mirror of https://github.com/axmolengine/axmol.git
768 lines
22 KiB
C++
768 lines
22 KiB
C++
/*
|
|
* Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith
|
|
* Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.
|
|
* All rights reserved. Email: russ@q12.org Web: www.q12.org
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Bullet is Copyright (c) 2003-2006 Erwin Coumans https://bulletphysics.org
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
///ODE box-box collision detection is adapted to work with Bullet
|
|
|
|
#include "btBoxBoxDetector.h"
|
|
#include "BulletCollision/CollisionShapes/btBoxShape.h"
|
|
|
|
#include <float.h>
|
|
#include <string.h>
|
|
|
|
btBoxBoxDetector::btBoxBoxDetector(const btBoxShape* box1, const btBoxShape* box2)
|
|
: m_box1(box1),
|
|
m_box2(box2)
|
|
{
|
|
}
|
|
|
|
// given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and
|
|
// generate contact points. this returns 0 if there is no contact otherwise
|
|
// it returns the number of contacts generated.
|
|
// `normal' returns the contact normal.
|
|
// `depth' returns the maximum penetration depth along that normal.
|
|
// `return_code' returns a number indicating the type of contact that was
|
|
// detected:
|
|
// 1,2,3 = box 2 intersects with a face of box 1
|
|
// 4,5,6 = box 1 intersects with a face of box 2
|
|
// 7..15 = edge-edge contact
|
|
// `maxc' is the maximum number of contacts allowed to be generated, i.e.
|
|
// the size of the `contact' array.
|
|
// `contact' and `skip' are the contact array information provided to the
|
|
// collision functions. this function only fills in the position and depth
|
|
// fields.
|
|
struct dContactGeom;
|
|
#define dDOTpq(a, b, p, q) ((a)[0] * (b)[0] + (a)[p] * (b)[q] + (a)[2 * (p)] * (b)[2 * (q)])
|
|
#define dInfinity FLT_MAX
|
|
|
|
/*PURE_INLINE btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
|
|
PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); }
|
|
PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); }
|
|
PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); }
|
|
*/
|
|
static btScalar dDOT(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 1, 1); }
|
|
static btScalar dDOT44(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 4, 4); }
|
|
static btScalar dDOT41(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 4, 1); }
|
|
static btScalar dDOT14(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 1, 4); }
|
|
#define dMULTIPLYOP1_331(A, op, B, C) \
|
|
{ \
|
|
(A)[0] op dDOT41((B), (C)); \
|
|
(A)[1] op dDOT41((B + 1), (C)); \
|
|
(A)[2] op dDOT41((B + 2), (C)); \
|
|
}
|
|
|
|
#define dMULTIPLYOP0_331(A, op, B, C) \
|
|
{ \
|
|
(A)[0] op dDOT((B), (C)); \
|
|
(A)[1] op dDOT((B + 4), (C)); \
|
|
(A)[2] op dDOT((B + 8), (C)); \
|
|
}
|
|
|
|
#define dMULTIPLY1_331(A, B, C) dMULTIPLYOP1_331(A, =, B, C)
|
|
#define dMULTIPLY0_331(A, B, C) dMULTIPLYOP0_331(A, =, B, C)
|
|
|
|
typedef btScalar dMatrix3[4 * 3];
|
|
|
|
void dLineClosestApproach(const btVector3& pa, const btVector3& ua,
|
|
const btVector3& pb, const btVector3& ub,
|
|
btScalar* alpha, btScalar* beta);
|
|
void dLineClosestApproach(const btVector3& pa, const btVector3& ua,
|
|
const btVector3& pb, const btVector3& ub,
|
|
btScalar* alpha, btScalar* beta)
|
|
{
|
|
btVector3 p;
|
|
p[0] = pb[0] - pa[0];
|
|
p[1] = pb[1] - pa[1];
|
|
p[2] = pb[2] - pa[2];
|
|
btScalar uaub = dDOT(ua, ub);
|
|
btScalar q1 = dDOT(ua, p);
|
|
btScalar q2 = -dDOT(ub, p);
|
|
btScalar d = 1 - uaub * uaub;
|
|
if (d <= btScalar(0.0001f))
|
|
{
|
|
// @@@ this needs to be made more robust
|
|
*alpha = 0;
|
|
*beta = 0;
|
|
}
|
|
else
|
|
{
|
|
d = 1.f / d;
|
|
*alpha = (q1 + uaub * q2) * d;
|
|
*beta = (uaub * q1 + q2) * d;
|
|
}
|
|
}
|
|
|
|
// find all the intersection points between the 2D rectangle with vertices
|
|
// at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]),
|
|
// (p[2],p[3]),(p[4],p[5]),(p[6],p[7]).
|
|
//
|
|
// the intersection points are returned as x,y pairs in the 'ret' array.
|
|
// the number of intersection points is returned by the function (this will
|
|
// be in the range 0 to 8).
|
|
|
|
static int intersectRectQuad2(btScalar h[2], btScalar p[8], btScalar ret[16])
|
|
{
|
|
// q (and r) contain nq (and nr) coordinate points for the current (and
|
|
// chopped) polygons
|
|
int nq = 4, nr = 0;
|
|
btScalar buffer[16];
|
|
btScalar* q = p;
|
|
btScalar* r = ret;
|
|
for (int dir = 0; dir <= 1; dir++)
|
|
{
|
|
// direction notation: xy[0] = x axis, xy[1] = y axis
|
|
for (int sign = -1; sign <= 1; sign += 2)
|
|
{
|
|
// chop q along the line xy[dir] = sign*h[dir]
|
|
btScalar* pq = q;
|
|
btScalar* pr = r;
|
|
nr = 0;
|
|
for (int i = nq; i > 0; i--)
|
|
{
|
|
// go through all points in q and all lines between adjacent points
|
|
if (sign * pq[dir] < h[dir])
|
|
{
|
|
// this point is inside the chopping line
|
|
pr[0] = pq[0];
|
|
pr[1] = pq[1];
|
|
pr += 2;
|
|
nr++;
|
|
if (nr & 8)
|
|
{
|
|
q = r;
|
|
goto done;
|
|
}
|
|
}
|
|
btScalar* nextq = (i > 1) ? pq + 2 : q;
|
|
if ((sign * pq[dir] < h[dir]) ^ (sign * nextq[dir] < h[dir]))
|
|
{
|
|
// this line crosses the chopping line
|
|
pr[1 - dir] = pq[1 - dir] + (nextq[1 - dir] - pq[1 - dir]) /
|
|
(nextq[dir] - pq[dir]) * (sign * h[dir] - pq[dir]);
|
|
pr[dir] = sign * h[dir];
|
|
pr += 2;
|
|
nr++;
|
|
if (nr & 8)
|
|
{
|
|
q = r;
|
|
goto done;
|
|
}
|
|
}
|
|
pq += 2;
|
|
}
|
|
q = r;
|
|
r = (q == ret) ? buffer : ret;
|
|
nq = nr;
|
|
}
|
|
}
|
|
done:
|
|
if (q != ret) memcpy(ret, q, nr * 2 * sizeof(btScalar));
|
|
return nr;
|
|
}
|
|
|
|
#define M__PI 3.14159265f
|
|
|
|
// given n points in the plane (array p, of size 2*n), generate m points that
|
|
// best represent the whole set. the definition of 'best' here is not
|
|
// predetermined - the idea is to select points that give good box-box
|
|
// collision detection behavior. the chosen point indexes are returned in the
|
|
// array iret (of size m). 'i0' is always the first entry in the array.
|
|
// n must be in the range [1..8]. m must be in the range [1..n]. i0 must be
|
|
// in the range [0..n-1].
|
|
|
|
void cullPoints2(int n, btScalar p[], int m, int i0, int iret[]);
|
|
void cullPoints2(int n, btScalar p[], int m, int i0, int iret[])
|
|
{
|
|
// compute the centroid of the polygon in cx,cy
|
|
int i, j;
|
|
btScalar a, cx, cy, q;
|
|
if (n == 1)
|
|
{
|
|
cx = p[0];
|
|
cy = p[1];
|
|
}
|
|
else if (n == 2)
|
|
{
|
|
cx = btScalar(0.5) * (p[0] + p[2]);
|
|
cy = btScalar(0.5) * (p[1] + p[3]);
|
|
}
|
|
else
|
|
{
|
|
a = 0;
|
|
cx = 0;
|
|
cy = 0;
|
|
for (i = 0; i < (n - 1); i++)
|
|
{
|
|
q = p[i * 2] * p[i * 2 + 3] - p[i * 2 + 2] * p[i * 2 + 1];
|
|
a += q;
|
|
cx += q * (p[i * 2] + p[i * 2 + 2]);
|
|
cy += q * (p[i * 2 + 1] + p[i * 2 + 3]);
|
|
}
|
|
q = p[n * 2 - 2] * p[1] - p[0] * p[n * 2 - 1];
|
|
if (btFabs(a + q) > SIMD_EPSILON)
|
|
{
|
|
a = 1.f / (btScalar(3.0) * (a + q));
|
|
}
|
|
else
|
|
{
|
|
a = BT_LARGE_FLOAT;
|
|
}
|
|
cx = a * (cx + q * (p[n * 2 - 2] + p[0]));
|
|
cy = a * (cy + q * (p[n * 2 - 1] + p[1]));
|
|
}
|
|
|
|
// compute the angle of each point w.r.t. the centroid
|
|
btScalar A[8];
|
|
for (i = 0; i < n; i++) A[i] = btAtan2(p[i * 2 + 1] - cy, p[i * 2] - cx);
|
|
|
|
// search for points that have angles closest to A[i0] + i*(2*pi/m).
|
|
int avail[8];
|
|
for (i = 0; i < n; i++) avail[i] = 1;
|
|
avail[i0] = 0;
|
|
iret[0] = i0;
|
|
iret++;
|
|
for (j = 1; j < m; j++)
|
|
{
|
|
a = btScalar(j) * (2 * M__PI / m) + A[i0];
|
|
if (a > M__PI) a -= 2 * M__PI;
|
|
btScalar maxdiff = 1e9, diff;
|
|
|
|
*iret = i0; // iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (avail[i])
|
|
{
|
|
diff = btFabs(A[i] - a);
|
|
if (diff > M__PI) diff = 2 * M__PI - diff;
|
|
if (diff < maxdiff)
|
|
{
|
|
maxdiff = diff;
|
|
*iret = i;
|
|
}
|
|
}
|
|
}
|
|
#if defined(DEBUG) || defined(_DEBUG)
|
|
btAssert(*iret != i0); // ensure iret got set
|
|
#endif
|
|
avail[*iret] = 0;
|
|
iret++;
|
|
}
|
|
}
|
|
|
|
int dBoxBox2(const btVector3& p1, const dMatrix3 R1,
|
|
const btVector3& side1, const btVector3& p2,
|
|
const dMatrix3 R2, const btVector3& side2,
|
|
btVector3& normal, btScalar* depth, int* return_code,
|
|
int maxc, dContactGeom* /*contact*/, int /*skip*/, btDiscreteCollisionDetectorInterface::Result& output);
|
|
int dBoxBox2(const btVector3& p1, const dMatrix3 R1,
|
|
const btVector3& side1, const btVector3& p2,
|
|
const dMatrix3 R2, const btVector3& side2,
|
|
btVector3& normal, btScalar* depth, int* return_code,
|
|
int maxc, dContactGeom* /*contact*/, int /*skip*/, btDiscreteCollisionDetectorInterface::Result& output)
|
|
{
|
|
const btScalar fudge_factor = btScalar(1.05);
|
|
btVector3 p, pp, normalC(0.f, 0.f, 0.f);
|
|
const btScalar* normalR = 0;
|
|
btScalar A[3], B[3], R11, R12, R13, R21, R22, R23, R31, R32, R33,
|
|
Q11, Q12, Q13, Q21, Q22, Q23, Q31, Q32, Q33, s, s2, l;
|
|
int i, j, invert_normal, code;
|
|
|
|
// get vector from centers of box 1 to box 2, relative to box 1
|
|
p = p2 - p1;
|
|
dMULTIPLY1_331(pp, R1, p); // get pp = p relative to body 1
|
|
|
|
// get side lengths / 2
|
|
A[0] = side1[0] * btScalar(0.5);
|
|
A[1] = side1[1] * btScalar(0.5);
|
|
A[2] = side1[2] * btScalar(0.5);
|
|
B[0] = side2[0] * btScalar(0.5);
|
|
B[1] = side2[1] * btScalar(0.5);
|
|
B[2] = side2[2] * btScalar(0.5);
|
|
|
|
// Rij is R1'*R2, i.e. the relative rotation between R1 and R2
|
|
R11 = dDOT44(R1 + 0, R2 + 0);
|
|
R12 = dDOT44(R1 + 0, R2 + 1);
|
|
R13 = dDOT44(R1 + 0, R2 + 2);
|
|
R21 = dDOT44(R1 + 1, R2 + 0);
|
|
R22 = dDOT44(R1 + 1, R2 + 1);
|
|
R23 = dDOT44(R1 + 1, R2 + 2);
|
|
R31 = dDOT44(R1 + 2, R2 + 0);
|
|
R32 = dDOT44(R1 + 2, R2 + 1);
|
|
R33 = dDOT44(R1 + 2, R2 + 2);
|
|
|
|
Q11 = btFabs(R11);
|
|
Q12 = btFabs(R12);
|
|
Q13 = btFabs(R13);
|
|
Q21 = btFabs(R21);
|
|
Q22 = btFabs(R22);
|
|
Q23 = btFabs(R23);
|
|
Q31 = btFabs(R31);
|
|
Q32 = btFabs(R32);
|
|
Q33 = btFabs(R33);
|
|
|
|
// for all 15 possible separating axes:
|
|
// * see if the axis separates the boxes. if so, return 0.
|
|
// * find the depth of the penetration along the separating axis (s2)
|
|
// * if this is the largest depth so far, record it.
|
|
// the normal vector will be set to the separating axis with the smallest
|
|
// depth. note: normalR is set to point to a column of R1 or R2 if that is
|
|
// the smallest depth normal so far. otherwise normalR is 0 and normalC is
|
|
// set to a vector relative to body 1. invert_normal is 1 if the sign of
|
|
// the normal should be flipped.
|
|
|
|
#define TST(expr1, expr2, norm, cc) \
|
|
s2 = btFabs(expr1) - (expr2); \
|
|
if (s2 > 0) return 0; \
|
|
if (s2 > s) \
|
|
{ \
|
|
s = s2; \
|
|
normalR = norm; \
|
|
invert_normal = ((expr1) < 0); \
|
|
code = (cc); \
|
|
}
|
|
|
|
s = -dInfinity;
|
|
invert_normal = 0;
|
|
code = 0;
|
|
|
|
// separating axis = u1,u2,u3
|
|
TST(pp[0], (A[0] + B[0] * Q11 + B[1] * Q12 + B[2] * Q13), R1 + 0, 1);
|
|
TST(pp[1], (A[1] + B[0] * Q21 + B[1] * Q22 + B[2] * Q23), R1 + 1, 2);
|
|
TST(pp[2], (A[2] + B[0] * Q31 + B[1] * Q32 + B[2] * Q33), R1 + 2, 3);
|
|
|
|
// separating axis = v1,v2,v3
|
|
TST(dDOT41(R2 + 0, p), (A[0] * Q11 + A[1] * Q21 + A[2] * Q31 + B[0]), R2 + 0, 4);
|
|
TST(dDOT41(R2 + 1, p), (A[0] * Q12 + A[1] * Q22 + A[2] * Q32 + B[1]), R2 + 1, 5);
|
|
TST(dDOT41(R2 + 2, p), (A[0] * Q13 + A[1] * Q23 + A[2] * Q33 + B[2]), R2 + 2, 6);
|
|
|
|
// note: cross product axes need to be scaled when s is computed.
|
|
// normal (n1,n2,n3) is relative to box 1.
|
|
#undef TST
|
|
#define TST(expr1, expr2, n1, n2, n3, cc) \
|
|
s2 = btFabs(expr1) - (expr2); \
|
|
if (s2 > SIMD_EPSILON) return 0; \
|
|
l = btSqrt((n1) * (n1) + (n2) * (n2) + (n3) * (n3)); \
|
|
if (l > SIMD_EPSILON) \
|
|
{ \
|
|
s2 /= l; \
|
|
if (s2 * fudge_factor > s) \
|
|
{ \
|
|
s = s2; \
|
|
normalR = 0; \
|
|
normalC[0] = (n1) / l; \
|
|
normalC[1] = (n2) / l; \
|
|
normalC[2] = (n3) / l; \
|
|
invert_normal = ((expr1) < 0); \
|
|
code = (cc); \
|
|
} \
|
|
}
|
|
|
|
btScalar fudge2(1.0e-5f);
|
|
|
|
Q11 += fudge2;
|
|
Q12 += fudge2;
|
|
Q13 += fudge2;
|
|
|
|
Q21 += fudge2;
|
|
Q22 += fudge2;
|
|
Q23 += fudge2;
|
|
|
|
Q31 += fudge2;
|
|
Q32 += fudge2;
|
|
Q33 += fudge2;
|
|
|
|
// separating axis = u1 x (v1,v2,v3)
|
|
TST(pp[2] * R21 - pp[1] * R31, (A[1] * Q31 + A[2] * Q21 + B[1] * Q13 + B[2] * Q12), 0, -R31, R21, 7);
|
|
TST(pp[2] * R22 - pp[1] * R32, (A[1] * Q32 + A[2] * Q22 + B[0] * Q13 + B[2] * Q11), 0, -R32, R22, 8);
|
|
TST(pp[2] * R23 - pp[1] * R33, (A[1] * Q33 + A[2] * Q23 + B[0] * Q12 + B[1] * Q11), 0, -R33, R23, 9);
|
|
|
|
// separating axis = u2 x (v1,v2,v3)
|
|
TST(pp[0] * R31 - pp[2] * R11, (A[0] * Q31 + A[2] * Q11 + B[1] * Q23 + B[2] * Q22), R31, 0, -R11, 10);
|
|
TST(pp[0] * R32 - pp[2] * R12, (A[0] * Q32 + A[2] * Q12 + B[0] * Q23 + B[2] * Q21), R32, 0, -R12, 11);
|
|
TST(pp[0] * R33 - pp[2] * R13, (A[0] * Q33 + A[2] * Q13 + B[0] * Q22 + B[1] * Q21), R33, 0, -R13, 12);
|
|
|
|
// separating axis = u3 x (v1,v2,v3)
|
|
TST(pp[1] * R11 - pp[0] * R21, (A[0] * Q21 + A[1] * Q11 + B[1] * Q33 + B[2] * Q32), -R21, R11, 0, 13);
|
|
TST(pp[1] * R12 - pp[0] * R22, (A[0] * Q22 + A[1] * Q12 + B[0] * Q33 + B[2] * Q31), -R22, R12, 0, 14);
|
|
TST(pp[1] * R13 - pp[0] * R23, (A[0] * Q23 + A[1] * Q13 + B[0] * Q32 + B[1] * Q31), -R23, R13, 0, 15);
|
|
|
|
#undef TST
|
|
|
|
if (!code) return 0;
|
|
|
|
// if we get to this point, the boxes interpenetrate. compute the normal
|
|
// in global coordinates.
|
|
if (normalR)
|
|
{
|
|
normal[0] = normalR[0];
|
|
normal[1] = normalR[4];
|
|
normal[2] = normalR[8];
|
|
}
|
|
else
|
|
{
|
|
dMULTIPLY0_331(normal, R1, normalC);
|
|
}
|
|
if (invert_normal)
|
|
{
|
|
normal[0] = -normal[0];
|
|
normal[1] = -normal[1];
|
|
normal[2] = -normal[2];
|
|
}
|
|
*depth = -s;
|
|
|
|
// compute contact point(s)
|
|
|
|
if (code > 6)
|
|
{
|
|
// an edge from box 1 touches an edge from box 2.
|
|
// find a point pa on the intersecting edge of box 1
|
|
btVector3 pa;
|
|
btScalar sign;
|
|
for (i = 0; i < 3; i++) pa[i] = p1[i];
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
sign = (dDOT14(normal, R1 + j) > 0) ? btScalar(1.0) : btScalar(-1.0);
|
|
for (i = 0; i < 3; i++) pa[i] += sign * A[j] * R1[i * 4 + j];
|
|
}
|
|
|
|
// find a point pb on the intersecting edge of box 2
|
|
btVector3 pb;
|
|
for (i = 0; i < 3; i++) pb[i] = p2[i];
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
sign = (dDOT14(normal, R2 + j) > 0) ? btScalar(-1.0) : btScalar(1.0);
|
|
for (i = 0; i < 3; i++) pb[i] += sign * B[j] * R2[i * 4 + j];
|
|
}
|
|
|
|
btScalar alpha, beta;
|
|
btVector3 ua, ub;
|
|
for (i = 0; i < 3; i++) ua[i] = R1[((code)-7) / 3 + i * 4];
|
|
for (i = 0; i < 3; i++) ub[i] = R2[((code)-7) % 3 + i * 4];
|
|
|
|
dLineClosestApproach(pa, ua, pb, ub, &alpha, &beta);
|
|
for (i = 0; i < 3; i++) pa[i] += ua[i] * alpha;
|
|
for (i = 0; i < 3; i++) pb[i] += ub[i] * beta;
|
|
|
|
{
|
|
//contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]);
|
|
//contact[0].depth = *depth;
|
|
btVector3 pointInWorld;
|
|
|
|
#ifdef USE_CENTER_POINT
|
|
for (i = 0; i < 3; i++)
|
|
pointInWorld[i] = (pa[i] + pb[i]) * btScalar(0.5);
|
|
output.addContactPoint(-normal, pointInWorld, -*depth);
|
|
#else
|
|
output.addContactPoint(-normal, pb, -*depth);
|
|
|
|
#endif //
|
|
*return_code = code;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// okay, we have a face-something intersection (because the separating
|
|
// axis is perpendicular to a face). define face 'a' to be the reference
|
|
// face (i.e. the normal vector is perpendicular to this) and face 'b' to be
|
|
// the incident face (the closest face of the other box).
|
|
|
|
const btScalar *Ra, *Rb, *pa, *pb, *Sa, *Sb;
|
|
if (code <= 3)
|
|
{
|
|
Ra = R1;
|
|
Rb = R2;
|
|
pa = p1;
|
|
pb = p2;
|
|
Sa = A;
|
|
Sb = B;
|
|
}
|
|
else
|
|
{
|
|
Ra = R2;
|
|
Rb = R1;
|
|
pa = p2;
|
|
pb = p1;
|
|
Sa = B;
|
|
Sb = A;
|
|
}
|
|
|
|
// nr = normal vector of reference face dotted with axes of incident box.
|
|
// anr = absolute values of nr.
|
|
btVector3 normal2, nr, anr;
|
|
if (code <= 3)
|
|
{
|
|
normal2[0] = normal[0];
|
|
normal2[1] = normal[1];
|
|
normal2[2] = normal[2];
|
|
}
|
|
else
|
|
{
|
|
normal2[0] = -normal[0];
|
|
normal2[1] = -normal[1];
|
|
normal2[2] = -normal[2];
|
|
}
|
|
dMULTIPLY1_331(nr, Rb, normal2);
|
|
anr[0] = btFabs(nr[0]);
|
|
anr[1] = btFabs(nr[1]);
|
|
anr[2] = btFabs(nr[2]);
|
|
|
|
// find the largest compontent of anr: this corresponds to the normal
|
|
// for the indident face. the other axis numbers of the indicent face
|
|
// are stored in a1,a2.
|
|
int lanr, a1, a2;
|
|
if (anr[1] > anr[0])
|
|
{
|
|
if (anr[1] > anr[2])
|
|
{
|
|
a1 = 0;
|
|
lanr = 1;
|
|
a2 = 2;
|
|
}
|
|
else
|
|
{
|
|
a1 = 0;
|
|
a2 = 1;
|
|
lanr = 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (anr[0] > anr[2])
|
|
{
|
|
lanr = 0;
|
|
a1 = 1;
|
|
a2 = 2;
|
|
}
|
|
else
|
|
{
|
|
a1 = 0;
|
|
a2 = 1;
|
|
lanr = 2;
|
|
}
|
|
}
|
|
|
|
// compute center point of incident face, in reference-face coordinates
|
|
btVector3 center;
|
|
if (nr[lanr] < 0)
|
|
{
|
|
for (i = 0; i < 3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i * 4 + lanr];
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < 3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i * 4 + lanr];
|
|
}
|
|
|
|
// find the normal and non-normal axis numbers of the reference box
|
|
int codeN, code1, code2;
|
|
if (code <= 3)
|
|
codeN = code - 1;
|
|
else
|
|
codeN = code - 4;
|
|
if (codeN == 0)
|
|
{
|
|
code1 = 1;
|
|
code2 = 2;
|
|
}
|
|
else if (codeN == 1)
|
|
{
|
|
code1 = 0;
|
|
code2 = 2;
|
|
}
|
|
else
|
|
{
|
|
code1 = 0;
|
|
code2 = 1;
|
|
}
|
|
|
|
// find the four corners of the incident face, in reference-face coordinates
|
|
btScalar quad[8]; // 2D coordinate of incident face (x,y pairs)
|
|
btScalar c1, c2, m11, m12, m21, m22;
|
|
c1 = dDOT14(center, Ra + code1);
|
|
c2 = dDOT14(center, Ra + code2);
|
|
// optimize this? - we have already computed this data above, but it is not
|
|
// stored in an easy-to-index format. for now it's quicker just to recompute
|
|
// the four dot products.
|
|
m11 = dDOT44(Ra + code1, Rb + a1);
|
|
m12 = dDOT44(Ra + code1, Rb + a2);
|
|
m21 = dDOT44(Ra + code2, Rb + a1);
|
|
m22 = dDOT44(Ra + code2, Rb + a2);
|
|
{
|
|
btScalar k1 = m11 * Sb[a1];
|
|
btScalar k2 = m21 * Sb[a1];
|
|
btScalar k3 = m12 * Sb[a2];
|
|
btScalar k4 = m22 * Sb[a2];
|
|
quad[0] = c1 - k1 - k3;
|
|
quad[1] = c2 - k2 - k4;
|
|
quad[2] = c1 - k1 + k3;
|
|
quad[3] = c2 - k2 + k4;
|
|
quad[4] = c1 + k1 + k3;
|
|
quad[5] = c2 + k2 + k4;
|
|
quad[6] = c1 + k1 - k3;
|
|
quad[7] = c2 + k2 - k4;
|
|
}
|
|
|
|
// find the size of the reference face
|
|
btScalar rect[2];
|
|
rect[0] = Sa[code1];
|
|
rect[1] = Sa[code2];
|
|
|
|
// intersect the incident and reference faces
|
|
btScalar ret[16];
|
|
int n = intersectRectQuad2(rect, quad, ret);
|
|
if (n < 1) return 0; // this should never happen
|
|
|
|
// convert the intersection points into reference-face coordinates,
|
|
// and compute the contact position and depth for each point. only keep
|
|
// those points that have a positive (penetrating) depth. delete points in
|
|
// the 'ret' array as necessary so that 'point' and 'ret' correspond.
|
|
btScalar point[3 * 8]; // penetrating contact points
|
|
btScalar dep[8]; // depths for those points
|
|
btScalar det1 = 1.f / (m11 * m22 - m12 * m21);
|
|
m11 *= det1;
|
|
m12 *= det1;
|
|
m21 *= det1;
|
|
m22 *= det1;
|
|
int cnum = 0; // number of penetrating contact points found
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
btScalar k1 = m22 * (ret[j * 2] - c1) - m12 * (ret[j * 2 + 1] - c2);
|
|
btScalar k2 = -m21 * (ret[j * 2] - c1) + m11 * (ret[j * 2 + 1] - c2);
|
|
for (i = 0; i < 3; i++) point[cnum * 3 + i] =
|
|
center[i] + k1 * Rb[i * 4 + a1] + k2 * Rb[i * 4 + a2];
|
|
dep[cnum] = Sa[codeN] - dDOT(normal2, point + cnum * 3);
|
|
if (dep[cnum] >= 0)
|
|
{
|
|
ret[cnum * 2] = ret[j * 2];
|
|
ret[cnum * 2 + 1] = ret[j * 2 + 1];
|
|
cnum++;
|
|
}
|
|
}
|
|
if (cnum < 1) return 0; // this should never happen
|
|
|
|
// we can't generate more contacts than we actually have
|
|
if (maxc > cnum) maxc = cnum;
|
|
if (maxc < 1) maxc = 1;
|
|
|
|
if (cnum <= maxc)
|
|
{
|
|
if (code < 4)
|
|
{
|
|
// we have less contacts than we need, so we use them all
|
|
for (j = 0; j < cnum; j++)
|
|
{
|
|
btVector3 pointInWorld;
|
|
for (i = 0; i < 3; i++)
|
|
pointInWorld[i] = point[j * 3 + i] + pa[i];
|
|
output.addContactPoint(-normal, pointInWorld, -dep[j]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// we have less contacts than we need, so we use them all
|
|
for (j = 0; j < cnum; j++)
|
|
{
|
|
btVector3 pointInWorld;
|
|
for (i = 0; i < 3; i++)
|
|
pointInWorld[i] = point[j * 3 + i] + pa[i] - normal[i] * dep[j];
|
|
//pointInWorld[i] = point[j*3+i] + pa[i];
|
|
output.addContactPoint(-normal, pointInWorld, -dep[j]);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// we have more contacts than are wanted, some of them must be culled.
|
|
// find the deepest point, it is always the first contact.
|
|
int i1 = 0;
|
|
btScalar maxdepth = dep[0];
|
|
for (i = 1; i < cnum; i++)
|
|
{
|
|
if (dep[i] > maxdepth)
|
|
{
|
|
maxdepth = dep[i];
|
|
i1 = i;
|
|
}
|
|
}
|
|
|
|
int iret[8];
|
|
cullPoints2(cnum, ret, maxc, i1, iret);
|
|
|
|
for (j = 0; j < maxc; j++)
|
|
{
|
|
// dContactGeom *con = CONTACT(contact,skip*j);
|
|
// for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
|
|
// con->depth = dep[iret[j]];
|
|
|
|
btVector3 posInWorld;
|
|
for (i = 0; i < 3; i++)
|
|
posInWorld[i] = point[iret[j] * 3 + i] + pa[i];
|
|
if (code < 4)
|
|
{
|
|
output.addContactPoint(-normal, posInWorld, -dep[iret[j]]);
|
|
}
|
|
else
|
|
{
|
|
output.addContactPoint(-normal, posInWorld - normal * dep[iret[j]], -dep[iret[j]]);
|
|
}
|
|
}
|
|
cnum = maxc;
|
|
}
|
|
|
|
*return_code = code;
|
|
return cnum;
|
|
}
|
|
|
|
void btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input, Result& output, class btIDebugDraw* /*debugDraw*/, bool /*swapResults*/)
|
|
{
|
|
const btTransform& transformA = input.m_transformA;
|
|
const btTransform& transformB = input.m_transformB;
|
|
|
|
int skip = 0;
|
|
dContactGeom* contact = 0;
|
|
|
|
dMatrix3 R1;
|
|
dMatrix3 R2;
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
R1[0 + 4 * j] = transformA.getBasis()[j].x();
|
|
R2[0 + 4 * j] = transformB.getBasis()[j].x();
|
|
|
|
R1[1 + 4 * j] = transformA.getBasis()[j].y();
|
|
R2[1 + 4 * j] = transformB.getBasis()[j].y();
|
|
|
|
R1[2 + 4 * j] = transformA.getBasis()[j].z();
|
|
R2[2 + 4 * j] = transformB.getBasis()[j].z();
|
|
}
|
|
|
|
btVector3 normal;
|
|
btScalar depth;
|
|
int return_code;
|
|
int maxc = 4;
|
|
|
|
dBoxBox2(transformA.getOrigin(),
|
|
R1,
|
|
2.f * m_box1->getHalfExtentsWithMargin(),
|
|
transformB.getOrigin(),
|
|
R2,
|
|
2.f * m_box2->getHalfExtentsWithMargin(),
|
|
normal, &depth, &return_code,
|
|
maxc, contact, skip,
|
|
output);
|
|
}
|