOEXCEPT {
return size() * sizeof(element_type);
}
// Checks if the span is empty.
FLATBUFFERS_CONSTEXPR_CPP11 bool empty() const FLATBUFFERS_NOEXCEPT {
return size() == 0;
}
// Returns a pointer to the beginning of the sequence.
FLATBUFFERS_CONSTEXPR_CPP11 pointer data() const FLATBUFFERS_NOEXCEPT {
return data_;
}
#if !defined(FLATBUFFERS_SPAN_MINIMAL)
using Iterator = internal::SpanIterator<T>;
Iterator begin() const { return Iterator(data()); }
Iterator end() const { return Iterator(data() + size()); }
#endif
// Returns a reference to the idx-th element of the sequence.
// The behavior is undefined if the idx is greater than or equal to size().
FLATBUFFERS_CONSTEXPR_CPP11 reference operator[](size_type idx) const {
return data()[idx];
}
FLATBUFFERS_CONSTEXPR_CPP11 span(const span &other) FLATBUFFERS_NOEXCEPT
: data_(other.data_), count_(other.count_) {}
FLATBUFFERS_CONSTEXPR_CPP14 span &operator=(const span &other)
FLATBUFFERS_NOEXCEPT {
data_ = other.data_;
count_ = other.count_;
}
// Limited implementation of
// `template <class It> constexpr std::span(It first, size_type count);`.
//
// Constructs a span that is a view over the range [first, first + count);
// the resulting span has: data() == first and size() == count.
// The behavior is undefined if [first, first + count) is not a valid range,
// or if (extent != flatbuffers::dynamic_extent && count != extent).
FLATBUFFERS_CONSTEXPR_CPP11
explicit span(pointer first, size_type count) FLATBUFFERS_NOEXCEPT
: data_ (Extent == dynamic_extent ? first : (Extent == count ? first : nullptr)),
count_(Extent == dynamic_extent ? count : (Extent == count ? Extent : 0)) {
// Make span empty if the count argument is incompatible with span<T,N>.
}
// Exclude this code if MSVC2010 is active. The MSVC2010 isn't C++11
// compliant, it doesn't support default template arguments for functions.
#if defined(FLATBUFFERS_SPAN_MINIMAL)
FLATBUFFERS_CONSTEXPR_CPP11 span() FLATBUFFERS_NOEXCEPT : data_(nullptr),
count_(0) {
static_assert(extent == 0 || extent == dynamic_extent, "invalid span");
}
#else
// Constructs an empty span whose data() == nullptr and size() == 0.
// This overload only participates in overload resolution if
// extent == 0 || extent == flatbuffers::dynamic_extent.
// A dummy template argument N is need dependency for SFINAE.
template<std::size_t N = 0,
typename internal::is_span_convertible<element_type, Extent, element_type, (N - N)>::type = 0>
FLATBUFFERS_CONSTEXPR_CPP11 span() FLATBUFFERS_NOEXCEPT : data_(nullptr),
count_(0) {
static_assert(extent == 0 || extent == dynamic_extent, "invalid span");
}
// Constructs a span that is a view over the array arr; the resulting span
// has size() == N and data() == std::data(arr). These overloads only
// participate in overload resolution if
// extent == std::dynamic_extent || N == extent is true and
// std::remove_pointer_t<decltype(std::data(arr))>(*)[]
// is convertible to element_type (*)[].
template<std::size_t N,
typename internal::is_span_convertible<element_type, Extent, element_type, N>::type = 0>
FLATBUFFERS_CONSTEXPR_CPP11 span(element_type (&arr)[N]) FLATBUFFERS_NOEXCEPT
: data_(arr), count_(N) {}
template<class U, std::size_t N,
typename internal::is_span_convertible<element_type, Extent, U, N>::type = 0>
FLATBUFFERS_CONSTEXPR_CPP11 span(std::array<U, N> &arr) FLATBUFFERS_NOEXCEPT
: data_(arr.data()), count_(N) {}
//template<class U, std::size_t N,
// int = 0>
//FLATBUFFERS_CONSTEXPR_CPP11 span(std::array<U, N> &arr) FLATBUFFERS_NOEXCEPT
// : data_(arr.data()), count_(N) {}
template<class U, std::size_t N,
typename internal::is_span_convertible<element_type, Extent, U, N>::type = 0>
FLATBUFFERS_CONSTEXPR_CPP11 span(const std::array<U, N> &arr) FLATBUFFERS_NOEXCEPT
: data_(arr.data()), count_(N) {}
// Converting constructor from another span s;
// the resulting span has size() == s.size() and data() == s.data().
// This overload only participates in overload resolution
// if extent == std::dynamic_extent || N == extent is true and U (*)[]
// is convertible to element_type (*)[].
template<class U, std::size_t N,
typename internal::is_span_convertible<element_type, Extent, U, N>::type = 0>
FLATBUFFERS_CONSTEXPR_CPP11 span(const flatbuffers::span<U, N> &s) FLATBUFFERS_NOEXCEPT
: span(s.data(), s.size()) {
}
#endif // !defined(FLATBUFFERS_SPAN_MINIMAL)
private:
// This is a naive implementation with 'count_' member even if (Extent != dynamic_extent).
pointer const data_;
size_type count_;
};
#endif // defined(FLATBUFFERS_USE_STD_SPAN)
#if !defined(FLATBUFFERS_SPAN_MINIMAL)
template<class ElementType, std::size_t Extent>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<ElementType, Extent> make_span(ElementType(&arr)[Extent]) FLATBUFFERS_NOEXCEPT {
return span<ElementType, Extent>(arr);
}
template<class ElementType, std::size_t Extent>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<const ElementType, Extent> make_span(const ElementType(&arr)[Extent]) FLATBUFFERS_NOEXCEPT {
return span<const ElementType, Extent>(arr);
}
template<class ElementType, std::size_t Extent>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<ElementType, Extent> make_span(std::array<ElementType, Extent> &arr) FLATBUFFERS_NOEXCEPT {
return span<ElementType, Extent>(arr);
}
template<class ElementType, std::size_t Extent>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<const ElementType, Extent> make_span(const std::array<ElementType, Extent> &arr) FLATBUFFERS_NOEXCEPT {
return span<const ElementType, Extent>(arr);
}
template<class ElementType, std::size_t Extent>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<ElementType, dynamic_extent> make_span(ElementType *first, std::size_t count) FLATBUFFERS_NOEXCEPT {
return span<ElementType, dynamic_extent>(first, count);
}
template<class ElementType, std::size_t Extent>
FLATBUFFERS_CONSTEXPR_CPP11
flatbuffers::span<const ElementType, dynamic_extent> make_span(const ElementType *first, std::size_t count) FLATBUFFERS_NOEXCEPT {
return span<const ElementType, dynamic_extent>(first, count);
}
#endif // !defined(FLATBUFFERS_SPAN_MINIMAL)
} // namespace flatbuffers
#endif // FLATBUFFERS_STL_EMULATION_H_