mirror of https://github.com/axmolengine/axmol.git
141 lines
4.5 KiB
C++
141 lines
4.5 KiB
C++
/****************************************************************************
|
|
Copyright (c) 2010-2012 cocos2d-x.org
|
|
Copyright (c) 2011 ForzeField Studios S.L
|
|
Copyright (c) 2013-2014 Chukong Technologies Inc.
|
|
|
|
http://www.cocos2d-x.org
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
****************************************************************************/
|
|
|
|
#include "math/CCVertex.h"
|
|
#include "base/ccMacros.h"
|
|
|
|
NS_CC_BEGIN
|
|
|
|
void ccVertexLineToPolygon(Vec2 *points, float stroke, Vec2 *vertices, unsigned int offset, unsigned int nuPoints)
|
|
{
|
|
nuPoints += offset;
|
|
if(nuPoints<=1) return;
|
|
|
|
stroke *= 0.5f;
|
|
|
|
unsigned int idx;
|
|
unsigned int nuPointsMinus = nuPoints-1;
|
|
|
|
for(unsigned int i = offset; i<nuPoints; i++)
|
|
{
|
|
idx = i*2;
|
|
Vec2 p1 = points[i];
|
|
Vec2 perpVector;
|
|
|
|
if(i == 0)
|
|
perpVector = (p1 - points[i+1]).getNormalized().getPerp();
|
|
else if(i == nuPointsMinus)
|
|
perpVector = (points[i-1] - p1).getNormalized().getPerp();
|
|
else
|
|
{
|
|
Vec2 p2 = points[i+1];
|
|
Vec2 p0 = points[i-1];
|
|
|
|
Vec2 p2p1 = (p2 - p1).getNormalized();
|
|
Vec2 p0p1 = (p0 - p1).getNormalized();
|
|
|
|
// Calculate angle between vectors
|
|
float angle = acosf(p2p1.dot(p0p1));
|
|
|
|
if(angle < CC_DEGREES_TO_RADIANS(70))
|
|
perpVector = p2p1.getMidpoint(p0p1).getNormalized().getPerp();
|
|
else if(angle < CC_DEGREES_TO_RADIANS(170))
|
|
perpVector = p2p1.getMidpoint(p0p1).getNormalized();
|
|
else
|
|
perpVector = (p2 - p0).getNormalized().getPerp();
|
|
}
|
|
perpVector = perpVector * stroke;
|
|
|
|
vertices[idx].set(p1.x + perpVector.x, p1.y + perpVector.y);
|
|
vertices[idx + 1].set(p1.x - perpVector.x, p1.y - perpVector.y);
|
|
|
|
}
|
|
|
|
// Validate vertexes
|
|
offset = (offset==0) ? 0 : offset-1;
|
|
for(unsigned int i = offset; i<nuPointsMinus; i++)
|
|
{
|
|
idx = i*2;
|
|
const unsigned int idx1 = idx+2;
|
|
|
|
Vec2 p1 = vertices[idx];
|
|
Vec2 p2 = vertices[idx+1];
|
|
Vec2 p3 = vertices[idx1];
|
|
Vec2 p4 = vertices[idx1+1];
|
|
|
|
float s;
|
|
//BOOL fixVertex = !ccpLineIntersect(Vec2(p1.x, p1.y), Vec2(p4.x, p4.y), Vec2(p2.x, p2.y), Vec2(p3.x, p3.y), &s, &t);
|
|
bool fixVertex = !ccVertexLineIntersect(p1.x, p1.y, p4.x, p4.y, p2.x, p2.y, p3.x, p3.y, &s);
|
|
if(!fixVertex)
|
|
if (s<0.0f || s>1.0f)
|
|
fixVertex = true;
|
|
|
|
if(fixVertex)
|
|
{
|
|
vertices[idx1] = p4;
|
|
vertices[idx1+1] = p3;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ccVertexLineIntersect(float Ax, float Ay,
|
|
float Bx, float By,
|
|
float Cx, float Cy,
|
|
float Dx, float Dy, float *T)
|
|
{
|
|
float distAB, theCos, theSin, newX;
|
|
|
|
// FAIL: Line undefined
|
|
if ((Ax==Bx && Ay==By) || (Cx==Dx && Cy==Dy)) return false;
|
|
|
|
// Translate system to make A the origin
|
|
Bx-=Ax; By-=Ay;
|
|
Cx-=Ax; Cy-=Ay;
|
|
Dx-=Ax; Dy-=Ay;
|
|
|
|
// Length of segment AB
|
|
distAB = sqrtf(Bx*Bx+By*By);
|
|
|
|
// Rotate the system so that point B is on the positive X axis.
|
|
theCos = Bx/distAB;
|
|
theSin = By/distAB;
|
|
newX = Cx*theCos+Cy*theSin;
|
|
Cy = Cy*theCos-Cx*theSin; Cx = newX;
|
|
newX = Dx*theCos+Dy*theSin;
|
|
Dy = Dy*theCos-Dx*theSin; Dx = newX;
|
|
|
|
// FAIL: Lines are parallel.
|
|
if (Cy == Dy) return false;
|
|
|
|
// Discover the relative position of the intersection in the line AB
|
|
*T = (Dx+(Cx-Dx)*Dy/(Dy-Cy))/distAB;
|
|
|
|
// Success.
|
|
return true;
|
|
}
|
|
|
|
NS_CC_END
|