axmol/cocos/3d/CCBundle3D.cpp

872 lines
27 KiB
C++

/****************************************************************************
Copyright (c) 2014 Chukong Technologies Inc.
http://www.cocos2d-x.org
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "3d/CCBundle3D.h"
#include "base/ccMacros.h"
#include "platform/CCFileUtils.h"
#include "renderer/CCGLProgram.h"
#include "CCBundleReader.h"
#include "base/CCData.h"
#include "json/document.h"
#define BUNDLE_TYPE_SCENE 1
#define BUNDLE_TYPE_NODE 2
#define BUNDLE_TYPE_ANIMATIONS 3
#define BUNDLE_TYPE_ANIMATION 4
#define BUNDLE_TYPE_ANIMATION_CHANNEL 5
#define BUNDLE_TYPE_MODEL 10
#define BUNDLE_TYPE_MATERIAL 16
#define BUNDLE_TYPE_EFFECT 18
#define BUNDLE_TYPE_CAMERA 32
#define BUNDLE_TYPE_LIGHT 33
#define BUNDLE_TYPE_MESH 34
#define BUNDLE_TYPE_MESHPART 35
#define BUNDLE_TYPE_MESHSKIN 36
static const char* ID = "id";
static const char* MESHDATA_MESH = "mesh";
static const char* MESHDATA_DEFAULTPART = "body";
static const char* MESHDATA_VERTEXSIZE = "vertexsize";
static const char* MESHDATA_VERTICES = "vertices";
static const char* MESHDATA_INDEXNUM = "indexnum";
static const char* MESHDATA_INDICES = "indices";
static const char* MESHDATA_ATTRIBUTES = "attributes";
static const char* MESHDATA_SIZE = "size";
static const char* MESHDATA_TYPE = "type";
static const char* MESHDATA_ATTRIBUTE = "attribute";
static const char* SKINDATA_SKIN = "skin";
static const char* SKINDATA_BONES = "bones";
static const char* SKINDATA_NODE = "node";
static const char* SKINDATA_BINDSHAPE = "bindshape";
static const char* SKINDATA_CHILDREN = "children";
static const char* SKINDATA_TRANSFORM = "tansform";
static const char* MATERIALDATA_MATERIAL = "material";
static const char* MATERIALDATA_BASE = "base";
static const char* MATERIALDATA_FILENAME = "filename";
static const char* ANIMATIONDATA_ANIMATION = "animation";
static const char* ANIMATIONDATA_LENGTH = "length";
static const char* ANIMATIONDATA_BONES = "bones";
static const char* ANIMATIONDATA_BONEID = "boneId";
static const char* ANIMATIONDATA_KEYFRAMES = "keyframes";
static const char* ANIMATIONDATA_TRANSLATION = "translation";
static const char* ANIMATIONDATA_ROTATION = "rotation";
static const char* ANIMATIONDATA_SCALE = "scale";
static const char* ANIMATIONDATA_KEYTIME = "keytime";
NS_CC_BEGIN
void getChildMap(std::map<int, std::vector<int> >& map, SkinData* skinData, const rapidjson::Value& val)
{
if (!skinData)
return;
// get transform matrix
Mat4 transform;
const rapidjson::Value& parent_tranform = val[SKINDATA_TRANSFORM];
for (rapidjson::SizeType j = 0; j < parent_tranform.Size(); j++)
{
transform.m[j] = parent_tranform[j].GetDouble();
}
// set origin matrices
std::string parent_name = val[ID].GetString();
int parent_name_index = skinData->getSkinBoneNameIndex(parent_name);
if (parent_name_index < 0)
{
skinData->addNodeBoneNames(parent_name);
skinData->nodeBoneOriginMatrices.push_back(transform);
parent_name_index = skinData->getBoneNameIndex(parent_name);
}
else if (parent_name_index < skinData->skinBoneNames.size())
{
skinData->skinBoneOriginMatrices[parent_name_index] = (transform);
}
// set root bone index
if(skinData->rootBoneIndex < 0)
skinData->rootBoneIndex = parent_name_index;
if (!val.HasMember(SKINDATA_CHILDREN))
return;
const rapidjson::Value& children = val[SKINDATA_CHILDREN];
for (rapidjson::SizeType i = 0; i < children.Size(); i++)
{
// get child bone name
const rapidjson::Value& child = children[i];
std::string child_name = child[ID].GetString();
int child_name_index = skinData->getSkinBoneNameIndex(child_name);
if (child_name_index < 0)
{
skinData->addNodeBoneNames(child_name);
child_name_index = skinData->getBoneNameIndex(child_name);
}
map[parent_name_index].push_back(child_name_index);
getChildMap(map, skinData, child);
}
}
Bundle3D* Bundle3D::_instance = nullptr;
Bundle3D* Bundle3D::getInstance()
{
if (_instance == nullptr)
_instance = new Bundle3D();
return _instance;
}
void Bundle3D::destroyInstance()
{
CC_SAFE_DELETE(_instance);
}
void Bundle3D::clear()
{
if (_isBinary)
{
CC_SAFE_DELETE(_binaryBuffer);
CC_SAFE_DELETE_ARRAY(_references);
}
else
{
CC_SAFE_DELETE_ARRAY(_jsonBuffer);
}
}
bool Bundle3D::load(const std::string& path)
{
if (_path == path)
return true;
getModelRelativePath(path);
bool ret = false;
std::string ext = path.substr(path.length() - 4, 4);
std::transform(ext.begin(), ext.end(), ext.begin(), tolower);
if (ext == ".c3t")
{
_isBinary = false;
ret = loadJson(path);
}
else if (ext == ".c3b")
{
_isBinary = true;
ret = loadBinary(path);
}
else
{
CCLOGINFO("%s is invalid file formate", path);
}
ret?(_path = path):(_path = "");
return ret;
}
bool Bundle3D::loadMeshData(const std::string& id, MeshData* meshdata)
{
if (_isBinary)
{
return loadMeshDataBinary(meshdata);
}
else
{
return loadMeshDataJson(meshdata);
}
}
bool Bundle3D::loadSkinData(const std::string& id, SkinData* skindata)
{
if (_isBinary)
{
return loadSkinDataBinary(skindata);
}
else
{
return loadSkinDataJson(skindata);
}
}
bool Bundle3D::loadMaterialData(const std::string& id, MaterialData* materialdata)
{
if (_isBinary)
{
return loadMaterialDataBinary(materialdata);
}
else
{
return loadMaterialDataJson(materialdata);
}
}
bool Bundle3D::loadAnimationData(const std::string& id, Animation3DData* animationdata)
{
if (_isBinary)
{
return loadAnimationDataBinary(animationdata);
}
else
{
return loadAnimationDataJson(animationdata);
}
}
bool Bundle3D::loadJson(const std::string& path)
{
clear();
Data data = FileUtils::getInstance()->getDataFromFile(path);
ssize_t size = data.getSize();
// json need null-terminated string.
_jsonBuffer = new char[size + 1];
memcpy(_jsonBuffer, data.getBytes(), size);
_jsonBuffer[size] = '\0';
if (_jsonReader.ParseInsitu<0>(_jsonBuffer).HasParseError())
{
assert(0);
clear();
return false;
}
return true;
}
bool Bundle3D::loadMeshDataJson(MeshData* meshdata)
{
meshdata->resetData();
assert(_jsonReader.HasMember(MESHDATA_MESH));
const rapidjson::Value& mash_data_array = _jsonReader[MESHDATA_MESH];
assert(mash_data_array.IsArray());
const rapidjson::Value& mash_data_val = mash_data_array[(rapidjson::SizeType)0];
assert(mash_data_val.HasMember(MESHDATA_DEFAULTPART));
const rapidjson::Value& mesh_data_body_array = mash_data_val[MESHDATA_DEFAULTPART];
assert(mesh_data_body_array.IsArray());
const rapidjson::Value& mesh_data_body_array_0 = mesh_data_body_array[(rapidjson::SizeType)0];
// vertex_size
assert(mesh_data_body_array_0.HasMember(MESHDATA_VERTEXSIZE));
meshdata->vertexSizeInFloat = mesh_data_body_array_0[MESHDATA_VERTEXSIZE].GetInt();
// vertices
meshdata->vertex.resize(meshdata->vertexSizeInFloat);
const rapidjson::Value& mesh_data_body_vertices = mesh_data_body_array_0[MESHDATA_VERTICES];
for (rapidjson::SizeType i = 0; i < mesh_data_body_vertices.Size(); i++)
meshdata->vertex[i] = mesh_data_body_vertices[i].GetDouble();
// index_number
meshdata->numIndex = mesh_data_body_array_0[MESHDATA_INDEXNUM].GetUint();
// indices
meshdata->indices.resize(meshdata->numIndex);
const rapidjson::Value& mesh_data_body_indices_val = mesh_data_body_array_0[MESHDATA_INDICES];
for (rapidjson::SizeType i = 0; i < mesh_data_body_indices_val.Size(); i++)
meshdata->indices[i] = (unsigned short)mesh_data_body_indices_val[i].GetUint();
// mesh_vertex_attribute
const rapidjson::Value& mesh_vertex_attribute = mash_data_val[MESHDATA_ATTRIBUTES];
meshdata->attribCount = mesh_vertex_attribute.Size();
meshdata->attribs.resize(meshdata->attribCount);
for (rapidjson::SizeType i = 0; i < mesh_vertex_attribute.Size(); i++)
{
const rapidjson::Value& mesh_vertex_attribute_val = mesh_vertex_attribute[i];
meshdata->attribs[i].size = mesh_vertex_attribute_val[MESHDATA_SIZE].GetUint();
meshdata->attribs[i].attribSizeBytes = meshdata->attribs[i].size * 4;
meshdata->attribs[i].type = parseGLType(mesh_vertex_attribute_val[MESHDATA_TYPE].GetString());
meshdata->attribs[i].vertexAttrib = parseGLProgramAttribute(mesh_vertex_attribute_val[MESHDATA_ATTRIBUTE].GetString());
}
return true;
}
bool Bundle3D::loadSkinDataJson(SkinData* skindata)
{
if (!_jsonReader.HasMember(SKINDATA_SKIN )) return false;
skindata->resetData();
const rapidjson::Value& skin_data_array = _jsonReader[SKINDATA_SKIN ];
assert(skin_data_array.IsArray());
const rapidjson::Value& skin_data_array_val_0 = skin_data_array[(rapidjson::SizeType)0];
if (!skin_data_array_val_0.HasMember(SKINDATA_BONES))
return false;
const rapidjson::Value& skin_data_bones = skin_data_array_val_0[SKINDATA_BONES];
for (rapidjson::SizeType i = 0; i < skin_data_bones.Size(); i++)
{
const rapidjson::Value& skin_data_bone = skin_data_bones[i];
std::string name = skin_data_bone[SKINDATA_NODE].GetString();
skindata->addSkinBoneNames(name);
Mat4 mat_bind_pos;
const rapidjson::Value& bind_pos = skin_data_bone[SKINDATA_BINDSHAPE];
for (rapidjson::SizeType j = 0; j < bind_pos.Size(); j++)
{
mat_bind_pos.m[j] = bind_pos[j].GetDouble();
}
skindata->inverseBindPoseMatrices.push_back(mat_bind_pos);
}
// set root bone infomation
const rapidjson::Value& skin_data_1 = skin_data_array[1];
// parent and child relationship map
skindata->skinBoneOriginMatrices.resize(skindata->skinBoneNames.size());
//skindata->nodeBoneOriginMatrices.resize(skindata->nodeBoneNames.size());
getChildMap(skindata->boneChild, skindata, skin_data_1);
return true;
}
bool Bundle3D::loadMaterialDataJson(MaterialData* materialdata)
{
if (!_jsonReader.HasMember(MATERIALDATA_MATERIAL))
return false;
const rapidjson::Value& material_data_array = _jsonReader[MATERIALDATA_MATERIAL];
const rapidjson::Value& material_data_array_0 = material_data_array[(rapidjson::SizeType)0];
const rapidjson::Value& material_data_base_array = material_data_array_0[MATERIALDATA_BASE];
const rapidjson::Value& material_data_base_array_0 = material_data_base_array[(rapidjson::SizeType)0];
materialdata->texturePath = _modelRelativePath + material_data_base_array_0[MATERIALDATA_FILENAME].GetString();
return true;
}
bool Bundle3D::loadAnimationDataJson(Animation3DData* animationdata)
{
if (!_jsonReader.HasMember(ANIMATIONDATA_ANIMATION)) return false;
animationdata->_rotationKeys.clear();
animationdata->_scaleKeys.clear();
animationdata->_translationKeys.clear();
const rapidjson::Value& animation_data_array = _jsonReader[ANIMATIONDATA_ANIMATION];
if (animation_data_array.Size()==0) return false;
const rapidjson::Value& animation_data_array_val_0 = animation_data_array[(rapidjson::SizeType)0];
animationdata->_totalTime = animation_data_array_val_0[ANIMATIONDATA_LENGTH].GetDouble();
const rapidjson::Value& bones = animation_data_array_val_0[ANIMATIONDATA_BONES];
for (rapidjson::SizeType i = 0; i < bones.Size(); i++)
{
const rapidjson::Value& bone = bones[i];
std::string bone_name = bone[ANIMATIONDATA_BONEID].GetString();
if ( bone.HasMember(ANIMATIONDATA_KEYFRAMES))
{
const rapidjson::Value& bone_keyframes = bone[ANIMATIONDATA_KEYFRAMES];
rapidjson::SizeType keyframe_size = bone_keyframes.Size();
for (rapidjson::SizeType j = 0; j < keyframe_size; j++)
{
const rapidjson::Value& bone_keyframe = bone_keyframes[j];
if ( bone_keyframe.HasMember(ANIMATIONDATA_TRANSLATION))
{
const rapidjson::Value& bone_keyframe_translation = bone_keyframe[ANIMATIONDATA_TRANSLATION];
float keytime = bone_keyframe[ANIMATIONDATA_KEYTIME].GetDouble();
Vec3 val = Vec3(bone_keyframe_translation[(rapidjson::SizeType)0].GetDouble(), bone_keyframe_translation[1].GetDouble(), bone_keyframe_translation[2].GetDouble());
animationdata->_translationKeys[bone_name].push_back(Animation3DData::Vec3Key(keytime,val));
}
if ( bone_keyframe.HasMember(ANIMATIONDATA_ROTATION))
{
const rapidjson::Value& bone_keyframe_rotation = bone_keyframe[ANIMATIONDATA_ROTATION];
float keytime = bone_keyframe[ANIMATIONDATA_KEYTIME].GetDouble();
Quaternion val = Quaternion(bone_keyframe_rotation[(rapidjson::SizeType)0].GetDouble(),bone_keyframe_rotation[1].GetDouble(),bone_keyframe_rotation[2].GetDouble(),bone_keyframe_rotation[3].GetDouble());
animationdata->_rotationKeys[bone_name].push_back(Animation3DData::QuatKey(keytime,val));
}
if ( bone_keyframe.HasMember(ANIMATIONDATA_SCALE))
{
const rapidjson::Value& bone_keyframe_scale = bone_keyframe[ANIMATIONDATA_SCALE];
float keytime = bone_keyframe[ANIMATIONDATA_KEYTIME].GetDouble();
Vec3 val = Vec3(bone_keyframe_scale[(rapidjson::SizeType)0].GetDouble(), bone_keyframe_scale[1].GetDouble(), bone_keyframe_scale[2].GetDouble());
animationdata->_scaleKeys[bone_name].push_back(Animation3DData::Vec3Key(keytime,val));
}
}
}
}
return true;
}
bool Bundle3D::loadBinary(const std::string& path)
{
clear();
// get file data
CC_SAFE_DELETE(_binaryBuffer);
_binaryBuffer = new Data();
*_binaryBuffer = FileUtils::getInstance()->getDataFromFile(path);
if (_binaryBuffer->isNull())
{
clear();
CCLOGINFO(false, "Failed to read file: %s", path.c_str());
return false;
}
// Create bundle reader
//CC_SAFE_DELETE(_bundleReader);
_binaryReader.init( (char*)_binaryBuffer->getBytes(), _binaryBuffer->getSize() );
// Read identifier info
char identifier[] = { 'C', '3', 'B', '\0'};
char sig[4];
if (_binaryReader.read(sig, 1, 4) != 4 || memcmp(sig, identifier, 4) != 0)
{
clear();
CCLOGINFO(false, "Invalid identifier: %s", path.c_str());
return false;
}
// Read version
unsigned char ver[2];
if (_binaryReader.read(ver, 1, 2) == 2)
{
if (ver[0] != 0) {
clear();
CCLOGINFO(false, "Unsupported version: (%d, %d)", ver[0], ver[1]);
return false;
}
if (ver[1] < 0 || ver[1] > 2) {
clear();
CCLOGINFO(false, "Unsupported version: (%d, %d)", ver[0], ver[1]);
return false;
}
}
// Read ref table size
if (_binaryReader.read(&_referenceCount, 4, 1) != 1)
{
clear();
CCLOGINFO("Failed to read ref table size '%s'.", path.c_str());
return false;
}
// Read all refs
CC_SAFE_DELETE_ARRAY(_references);
_references = new Reference[_referenceCount];
for (ssize_t i = 0; i < _referenceCount; ++i)
{
if ((_references[i].id = _binaryReader.readString()).empty() ||
_binaryReader.read(&_references[i].type, 4, 1) != 1 ||
_binaryReader.read(&_references[i].offset, 4, 1) != 1)
{
clear();
CCLOGINFO("Failed to read ref number %d for bundle '%s'.", i, path.c_str());
CC_SAFE_DELETE_ARRAY(_references);
return false;
}
}
return true;
}
bool Bundle3D::loadMeshDataBinary(MeshData* meshdata)
{
if (!seekToFirstType(BUNDLE_TYPE_MESH))
return false;
meshdata->resetData();
// read mesh data
if (_binaryReader.read(&meshdata->attribCount, 4, 1) != 1 || meshdata->attribCount < 1)
{
CCLOGINFO("Failed to read meshdata: attribCount '%s'.", _path.c_str());
return false;
}
meshdata->attribs.resize(meshdata->attribCount);
for (ssize_t i = 0; i < meshdata->attribCount; i++)
{
unsigned int vUsage, vSize;
if (_binaryReader.read(&vUsage, 4, 1) != 1 || _binaryReader.read(&vSize, 4, 1) != 1)
{
CCLOGINFO("Failed to read meshdata: usage or size '%s'.", _path.c_str());
return false;
}
meshdata->attribs[i].size = vSize;
meshdata->attribs[i].attribSizeBytes = meshdata->attribs[i].size * 4;
meshdata->attribs[i].type = GL_FLOAT;
meshdata->attribs[i].vertexAttrib = vUsage;
}
// Read vertex data
if (_binaryReader.read(&meshdata->vertexSizeInFloat, 4, 1) != 1 || meshdata->vertexSizeInFloat == 0)
{
CCLOGINFO("Failed to read meshdata: vertexSizeInFloat '%s'.", _path.c_str());
return false;
}
meshdata->vertex.resize(meshdata->vertexSizeInFloat);
if (_binaryReader.read(&meshdata->vertex[0], 4, meshdata->vertexSizeInFloat) != meshdata->vertexSizeInFloat)
{
CCLOGINFO("Failed to read meshdata: vertex element '%s'.", _path.c_str());
return false;
}
// Read index data
unsigned int meshPartCount = 1;
//_binaryReader.read(&meshPartCount, 4, 1);
for (unsigned int i = 0; i < meshPartCount; ++i)
{
unsigned int nIndexCount;
if (_binaryReader.read(&nIndexCount, 4, 1) != 1)
{
CCLOGINFO("Failed to read meshdata: nIndexCount '%s'.", _path.c_str());
return false;
}
meshdata->numIndex = nIndexCount;
meshdata->indices.resize(meshdata->numIndex);
if (_binaryReader.read(&meshdata->indices[0], 2, meshdata->numIndex) != nIndexCount)
{
CCLOGINFO("Failed to read meshdata: indices '%s'.", _path.c_str());
return false;
}
}
return true;
}
bool Bundle3D::loadSkinDataBinary(SkinData* skindata)
{
if (!seekToFirstType(BUNDLE_TYPE_MESHSKIN))
return false;
skindata->resetData();
std::string boneName = _binaryReader.readString();
// transform
float bindShape[16];
if (!_binaryReader.readMatrix(bindShape))
{
CCLOGINFO("Failed to read SkinData: bindShape matrix '%s'.", _path.c_str());
return false;
}
// bone count
unsigned int boneNum;
if (!_binaryReader.read(&boneNum))
{
CCLOGINFO("Failed to read SkinData: boneNum '%s'.", _path.c_str());
return false;
}
// bone names and bind pos
float bindpos[16];
for (unsigned int i = 0; i < boneNum; i++)
{
std::string skinBoneName = _binaryReader.readString();
skindata->skinBoneNames.push_back(skinBoneName);
if (!_binaryReader.readMatrix(bindpos))
{
CCLOGINFO("Failed to load SkinData: bindpos '%s'.", _path.c_str());
return nullptr;
}
skindata->inverseBindPoseMatrices.push_back(bindpos);
}
skindata->skinBoneOriginMatrices.resize(boneNum);
boneName = _binaryReader.readString();
// bind shape
_binaryReader.readMatrix(bindShape);
int rootIndex = skindata->getSkinBoneNameIndex(boneName);
if(rootIndex < 0)
{
skindata->addNodeBoneNames(boneName);
rootIndex = skindata->getBoneNameIndex(boneName);
skindata->nodeBoneOriginMatrices.push_back(bindShape);
}
else
{
skindata->skinBoneOriginMatrices[rootIndex] = bindShape;
}
// set root bone index
skindata->rootBoneIndex = rootIndex;
// read parent and child relationship map
float transform[16];
unsigned int linkNum;
_binaryReader.read(&linkNum);
for (unsigned int i = 0; i < linkNum; ++i)
{
std::string id = _binaryReader.readString();
int index = skindata->getSkinBoneNameIndex(id);
std::string parentid = _binaryReader.readString();
if (!_binaryReader.readMatrix(transform))
{
CCLOGINFO("Failed to load SkinData: transform '%s'.", _path.c_str());
return nullptr;
}
if(index < 0)
{
skindata->addNodeBoneNames(id);
index = skindata->getBoneNameIndex(id);
skindata->nodeBoneOriginMatrices.push_back(transform);
}
else
{
skindata->skinBoneOriginMatrices[index] = transform;
}
int parentIndex = skindata->getSkinBoneNameIndex(parentid);
if(parentIndex < 0)
{
skindata->addNodeBoneNames(parentid);
parentIndex = skindata->getBoneNameIndex(parentid);
}
skindata->boneChild[parentIndex].push_back(index);
}
return true;
}
bool Bundle3D::loadMaterialDataBinary(MaterialData* materialdata)
{
if (!seekToFirstType(BUNDLE_TYPE_MATERIAL))
return false;
std::string texturePath = _binaryReader.readString();
if (texturePath.empty())
{
CCLOGINFO("Failed to read Materialdata: texturePath is empty '%s'.", _path.c_str());
return false;
}
materialdata->texturePath = _modelRelativePath + texturePath;
return true;
}
bool Bundle3D::loadAnimationDataBinary(Animation3DData* animationdata)
{
if (!seekToFirstType(BUNDLE_TYPE_ANIMATIONS))
return false;
animationdata->_rotationKeys.clear();
animationdata->_scaleKeys.clear();
animationdata->_translationKeys.clear();
_binaryReader.readString();
if (!_binaryReader.read(&animationdata->_totalTime))
{
CCLOGINFO("Failed to read AnimationData: totalTime '%s'.", _path.c_str());
return false;
}
unsigned int animNum;
if (!_binaryReader.read(&animNum))
{
CCLOGINFO("Failed to read AnimationData: animNum '%s'.", _path.c_str());
return false;
}
for (unsigned int i = 0; i < animNum; ++i)
{
std::string boneName = _binaryReader.readString();
unsigned int keyframeNum;
if (!_binaryReader.read(&keyframeNum))
{
CCLOGINFO("Failed to read AnimationData: keyframeNum '%s'.", _path.c_str());
return false;
}
for (unsigned int j = 0; j < keyframeNum; ++j)
{
float keytime;
if (!_binaryReader.read(&keytime))
{
CCLOGINFO("Failed to read AnimationData: keytime '%s'.", _path.c_str());
return false;
}
Quaternion rotate;
if (_binaryReader.read(&rotate, 4, 4) != 4)
{
CCLOGINFO("Failed to read AnimationData: rotate '%s'.", _path.c_str());
return false;
}
animationdata->_rotationKeys[boneName].push_back(Animation3DData::QuatKey(keytime, rotate));
Vec3 scale;
if (_binaryReader.read(&scale, 4, 3) != 3)
{
CCLOGINFO("Failed to read AnimationData: scale '%s'.", _path.c_str());
return false;
}
animationdata->_scaleKeys[boneName].push_back(Animation3DData::Vec3Key(keytime, scale));
Vec3 position;
if (_binaryReader.read(&position, 4, 3) != 3)
{
CCLOGINFO("Failed to read AnimationData: position '%s'.", _path.c_str());
return false;
}
animationdata->_translationKeys[boneName].push_back(Animation3DData::Vec3Key(keytime, position));
}
}
return true;
}
GLenum Bundle3D::parseGLType(const std::string& str)
{
if (str == "GL_FLOAT")
{
return GL_FLOAT;
}
else if (str == "GL_UNSIGNED_INT")
{
return GL_UNSIGNED_INT;
}
else
{
assert(0);
return 0;
}
}
unsigned int Bundle3D::parseGLProgramAttribute(const std::string& str)
{
if (str == "VERTEX_ATTRIB_POSITION")
{
return GLProgram::VERTEX_ATTRIB_POSITION;
}
else if (str == "VERTEX_ATTRIB_COLOR")
{
return GLProgram::VERTEX_ATTRIB_COLOR;
}
else if (str == "VERTEX_ATTRIB_TEX_COORD")
{
return GLProgram::VERTEX_ATTRIB_TEX_COORD;
}
else if (str == "VERTEX_ATTRIB_NORMAL")
{
return GLProgram::VERTEX_ATTRIB_NORMAL;
}
else if (str == "VERTEX_ATTRIB_BLEND_WEIGHT")
{
return GLProgram::VERTEX_ATTRIB_BLEND_WEIGHT;
}
else if (str == "VERTEX_ATTRIB_BLEND_INDEX")
{
return GLProgram::VERTEX_ATTRIB_BLEND_INDEX;
}
else
{
assert(0);
return -1;
}
}
void Bundle3D::getModelRelativePath(const std::string& path)
{
ssize_t index = path.find_last_of('/');
std::string fullModelPath;
fullModelPath = path.substr(0, index + 1);
auto list = FileUtils::getInstance()->getSearchPaths();
for( const auto &item : list )
{
if ( fullModelPath.find(item) != std::string::npos )
{
_modelRelativePath = fullModelPath.substr(item.length(), fullModelPath.length() + 1);
break;
}
}
}
Reference* Bundle3D::seekToFirstType(unsigned int type)
{
// for each Reference
for (unsigned int i = 0; i < _referenceCount; ++i)
{
Reference* ref = &_references[i];
if (ref->type == type)
{
// Found a match
if (_binaryReader.seek(ref->offset, SEEK_SET) == false)
{
CCLOGINFO("Failed to seek to object '%s' in bundle '%s'.", ref->id.c_str(), _path.c_str());
return nullptr;
}
return ref;
}
}
return nullptr;
}
Bundle3D::Bundle3D()
:_isBinary(false),
_modelRelativePath(""),
_path(""),
_jsonBuffer(nullptr),
_binaryBuffer(nullptr),
_referenceCount(0),
_references(nullptr)
{
}
Bundle3D::~Bundle3D()
{
clear();
}
NS_CC_END